Inhibition of Angiogenic Factor Productions by Quercetin In Vitro and In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Chemicals
2.3. Preparation of Mouse IgE
2.4. Preparation of Mouse Peritoneal Mast Cells
2.5. Sensitization of Mast Cells with IgE and Treatment with Quercetin
2.6. OVA Sensitization and Quercetin Treatment
2.7. Collection of Nasal Lavage Fluids
2.8. Assay for Nasal Symptoms
2.9. Assay for Angiogenic Factor Concentrations in Culture Supernatants
2.10. Assay for mRNA Expression
2.11. Statistical Analysis
3. Results
3.1. Suppression of Angiogenic Factor Secretion from Mast Cells by Quercetin
3.2. Suppression of mRNA Expression for Angiogenic Factors by Quercetin in Mast Cells
3.3. Suppression of the Appearance of Angiogenic Factors in Nasal Lavage Fluids by Quercetin
3.4. Suppression of the Development of OVA-Induced Nasal Allergy-Like Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pawankar, R.; Mori, S.; Ozu, C.; Kimura, S. Overview on the pathomechanisms of allergic rhinitis. Asia Pac. Allergy 2011, 1, 157–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Jimenez, F.; Pavon-Romero, G.; Juarez-Martinez, L.L.; Teran, L.M. Allergic rhinitis. J. Allergy Ther. 2012, S5, 006. [Google Scholar]
- Corren, J.; Togias, A. Remodeling in allergic rhinitis. Am. J. Respir. Crit. Care Med. 2015, 192, 1403–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, Y. Autophagy is involved in allergic rhinitis by inducing airway remodeling. Int. Forum Allergy Rhinol. 2019, 9, 1346–1351. [Google Scholar] [CrossRef]
- Kovalhok, L.C.S.; Telles, E.Q.; Lima, M.N.; Rosario-Filho, N.A. Nasal lavage cytology and mucosal histopathological alterations in patients with rhinitis. Braz. J. Otolynolaryngol. 2020, 86, 434–442. [Google Scholar] [CrossRef]
- Asano, K.; Kanai, K.-I.; Suzaki, H. Suppressive activity of fexofenadine hydrochloride on metalloproteinase production from nasal fibroblasts in vitro. Clin. Exp. Allergy 2004, 34, 1890–1898. [Google Scholar] [CrossRef]
- Ward, C.; Walters, H. Airway wall remodeling: The influence of corticosteroids. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 43–48. [Google Scholar] [CrossRef]
- Yuksel, H.; Kose, H.; Yilmaz, O.; Ozbilgin, K.; Degirmenci, P.B.; Pinar, E.; Kirmaz, C. Increased expression of tissue vascular endothelial growth factor and fetal liver kinase-1 receptor in seasonal allergic rhinitis and relevance to asthma component. Clin. Exp. Allergy 2007, 37, 1183–1188. [Google Scholar] [CrossRef]
- Moon, J.; Kim, D.-Y.; Rhee, C.-S.; Lee, C.H.; Min, Y.-G. Role of angiogenic factors in airway remodeling in an allergic rhinitis murine model. Allergy Asthma Immunol. Res. 2012, 4, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Przybylski, M. A review of the current research on the role of bFGF and VEGF in angiogenesis. J. Wound Care 2009, 18, 516–519. [Google Scholar] [CrossRef]
- Norrby, K. Mast cells and angiogenesis. APMIS 2002, 110, 355–371. [Google Scholar] [CrossRef]
- Ali Komi, D.E.; Khomtchouk, K.; Santa Maria, P.L. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin. Rev. Allergy Immunol. 2020, 58, 298–312. [Google Scholar] [CrossRef]
- McHale, C.; Mohammed, Z.; Gomez, G. Human skin-derived mast cells spontaneously secrete several angiogenesis-related factors. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Abdel-Majid, R.M.; Marshall, J.S. Prostagrandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells. J. Immunol. 2004, 172, 1227–1236. [Google Scholar] [CrossRef] [Green Version]
- Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 2003, 9, 653–660. [Google Scholar] [CrossRef]
- Wu, S.; Xiao, D. Effect of curcumin on nasal symptoms and airflow in patients with perennial allergic rhinitis. Ann. Allergy Asthma Immunol. 2016, 117, 697–702. [Google Scholar] [CrossRef]
- Jang, T.E.; Jug, A.-Y.; Kyung, T.-S.; Kim, D.-Y.; Hwang, J.-H.; Kim, Y.H. Anti-allergic effect of luteolin in mice with allergic asthma and rhinitis. Cent. Eur. J. Immunol. 2017, 42, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; He, D.; Yan, B. Apigenin attenuates allergic responses of ovalbumin-induced allergic rhinitis through modulation of Th1/Th2 responses in experimental mice. Dose-Response Ann. Int. J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Sakai-Kashiwabara, M.; Asano, K. Inhibitory action of quercetin on eosinophil activation in vitro. Evid. Based Complement Alternat. Med. 2013, 2013, 127105. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Furuta, A.; Asano, K.; Kobayashi, H. Modulation of Th1/Th2 cytokine balance by quercetin in vitro. Medicines 2020, 7, 46. [Google Scholar] [CrossRef]
- Ebihara, N.; Takahashi, K.; Takemura, H.; Akanuma, Y.; Asano, K.; Sunagawa, M. Suppressive effect of quercetin on nitric oxide production from nasal epithelial cells in vitro. Evid. Based Complement Alternat. Med. 2018, 2018, 6097625. [Google Scholar] [CrossRef] [Green Version]
- Kashiwabara, M.; Asano, K.; Mizuyoshi, T.; Kobayashi, H. Suppression of neuropeptide production by quercetin in allergic rhinitis model rats. BMC Complement Altern. Med. 2016, 16, 132. [Google Scholar] [CrossRef] [Green Version]
- Edo, Y.; Otaki, A.; Asano, K. Quercetin enhances the thioredoxin production of nasal epithelial cells in vitro and in vivo. Medicines 2018, 5, 124. [Google Scholar] [CrossRef] [Green Version]
- Kimata, M.; Shichijo, M.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy 2000, 30, 501–508. [Google Scholar] [CrossRef]
- Weng, Z.; Zhang, B.; Asadi, S.; Sismanopoulos, N.; Butcher, A.; Fu, X.; Katsarou-Katsari, A.; Antonious, C.; Theoharides, T.C. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS ONE 2012, 7, e33805. [Google Scholar] [CrossRef]
- Kempuraj, D.; Madhappan, B.; Christodoulous, S.; Boucher, W.; Cao, J.; Papadopoulou, N.; Cetrulo, C.L.; Theoharides, T.C. Flavonoids inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharmacol. 2005, 31, 1303–1311. [Google Scholar]
- Lee, E.J.; Ji, G.E.; Sung, M.K. Quercetin and kaempferol suppress immunoglobulinE-mediated allergic inflammation in RBL-2H3 and Caco-2 cells. Inflamm. Res. 2010, 50, 847–854. [Google Scholar] [CrossRef]
- Park, H.H.; Lee, S.; Son, H.Y.; Park, S.B.; Kim, M.S.; Choi, E.J.; Singh, T.S.K.; Ha, J.H.; Lee, M.G.; Kim, J.E.; et al. Flavonoids inhibits histamine release and expression of proinlamatory cytokines in mast cells. Arch. Pharmacal Res. 2008, 31, 1303–1311. [Google Scholar] [CrossRef]
- Asano, K.; Furuta, A.; Kanai, K.; Sakaue, S.; Suzaki, H.; Hisamitsu, T. Inhibition of angiogenic factor production from murine mast cells by antiallergic agent (Epinastine Hydrochloride) in vitro. Med. Inflamm. 2008, 2008, 265095. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto-Kataoka, T.; Hosen, N.; Sonobe, T.; Arita, Y.; Yasui, T.; Masaki, T.; Minami, M.; Inagaki, T.; Miyagawa, S.; Sawa, Y.; et al. Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension. Proc. Natl. Acad. Sci. USA 2015, 112, E2677–E2686. [Google Scholar] [CrossRef] [Green Version]
- Coffin, J.D.; Florkiewicz, R.Z.; Neumann, J.; MortHopkins, T.; Dorn, G.W.; Lightfoot, P.; German, R.; Howels, P.N.; Kier, A.; O’Toole, B.A.; et al. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol. Biol. Cell 1995, 6, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- Hollman, P.C.H.; Gaag, M.V.D.; Mengelers, M.J.B.; Van Trijp, J.M.P.; De Vries, J.H.M.; Katan, M.B. Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Rad. Biol. Med. 1996, 21, 703–707. [Google Scholar] [CrossRef]
- O’Hanlon, S.; Facer, P.; Simpson, K.D.; Sandhu, G.; Saleh, H.A.; Anand, P. Neuronal markers in allergic rhinitis: Expression and correlation with sensory testing. Laryngoscope 2007, 117, 1519–1527. [Google Scholar] [CrossRef] [PubMed]
- Battegay, E.J. Angiogenesis: Mechanistic insights, neovascular diseases, and therapeutic prospects. J. Mol. Med. 1995, 73, 333–346. [Google Scholar] [CrossRef]
- Palgan, K.; Bartuzi, Z. Angiogenesis in bronchial asthma. Int. J. Immunopathol. Pahrmacol. 2015, 28, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, M.; Saito, K.; Takemura, M.; Sekikawa, K.; Fujii, H.; Yamada, Y.; Wada, H.; Mizuta, K.; Seishima, M.; Ito, Y. TNF-α contributes to the development of allergic rhinitis in mice. J. Allergy Clin. Immunol. 2003, 112, 134–140. [Google Scholar] [CrossRef]
- Matsune, S. Allergic rhinitis and vascular endothelial growth factor. J. Nippon Med. Sch. 2012, 79, 170–175. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wang, T.; Yao, L.; Chen, A.; Zhou, B.; Yu, H.; Jia, R.; Cheng, C.; Huan, L.; Zhang, Z. Construction and delivery of gene therapy vector containing soluble TNF-α receptor-IgGFc fusion gene for the treatment of allergic rhinitis. Cytokine 2006, 36, 296–304. [Google Scholar] [CrossRef]
- Ju, L.; Zhou, Z.; Jiang, B.; Lou, Y.; Guo, X. Autocrine VEGF and IL-8 promote migration via Src/Vav2/Rac1/PAK1 signaling in human umbilical vein endothelial cells. Cell Physiol. Biochem. 2017, 41, 1346–1359. [Google Scholar] [CrossRef]
- Yoshida, S.; Ono, M.; Shono, T.; Izumi, H.; Ishibashi, T.; Suzuki, H.; Kuwano, M. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol. Cell. Biol. 1997, 17, 4015–4023. [Google Scholar] [CrossRef] [Green Version]
- Ohkubo, K.; Ikeda, M.; Pawanker, R.; Gotoh, M.; Yagi, T.; Okuda, M. Mechanisms of IL-6, IL-8 and GM-CSF release in nasal secretions of allergic patients after nasal challenge. Rhinology 1998, 36, 156–161. [Google Scholar]
- Toda, M.; Kuo, C.-H.; Borman, S.K.; Richardson, R.M.; Inoko, A.; Inagaki, M.; Collins, A.; Schneider, K.; Ono, S.J. Evidence that formation of vimentin-mitogen-activated protein kinase (MAPK) complex mediates mast cell activation following FCε/CC chemokine receptor 1 cross-talk. J. Biol. Chem. 2012, 29, 24516–24524. [Google Scholar] [CrossRef] [Green Version]
- Kee, J.-Y.; Jeon, Y.-D.; Kim, D.-S.; Han, Y.-H.; Park, J.; Youn, D.-H.; Kim, S.-J.; Ahn, K.S.; Um, J.-Y. Korean red ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vitro and in vivo. J. Ginseng Res. 2017, 41, 134–143. [Google Scholar] [CrossRef] [Green Version]
Substance | Sequence | Reference |
---|---|---|
IL-6 | 5’-TGTGCAATGGCAATTCTGAT-3’(sense) | [30] |
5’-GGTACTCCAGAAGACCAGAGGA-3’(antisense) | ||
IL-8 | 5’-GCGCCTATCGCCAATGAG-3’(sense) | [29] |
5’-AGGGCAACACCTTCAAGCTCT-3’(antisense) | ||
bFGF | 5’-AAGAGCGATCCGCACACTAA-3’(sense) | [31] |
5’-GGATAGCTTTCTGTCCAGGT-3’(antisense) | ||
VEGF | 5’-CAGCTATTGCCGTCCGATTGAGA-3’(sense) | [29] |
5’-TGCTGGCTTTGGGAGGTTTGAT-3’(antisense) | ||
TNF | 5’-CCTGTAGCCCACGTCGCGTAGC-3’(sense) | [29] |
5’-TTGACCTCAGCGCTGAGTTG-3’(antisense) | ||
β-actin | 5’-ACCCACACTTGTGCCCATCCTA-3’(sense) | [29] |
5’-CGGAACCGCTCATTGCC-3’(antisense) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okumo, T.; Furuta, A.; Kimura, T.; Yusa, K.; Asano, K.; Sunagawa, M. Inhibition of Angiogenic Factor Productions by Quercetin In Vitro and In Vivo. Medicines 2021, 8, 22. https://doi.org/10.3390/medicines8050022
Okumo T, Furuta A, Kimura T, Yusa K, Asano K, Sunagawa M. Inhibition of Angiogenic Factor Productions by Quercetin In Vitro and In Vivo. Medicines. 2021; 8(5):22. https://doi.org/10.3390/medicines8050022
Chicago/Turabian StyleOkumo, Takayuki, Atsuko Furuta, Tarou Kimura, Kanako Yusa, Kazuhito Asano, and Masataka Sunagawa. 2021. "Inhibition of Angiogenic Factor Productions by Quercetin In Vitro and In Vivo" Medicines 8, no. 5: 22. https://doi.org/10.3390/medicines8050022
APA StyleOkumo, T., Furuta, A., Kimura, T., Yusa, K., Asano, K., & Sunagawa, M. (2021). Inhibition of Angiogenic Factor Productions by Quercetin In Vitro and In Vivo. Medicines, 8(5), 22. https://doi.org/10.3390/medicines8050022