Employing Nanosafety Standards in a Nanomaterial Research Environment: Lessons Learned and Refinement Potential
Abstract
:1. Introduction
2. Materials and Methods
- Core–shell PMMA@PMAA (poly(methyl methacrylate)/poly(methacrylic acid)) nanoparticles based on Goulis et al. [23];
- Super-absorbent polymers (SAPs) based on Kartsonakis et al. [24];
- Magnetite (Fe3O4) nanoparticles based on Yazdani et al. [25];
- SiO2@CNTs (silica/carbon nanotubes) microparticles synthesized through chemical vapor deposition, based on Kainourgios et al. [26].
3. Results and Discussion
3.1. Barriers Faced in Applying ISO/TS 12901-2:2014
3.1.1. Hazard Classification of Hybrid and Core–Shell Materials
3.1.2. Dermal Hazard
- NPs < 4 nm: penetration has been demonstrated.
- NPs 4–20 nm: skin penetration/permeation is possible.
- NPs 21–45 nm: skin absorption can be possible only on damaged skin.
- NPs > 45 nm: skin absorption is unlikely in healthy skin.
3.1.3. Consideration of the Primary Particle Size
3.1.4. The Nanomaterials’ Physical State
3.1.5. Quantity Scaling
- Whether the quantity of nanomaterial is larger or lower than 1 g;
- Whether the quantity of the liquid is larger or lower than 1 L.
3.2. Barriers Faced in Applying ISO/TR 12885:2018
3.3. ISO/TS 12901-2:2014 Banding Example
- Investigation of the bulk material hazard statements in the European Chemicals Agency (ECHA) database;
- Derivation of the nanomaterial hazard band, based on the ISO/TS 12901-2:2014 hazard banding rules;
- Derivation of the exposure band of the synthesis process, taking the characteristics of the process into account (e.g., physical state of the material, quantities), on the basis of the ISO/TS 12901-2:2014 exposure banding rules;
- Derivation of the control band, based on ISO/TS 12901-2:2014 control banding rules;
- Hazard assessment of the process’s reagents using the Control of Substances Hazardous to Health tool (e-COSHH tool) [38];
- Application of the MPPD model based on the basic characteristics of the nanomaterial (size, density) [34];
- Application of dermal penetration criteria to the nanomaterials;
- Documentation of any notable additional hazards of the process (unrelated to exposure).
4. Applications of ISO/TS 12901-2:2014 in the Literature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hulla, J.; Sahu, S.; Hayes, A. Nanotechnology: History and Future. Hum. Exp. Toxicol. 2015, 34, 1318–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, S.; Wong, N.K. Nanotechnology and Its Use in Imaging and Drug Delivery (Review). Biomed. Rep. 2021, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadam, M.; Rajakumar, G.; Chung, I.-M. Nanotechnology: Current Uses and Future Applications in the Food Industry. 3 Biotech 2018, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of Nanomaterials in Agricultural Production and Crop Protection: A Review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A Review on Nanomaterials for Environmental Remediation. Energy Environ. Sci. 2012, 5, 8075–8109. [Google Scholar] [CrossRef]
- Huang, H.; Sheng, X.; Tian, Y.; Zhang, L.; Chen, Y.; Zhang, X. Two-Dimensional Nanomaterials for Anticorrosive Polymeric Coatings: A Review. Ind. Eng. Chem. Res. 2020, 59, 15424–15446. [Google Scholar] [CrossRef]
- Ganguly, P.; Breen, A.; Pillai, S.C. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater. Sci. Eng. 2018, 4, 2237–2275. [Google Scholar] [CrossRef]
- Basinas, I.; Jiménez, A.S.; Galea, K.S.; van Tongeren, M.; Hurley, F. A Systematic Review of the Routes and Forms of Exposure to Engineered Nanomaterials. Ann. Work. Expo. Health 2018, 62, 639–662. [Google Scholar] [CrossRef] [Green Version]
- Boholm, Å.; Larsson, S. What Is the Problem? A Literature Review on Challenges Facing the Communication of Nanotechnology to the Public. J. Nanopart. Res. 2019, 21, 86. [Google Scholar] [CrossRef] [Green Version]
- Krug, H.F.; Wick, P. Nanotoxicology: An Interdisciplinary Challenge. Angew. Chem. Int. Ed. 2011, 50, 1260–1278. [Google Scholar] [CrossRef]
- Kuhlbusch, T.A.J.; Wijnhoven, S.W.P.; Haase, A. Nanomaterial Exposures for Worker, Consumer and the General Public. NanoImpact 2018, 10, 11–25. [Google Scholar] [CrossRef]
- Wigger, H.; Kägi, R.; Wiesner, M.; Nowack, B. Exposure and Possible Risks of Engineered Nanomaterials in the Environment—Current Knowledge and Directions for the Future. Rev. Geophys. 2020, 58, e2020RG000710. [Google Scholar] [CrossRef]
- Suhendra, E.; Chang, C.-H.; Hou, W.-C.; Hsieh, Y.-C. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters. Int. J. Mol. Sci. 2020, 21, 4554. [Google Scholar] [CrossRef]
- Kobayashi, N.; Izumi, H.; Morimoto, Y. Review of Toxicity Studies of Carbon Nanotubes. J. Occup. Health 2017, 59, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of Graphene-Family Nanoparticles: A General Review of the Origins and Mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Zhao, F.; Li, S.; Hu, Z.; Zhao, Y. Low-Toxic and Safe Nanomaterials by Surface-Chemical Design, Carbon Nanotubes, Fullerenes, Metallofullerenes, and Graphenes. Nanoscale 2011, 3, 362–382. [Google Scholar] [CrossRef]
- McCormick, S.; Niang, M.; Dahm, M.M. Occupational Exposures to Engineered Nanomaterials: A Review of Workplace Exposure Assessment Methods. Curr. Environ. Health Rep. 2021, 8, 223–234. [Google Scholar] [CrossRef]
- Jantunen, A.P.K.; Gottardo, S.; Rasmussen, K.; Crutzen, H.P. An Inventory of Ready-to-Use and Publicly Available Tools for the Safety Assessment of Nanomaterials. NanoImpact 2018, 12, 18–28. [Google Scholar] [CrossRef]
- Ramos, D.; Almeida, L. Overview of Standards Related to the Occupational Risk and Safety of Nanotechnologies. Standards 2022, 2, 83–89. [Google Scholar] [CrossRef]
- Decoat—Recycling of Coated and Painted Textile and Plastic Materials. Available online: https://decoat.eu/project/ (accessed on 23 September 2022).
- ISO/TR 12885:2018; Nanotechnologies—Health and Safety Practices in Occupational Settings. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO/TS 12901-2:2014; Nanotechnologies—Occupational Risk Management Applied to Engineered Nanomaterials—Part 2: Use of the Control Banding Approach. International Organization for Standardization: Geneva, Switzerland, 2014.
- Goulis, P.; Kartsonakis, I.A.; Charitidis, C.A. Synthesis and Characterization of a Core-Shell Copolymer with Different Glass Transition Temperatures. Fibers 2020, 8, 71. [Google Scholar] [CrossRef]
- Kartsonakis, I.A.; Goulis, P.; Charitidis, C.A. Triggerable Super Absorbent Polymers for Coating Debonding Applications. Polymers 2021, 13, 1432. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, F.; Seddigh, M. Magnetite Nanoparticles Synthesized by Co-Precipitation Method: The Effects of Various Iron Anions on Specifications. Mater. Chem. Phys. 2016, 184, 318–323. [Google Scholar] [CrossRef]
- Kainourgios, P.; Kartsonakis, I.A.; Charitidis, C.A. Synthesis and Characterization of SiO2@CNTs Microparticles: Evaluation of Microwave-Induced Heat Production. Fibers 2021, 9, 81. [Google Scholar] [CrossRef]
- Javed, R.; Zia, M.; Naz, S.; Aisida, S.O.; ul Ain, N.; Ao, Q. Role of Capping Agents in the Application of Nanoparticles in Biomedicine and Environmental Remediation: Recent Trends and Future Prospects. J. Nanobiotechnol. 2020, 18, 172. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Huang, S.; Yu, K.J.; Clyne, A.M. Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 Nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture. Int. J. Mol. Sci. 2012, 13, 5554–5570. [Google Scholar] [CrossRef] [Green Version]
- Bottini, M.; Rosato, N.; Bottini, N. PEG-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead. Biomacromolecules 2011, 12, 3381–3393. [Google Scholar] [CrossRef]
- Larese Filon, F.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles Skin Absorption: New Aspects for a Safety Profile Evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef]
- Schmid, O.; Stoeger, T. Surface Area Is the Biologically Most Effective Dose Metric for Acute Nanoparticle Toxicity in the Lung. J. Aerosol Sci. 2016, 99, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Van Duuren-Stuurman, B.; Vink, S.R.; Verbist, K.J.M.; Heussen, H.G.A.; Brouwer, D.H.; Kroese, D.E.D.; Van Niftrik, M.F.J.; Tielemans, E.; Fransman, W. Stoffenmanager Nano Version 1.0: A Web-Based Tool for Risk Prioritization of Airborne Manufactured Nano Objects. Ann. Occup. Hyg. 2012, 56, 525–541. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- MPPD: Multiple-Path Particle Dosimetry Model—ARA. Available online: https://www.ara.com/mppd/ (accessed on 23 September 2022).
- Xiao, T.; Ma, X.; Zhang, H.; Reisner, D.; Raj, P.; Wan, L.; Tummala, R. Magnetic Nanocomposite Paste: An Ideal High µ, k and Q Nanomaterial for Embedded Inductors in High Frequency Electronic Applications. In Proceedings of the WMSCI 2005—The 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, FL, USA, 1 January 2005; Volume 9. [Google Scholar]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Safaei, M.; Zhang, K.; Le, Q.V.; Varma, R.S.; Jang, H.W.; Shokouhimehr, M. Developments and Applications of Nanomaterial-Based Carbon Paste Electrodes. RSC Adv. 2020, 10, 21561–21581. [Google Scholar] [CrossRef]
- ISO 45001:2018; Occupational Health and Safety Management Systems—Requirements with Guidance for Use. International Organization for Standardization: Geneva, Switzerland, 2018.
- Control of Substances Hazardous to Health (COSHH)—COSHH. Available online: https://www.hse.gov.uk/coshh/ (accessed on 26 September 2022).
- Terranova, M.L.; Sessa, V.; Rossi, M. The World of Carbon Nanotubes: An Overview of CVD Growth Methodologies. Chem. Vap. Depos. 2006, 12, 315–325. [Google Scholar] [CrossRef]
- Ramos, D.; Almeida, L.; Gomes, M. Application of Control Banding to Workplace Exposure to Nanomaterials in the Textile Industry. In Occupational and Environmental Safety and Health; Arezes, P.M., Baptista, J.S., Barroso, M.P., Carneiro, P., Cordeiro, P., Costa, N., Melo, R.B., Miguel, A.S., Perestrelo, G., Eds.; Studies in Systems, Decision and Control; Springer International Publishing: Cham, Switzerland, 2019; pp. 105–113. ISBN 978-3-030-14730-3. [Google Scholar]
- Boccuni, F.; Ferrante, R.; Tombolini, F.; Lega, D.; Antonini, A.; Alvino, A.; Pingue, P.; Beltram, F.; Sorba, L.; Piazza, V.; et al. Workers’ Exposure to Nano-Objects with Different Dimensionalities in R&D Laboratories: Measurement Strategy and Field Studies. Int. J. Mol. Sci. 2018, 19, 349. [Google Scholar] [CrossRef] [Green Version]
- Hoornick, N.V.; Prodanov, D.; Pardon, A. Banding Approach for Engineered Nanomaterial Risk Assessment and Control. J. Phys. Conf. Ser. 2017, 838, 012017. [Google Scholar] [CrossRef]
Attributes of Materials and Processes | Reference | |||||
---|---|---|---|---|---|---|
Synthesis Method | Primary Particle Size | Density | Reagents | |||
Materials | Core–shell PMMA@PMAA | Wet chemistry | 160–210 nm | 0.94 g/cm3 | Methacrylic acid, methyl methacrylate, ethylene glycol dimethacrylate, potassium persulphate | Goulis et al. [23] |
Super-absorbent polymers (SAPs) | Wet chemistry | 170–360 nm | 1.02 g/cm3 | Potassium persulfate, acetonitrile, ammonium hydroxide, tetraethyl orthosilicate, ethylene glycol dimethacrylate, methacrylic acid | Kartsonakis et al. [24] | |
Magnetite (Fe3O4) nanoparticles | Wet chemistry | 5–50 nm | 5.2 g/cm3 | Ferrous chloride tetrahydrate, ferric chloride, ferrous sulfate heptahydrate, ferric nitrate nonahydrate, ferric sulfate, sodium hydroxide | Yazdani et al. [25] | |
Hybrid SiO2@CNTs | Stöber method (wet chemistry), chemical vapor deposition (CVD) | SiO2: 350 nm; iron oxide: 15–20 nm; MWCNTs: 50 nm in diameter | 1.7–2.1 g/cm3 | Ethanol, tetraethyl orthosilicate, ammonia, ferrous chloride tetrahydrate, hydrogen, acetylene (compressed gas cylinders) | Kainourgios et al. [26] |
Material | Nano- hazard band | Nano- exposure band (EB) | Control band (CB) | Engineering control recommendations | MPPD * alveolar deposition fraction | Dermal penetration | Additional hazards and reagents’ chemical hazards | Synthesis process hazards | |
PMMA@ PMAA | C | EB1 (wet phase synthesis) | CB2 | Local ventilation: extractor hood, slot hood, arm hood, table hood, etc. | 0.1313 | Unlikely on healthy skin | H334 respiratory sensitization 1; H317 skin sensitization 1; H311 acute toxicity; 3 dermal; H314 skin corrosion 1A; H318 serious eye damage 1 | Wet chemistry process | |
(SAPs) PMAA@SiO2 | C | EB1 (wet phase synthesis) | CB2 | Local ventilation: extractor hood, slot hood, arm hood, table hood, etc. | 0.1202 | Unlikely on healthy skin | H334 respiratory sensitization 1; H317 skin sensitization 1; H311 acute toxicity; 3 dermal; H314 skin corrosion 1A; H318 serious eye damage 1 | Wet chemistry process | |
SiO2@CNTs | C | E | EB4 (Chemical vapor condensation) | CB5 | Full containment and review by a specialist: seek expert advice. On-site visit and measurements | 0.0479 * | Possible (via healthy and injured skin) | Nanomaterials used as catalysts/precursors | Pressurized vessel use, high temperatures, high pressure, flammable gases |
Fe3O4 nanoparticles | D | EB1 (wet phase synthesis) | CB3 | Enclosed ventilation: ventilated booth, fume hood, closed reactor with regular openings | 0.2982 | Possible (via healthy and injured skin) | H314 skin corrosion 1A; H318 serious eye damage 1; H351 carcinogenicity 2 | Wet chemistry process |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinopoulos, I.; Karayannis, P.; Saliakas, S.; Damilos, S.; Koumoulos, E.P. Employing Nanosafety Standards in a Nanomaterial Research Environment: Lessons Learned and Refinement Potential. Standards 2022, 2, 490-502. https://doi.org/10.3390/standards2040034
Kokkinopoulos I, Karayannis P, Saliakas S, Damilos S, Koumoulos EP. Employing Nanosafety Standards in a Nanomaterial Research Environment: Lessons Learned and Refinement Potential. Standards. 2022; 2(4):490-502. https://doi.org/10.3390/standards2040034
Chicago/Turabian StyleKokkinopoulos, Ioannis, Panagiotis Karayannis, Stratos Saliakas, Spyridon Damilos, and Elias P. Koumoulos. 2022. "Employing Nanosafety Standards in a Nanomaterial Research Environment: Lessons Learned and Refinement Potential" Standards 2, no. 4: 490-502. https://doi.org/10.3390/standards2040034
APA StyleKokkinopoulos, I., Karayannis, P., Saliakas, S., Damilos, S., & Koumoulos, E. P. (2022). Employing Nanosafety Standards in a Nanomaterial Research Environment: Lessons Learned and Refinement Potential. Standards, 2(4), 490-502. https://doi.org/10.3390/standards2040034