Recent Progress of Basic Studies of Natural Products and Their Dental Application
Abstract
:1. Introduction
2. Chromone Derivatives as New Type of Anticancer Candidate
2.1. Most of Anticancer Drugs Show Severe Keratinocyte Toxicity
2.2. Limitations of Apoptosis-Oriented Research
2.3. Synthesis of Chromone Derivatives Having High Tumor-Specificity and Low Keratinocyte Toxicity
3. Catechins as Inhibitors of Glucosyltransferase
3.1. Classification of Oral Streptococcal GTF Enzymes
3.2. Purification of GTF Enzymes
3.3. Inhibitors of Oral Streptococcal GTFs
4. Lignin-Carbohydrate Complex (LCC) as Anti-HIV Resources of the Natural Kingdom
5. Alkaline Extract of the Leaves of Sasa sp. (SE)
5.1. Prominent Anti-HIV, Anti-UV, Anti-Inflammation and Neuroprotective Activities (in vitro)
5.2. Improvement of Lichenoid Dysplasia by SE
5.3. Anti-Oxidative Stress Effect of SE in Chronic Dialysis Patients
5.4. Anti-Halitosis Effect of Toothpaste Supplemented with SE
5.5. Other Unpublished Case Reports
6. Kampo Medicines
7. Dental Application of Angiotensin II Receptor Blocker for Severe Periodontitis
7.1. Angiotensin II Receptor Blocker (ARB) in Marfan Syndrome
7.2. Periodontal Disease Frequently Seen in Marfan Syndrome
7.3. Progression of Periodontal Disease and Application of ARB
8. Future Direction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ARB | Angiotensin II receptor blocker |
AT1 | Angiotensin II type 1 receptor |
AT2 | Angiotensin II type 2 receptor |
AZT | Azidothymidine |
CC50 | 50% cytotoxic concentration |
CDP-choline | Cytidine diphosphate-choline |
CPT | Camptothecin |
DNR | Daunorubicin |
DOC | Docetaxel |
DXR | Doxorubicin |
EGCG | Epigallocatechin-3-gallate |
ELISA | EnzymelLinked immunoSorbent assay |
ETP | Etoposide |
FBN1 | Gene that codes fibrillin-1 in humans |
5-FU | 5-Fluorouracil |
GTF | Glucosyltransferase GTF |
HIV | Human immuno-deficiency virus |
HPLC | High-performance liquid chromatography HPLC |
HSVV | Herpes simplex virus |
IL | Interleukin |
LCC | Lignin carbohydrate complex |
LPO | Lipid peroxide |
MEL | Melphalan |
MgR mice | model mice of Marfan syndrome |
MMC | Mitomycin C |
O2- | Superoxide |
OSCC | Oral squamous cell carcinoma |
PDL | Periodontal ligament |
QASR | Quantitative structure-activity relationship |
Sasa sp. | Sasa species |
SA | Senescence-associated |
SE | Alkaline extract of the leaves of Sasa sp. |
SN-38 | Active metabolite of irinotecan |
SOD | Superoxide dismutase |
TGF | Transforming growth factor |
TNF | Tumor necrosis factor |
TRL | Toll-like receptor |
TS | Tumor-specificity |
TSE | Tumor-specificity determined with human normal oral epithelial cells vs OSCC cells |
TSM | Tumor-specificity determined with human normal oral mesenchymal cells vs OSCC cells |
UV | Ultraviolet |
WIG | water-insoluble glucan |
WSG | water-soluble glucan WSG |
References
- Queiroz, S.I.M.L.; Silva, M.V.A.D.; Medeiros, A.M.; Oliveira, P.T.; Gurgel, B.C.V.; Silveira, É.J.D.D. Recurrent aphthous ulceration: An epidemiological study of etiological factors, treatment and differential diagnosis. An. Bras. Dermatol. 2018, 93, 341–346. [Google Scholar] [CrossRef]
- Chiang, C.P.; Chang, J.; Wang, Y.P.; Wu, Y.H.; Wu, Y.C.; Sun, A. Recurrent aphthous stomatitis—Etiology, serum autoantibodies, anemia, hematinic deficiencies, and management. J. Formos. Med. Assoc. 2018. [Google Scholar] [CrossRef] [PubMed]
- Abdel Moneim, A.E.; Guerra-Librero, A.; Florido, J.; Shen, Y.Q.; Fernández-Gil, B.; Acuña-Castroviejo, D.; Escames, G. Oral Mucositis: Melatonin Gel an Effective New Treatment. Int. J. Mol. Sci. 2017, 18, 1003. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, H. Biological activities and possible dental application of three major groups of polyphenols. J. Pharmacol. Sci. 2014, 126, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Yoshida, T.; Hatano, T. Hydrolyzable tannins and related polyphenols. In Fortschritte der Chemie Organischer Naturstoffe/Progressinthe Chemistry of Organic Natural Products; Springer: Vienna, Austria, 1995; pp. 1–117. [Google Scholar]
- Nomura, T.; Hano, Y.; Fukai, T. Chemistry and biosynthesis of isoprenylated flavonoids from Japanese mulberry tree. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009, 85, 391–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cendrowski, A.; Ścibisz, I.; Mitek, M.; Kieliszek, M.; Kolniak-Ostek, J. Profile of the Phenolic Compounds of Rosa rugosa Petals. J. Food Qual. 2017, 2017. [Google Scholar] [CrossRef]
- Cendrowski, A.; Ścibisz, I.; Kieliszek, M.; Kolniak-Ostek, J.; Mitek, M. UPLC-PDA-Q/TOF-MS profile of polyphenolic compounds of liqueurs from Rose petals (Rosa rugosa). Molecules 2017, 22, 1832. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, H.; Hashimoto, K.; Suzuki, F.; Ogiwara, T.; Satoh, K.; Ito, H.; Hatano, T.; Takashi, Y.; Fujisawa, S. Molecular requirements of lignin-carbohydrate complexes for expression of unique biological activities. Phytochemistry 2005, 66, 2108–2120. [Google Scholar] [CrossRef]
- Olsen, I.; Singhrao, S.K. Can oral infection be a risk factor for Alzheimer’s disease? J. Oral. Microbiol. 2015, 7, 29143. [Google Scholar] [CrossRef]
- Furuta, M.; Yamashita, Y. Oral health and swallowing problems. Curr. Phys. Med. Rehabil. Rep. 2013, 1, 216–222. [Google Scholar] [CrossRef]
- Olmsted, J.L.; Rublee, N.; Zurkawski, E.; Kleber, L. Public health dental hygiene: An option for improved quality of care and quality of life. J. Dent. Hyg. 2013, 87, 299–308. [Google Scholar]
- Hägglund, P.; Olai, L.; Ståhlnacke, K.; Persenius, M.; Hägg, M.; Andersson, M.; Koistinen, S.; Carlsson, E. Study protocol for the SOFIA project: Swallowing function, Oral health, and Food Intake in old Age: A descriptive study with a cluster randomized trial. BMC Geriatr. 2017, 78. [Google Scholar] [CrossRef] [PubMed]
- Bardellini, E.; Amadori, F.; Majorana, A. Oral hygiene grade and quality of life in children with chemotherapy-related oral mucositis: A randomized study on the impact of a fluoride toothpaste with salivary enzymes, essential oils, proteins and colostrum extract versus a fluoride toothpaste without menthol. Int. J. Dent. Hyg. 2016, 14, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.A.; Sanna, V. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol. Nutr. Food Res. 2016, 60, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Feller, L.; Khammissa, R.A.; Chandran, R.; Altini, M.; Lemmer, J. Oral candidosis in relation to oral immunity. J. Oral. Pathol. Med. 2014, 43, 563–569. [Google Scholar] [CrossRef]
- Pang, Y.; Shen, Z.; Sun, J.; Wang, W. Does the use of targeted agents in advanced gastroesophageal cancer increase complete response? A meta-analysis of 18 randomized controlled trials. Cancer Manag. Res. 2018, 10, 5505–5514. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zuo, L.; He, X.; Pi, J.; Jin, J.; Shi, Y. Efficacy and safety of rh-endostatin (Endostar) combined with pemetrexed/cisplatin followed by rh-endostatin plus pemetrexed maintenance in non-small cell lung cancer: A retrospective comparison with standard chemotherapy. Thorac. Cancer. 2018, 9, 1354–1360. [Google Scholar] [CrossRef]
- Harada, T.; Ijima, A. Pharmacological profile and clinical findings of palbociclib (IBRANCEⓇ capsule 25 mg/125 mg). Folia Pharmacol. Jpn. 2018, 152, 206–318. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Lulli, D.; Carbone, M.L.; Pastore, S. Epidermal growth factor receptor inhibitors trigger a type I interferon response in human skin. Oncotarget 2016, 7, 47777–47793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, D.; Codecà, C.; Bocci, B.; Crepaldi, F.; Violati, M.; Viale, G.; Careri, C.; Caldiera, S.; Bordin, V.; Luciani, A.; et al. Anti-epidermal growth factor receptor skin toxicity: A matter of topical hydration. Anticancer Drugs 2016, 27, 144–146. [Google Scholar] [CrossRef]
- Benjakul, R.; Kongkaneramit, L.; Sarisuta, N.; Moongkarndi, P.; Müller-Goymann, C.C. Cytotoxic effect and mechanism inducing cell death of α-mangostin liposomes in various human carcinoma and normal cells. Anticancer Drugs 2015, 26, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Do, N.; Weindl, G.; Grohmann, L.; Salwiczek, M.; Koksch, B.; Korting, H.C.; Schäfer-Korting, M. Cationic membrane-active peptides–anticancer and antifungal activity as well as penetration into human skin. Exp. Dermatol. 2014, 23, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Moreno Garcia, V.; Thavasu, P.; Blanco Codesido, M.; Molife, L.R.; Vitfell Pedersen, J.; Puglisi, M.; Basu, B.; Shah, K.; Iqbal, J.; de Bono, J.S.; et al. Association of creatine kinase and skin toxicity in phase I trials of anticancer agents. Br. J. Cancer 2012, 107, 1797–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedict, A.L.; Knatko, E.V.; Dinkova-Kostova, A.T. The indirect antioxidant sulforaphane protects against thiopurine-mediated photo-oxidative stress. Carcinogenesis 2012, 33, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Fischel, J.L.; Formento, P.; Ciccolini, J.; Etienne-Grimaldi, M.C.; Milano, G. Lack of contribution of dihydrofluorouracil and Alpha-fluoro-beta-alanine to the cytotoxicity of 5′-deoxy-5-fluorouridine on human keratinocytes. Anticancer Drugs 2004, 15, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, H.; Okudaira, N.; Masuda, Y.; Amano, O.; Yokose, S.; Kanda, Y.; Suguro, M.; Natori, T.; Oizumi, H.; Oizumi, T. Induction of apoptosis in human oral keratinocyte by doxorubicin. Anticancer Res. 2017, 37, 1023–1029. [Google Scholar]
- Miyamoto, M.; Sakagami, H.; Minagawa, K.; Kikuchi, H.; Nishikawa, H.; Satoh, K.; Komatsu, N.; Fujimaki, M.; Nakashima, H.; Gupta, M.; et al. Tumor-specificity and radical scavenging activity of poly-herbal formula. Anticancer Res. 2002, 22, 1217–1224. [Google Scholar]
- Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A valid scaffold in medicinal chemistry. Chem Rev. 2014, 114, 4960–4992. [Google Scholar] [CrossRef]
- Shimada, C.; Uesawa, Y.; Ishii-Nozawa, R.; Ishihara, M.; Kagaya, H.; Kanamto, T.; Terakubo, S.; Nakashima, H.; Takao, K.; Sugita, Y.; et al. Quantitative structure–cytotoxicity relationship of 3-styrylchromones. Anticancer Res. 2014, 34, 5405–5412. [Google Scholar]
- Sakagami, H.; Shimada, C.; Kanda, Y.; Amano, O.; Sugimoto, M.; Ota, S.; Soga, T.; Tomita, M.; Sato, A.; Tanuma, S.; et al. Effects of 3-styrylchromones on metabolic profiles and cell death in oral squamous cell carcinoma cells. Toxocol. Rep. 2015, 2, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Uesawa, Y.; Sakagami, H.; Kagaya, H.; Yamashita, M.; Takao, K.; Sugita, Y. Quantitative structure-cytotoxicity relationship of 3-benzylidenechromanones. Anticancer Res. 2016, 36, 5803–5812. [Google Scholar] [CrossRef] [PubMed]
- Uesawa, Y.; Ishihara, M.; Kagaya, H.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Yahagi, H.; Takao, K.; Sugita, Y. Quantitative structure–cytotoxicity relationship of 3-styryl-2H-chromenes. Anticancer Res. 2015, 35, 5299–5308. [Google Scholar] [PubMed]
- Sakagami, H.; Okudaira, N.; Uesawa, Y.; Takao, K.; Kagaya, H.; Sugita, Y. Quantitative structure-cytotoxicity relationship of 2-azolylchromones. Anticancer Res. 2018, 38, 763–770. [Google Scholar] [PubMed]
- Shi, H.; Nagai, J.; Sakatsume, T.; Bandow, K.; Okudaira, N.; Sakagami, H.; Tomomura, M.; Tomomura, A.; Uesawa, Y.; Takao, K.; et al. Quantitative structure–cytotoxicity relationship of 2-(N-cyclicamino)chromone derivatives. Anticancer Res. 2018, 38, 3897–3906. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Nagai, J.; Sakatsume, T.; Bandow, K.; Okudaira, N.; Uesawa, Y.; Sakagami, H.; Tomomura, M.; Tomomura, A.; Takao, K.; et al. Quantitative structure–cytotoxicity relationship of 3-(N-cyclicamino)chromone derivatives. Anticancer Res. 2018, 38, 4459–4467. [Google Scholar] [CrossRef]
- Uesawa, Y.; Sakagami, H.; Shi, H.; Hirose, M.; Takao, K.; Sugita, Y. Quantitative structure-cytotoxicity relationship of furo[2,3-b]chromones. Anticancer Res. 2018, 38, 3283–3290. [Google Scholar] [CrossRef]
- Nagai, J.; Shi, H.; Kubota, Y.; Bandow, K.; Okudaira, N.; Uesawa, Y.; Sakagami, H.; Tomomura, M.; Tomomura, A.; Takao, K.; et al. Quantitative structure–cytotoxicity relationship of pyrano[4,3-b]chromones. Anticancer Res. 2018, 38, 4449–4457. [Google Scholar] [CrossRef]
- Pleszczyńska, M.; Wiater, A.; Bachanek, T.; Szczodrak, J. Enzymes in therapy of biofilm-related oral diseases. Biotechnol. Appl. Biochem. 2017, 64, 337–346. [Google Scholar] [CrossRef]
- Kalesinskas, P.; Kačergius, T.; Ambrozaitis, A.; Pečiulienė, V.; Ericson, D. Reducing dental plaque formation and caries development. A review of current methods and implications for novel pharmaceuticals. Stomatologija 2014, 16, 44–52. [Google Scholar]
- Hehre, E. Enzymic synthesis of polysaccharides: A biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 1951, 11, 297–337. [Google Scholar]
- Kuramitsu, H.K. Virulence factors of mutans streptococci: Role of molecular genetics. Crit. Rev. Oral Biol. Med. 1993, 4, 159–176. [Google Scholar] [CrossRef]
- Caufield, P.W. Dental caries: An infectious and transmissible disease. Compend. Contin. Educ. Dent. 2005, 26, 10–16. [Google Scholar] [PubMed]
- Miller, W.D. The Microorganisms of the Human Mouth; Ko″nig KG; Karger: Basel, Switzerland, 1973. [Google Scholar]
- Touger-Decker, R.; van Loveren, C. Sugars and dental caries. Am. J. Clin. Nutr. 2003, 78, 881S–892S. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, T.; Fujiwara, T.; Kawabata, T. Evolution of Cariogenic Character in Streptococcus Mutans: Horizontal Transmission of Glycosyl Hydrase Family 70 Genes. Sci. Rep. 2012, 2, 518. [Google Scholar] [CrossRef] [PubMed]
- Jeanmougin, F.; Thompson, J.D.; Gouy, M.; Higgins, D.G.; Gibson, T.J. Multiple sequence alignment with Clustal, X. Trends. Biochem. Sci. 1998, 23, 403–405. [Google Scholar] [CrossRef]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, T.; Kondo, Y.; Saito, K.; Terao, Y.; Okahashi, N.; Kawabata, S.; Fujiwara, T. Novel epitopic region of glucosyltransferase B from Streptococcus mutans. Clin. Vaccine Immunol. 2011, 18, 1552–1561. [Google Scholar] [CrossRef] [PubMed]
- Hamada, S.; Torii, M. Effect of sucrose in culture media on the location of glucosyltransferase of Streptococcus mutans and cell adherence to glass surfaces. Infect. Immun. 1978, 20, 592–599. [Google Scholar] [PubMed]
- Hamada, S.; Horikoshi, T.; Minami, T.; Okahashi, N.; Koga, T. Purification and characterization of cell-associated glucosyltransferase synthesizing water-insoluble glucan from serotype c Streptococcus mutans. J. Gen. Microbiol. 1989, 135, 335–344. [Google Scholar] [CrossRef]
- Tomita, Y.; Zhu, X.; Ochiai, K.; Namiki, Y.; Okada, T.; Ikemi, T.; Fukushima, K. Evaluation of three individual glucosyltransferases produced by Streptococcus mutans using monoclonal antibodies. FEMS Microbiol. Lett. 1996, 145, 427–432. [Google Scholar] [CrossRef]
- Fujiwara, T.; Hoshino, T.; Ooshima, T.; Sobue, S.; Hamada, S. Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect. Immun. 2000, 68, 2475–2483. [Google Scholar] [CrossRef] [PubMed]
- Mukasa, H.; Tsumori, H.; Shimamura, A. Isolation and characterization of an extracellular glucosyltransferase synthesizing insoluble glucan from Streptococcus mutans serotype c. Infect. Immun. 1985, 49, 790–796. [Google Scholar] [PubMed]
- Shimamura, A.; Tsumori, H.; Mukasa, H. Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim. Biophys. Acta 1982, 702, 72–80. [Google Scholar] [CrossRef]
- Mukasa, H.; Shimamura, A.; Tsumori, H. Purification and characterization of basic glucosyltransferase from Streptococcus mutans serotype c. Biochim. Biophys. Acta 1982, 719, 81–89. [Google Scholar] [CrossRef]
- Grahame, D.; Mayer, R. Purification, and comparison, of two forms of dextransucrase from Streptococcus sanguis. Carbohydr. Res. 1985, 142, 285–298. [Google Scholar] [CrossRef]
- Kobs, S.; Husman, D.; Cawthern, K. Mayer R Affinity purification of dextransucrase from Streptococcus sanguis ATCC 10558. Carbohydr. Res. 1990, 203, 156–161. [Google Scholar] [CrossRef]
- Aoki, H.; Shiroza, T.; Hayakawa, M.; Sato, S.; Kuramitsu, H. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect. Immun. 1986, 53, 587–594. [Google Scholar] [PubMed]
- Shiroza, T.; Ueda, S.; Kuramitsu, H. Sequence analysis of the gtfB gene from Streptococcus mutans. J. Bacteriol. 1987, 169, 4263–4270. [Google Scholar] [CrossRef] [PubMed]
- Hanada, N.; Kuramitsu, H. Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect. Immun. 1988, 56, 1999–2005. [Google Scholar] [PubMed]
- Fukushima, K.; Ikeda, T.; Kuramitsu, H. Expression of Streptococcus mutans gtf genes in Streptococcus milleri. Infect. Immun. 1992, 60, 2815–2822. [Google Scholar] [PubMed]
- Honda, O.; Kato, C.; Kuramitsu, H. Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J. Gen. Microbiol. 1990, 136, 2099–2105. [Google Scholar] [CrossRef] [PubMed]
- Mukasa, H.; Shimamura, A.; Tsumori, H. Effect of salts on water-insoluble glucan formation by glucosyltransferase of Streptococcus mutans. Infect. Immun. 1979, 23, 564–570. [Google Scholar] [PubMed]
- Sakanaka, S.; Kim, M.; Taniguchi, M.; Yamamoto, T. Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agric. Biol. Chem. 1989, 53, 2307–2311. [Google Scholar] [CrossRef]
- Hattori, M.; Kusumoto, I.; Namba, T.; Ishigami, T.; Hara, Y. Effect of tea polyphenols on glucan synthesis by glucosyltransferase from Streptococcus mutans. Chem. Pharm. Bull. 1990, 38, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, K.; Kawabata, S.; Ono, H.; Ogura, K.; Tanaka, T.; Ooshima, T.; Hamada, S. Inhibitory effect of oolong tea polyphenols on glycosyltransferases of mutans Streptococci. Appl. Environ. Microbiol. 1993, 59, 968–973. [Google Scholar] [PubMed]
- Ooshima, T.; Minami, T.; Aono, W.; Izumitani, A.; Sobue, S.; Fujiwara, T.; Kawabata, S.; Hamada, S. Oolong tea polyphenols inhibit experimental dental caries in SPF rats infected with mutans streptococci. Caries Res. 1993, 27, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Otake, S.; Makimura, M.; Kuroki, T.; Nishihara, Y.; Hirasawa, M. Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Res. 1991, 25, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Kakiuchi, N.; Hattori, M.; Nishizawa, M.; Yamagishi, T.; Okuda, T.; Namba, T. Studies on dental caries prevention by traditional medicines. VIII. Inhibitory effect of various tannins on glucan synthesis by glucosyltransferase from Streptococcus mutans. Chem. Pharm. Bull. 1986, 34, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Wu-Yuan, C.; Chen, C.; Wu, R. Gallotannins inhibit growth, water-insoluble glucan synthesis, and aggregation of mutans streptococci. J. Dent. Res. 1988, 67, 51–55. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hamada, S.; Ooshima, T. Molecular analysis of the inhibitory effects of oolong tea polyphenols on glucan-binding domain of recombinant glucosyltransferases from Streptococcus mutans MT8148. FEMS Microbiol. Lett. 2003, 228, 73–80. [Google Scholar] [CrossRef]
- Karygianni, L.; Al-Ahmad, A.; Argyropoulou, A.; Hellwig, E.; Anderson, A.C.; Skaltsounis, A.L. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front. Microbiol. 2015, 6, 1529. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, M.; Takada, K.; Makimura, M.; Otake, S. Improvement of periodontal status by green tea catechin using a local delivery system: A clinical pilot study. J. Period. Res. 2002, 37, 433–438. [Google Scholar] [CrossRef]
- Tamura, M.; Saito, H.; Kikuchi, K.; Ishigami, T.; Toyama, Y.; Takami, M.; Ochiai, K. Antimicrobial activity of Gel-entrapped catechins toward oral microorganisms. Biol. Pharm Bull. 2011, 34, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Cueno, M.E.; Tamura, M.; Imai, K.; Ochiai, K. Orally supplemented catechin increases heme amounts and catalase activities in rat heart blood mitochondria: A comparison between middle-aged and young rats. Exp Gerontol. 2013, 48, 1319–1322. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.K.; Donovan, J.; Takayama, H.; Sakagami, H.; Tanaka, A.; Konno, K.; Nonoyama, M. Modification of human immunodeficiency viral replication by pine cone extracts. AIDS Res. Hum. Retrovirus. 1990, 6, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Kihara, T.; Ida, Y.; Sakagami, H.; Koyama, N.; Premanathan, M.; Arakaki, R.; Nakashima, H.; Komatsu, N.; Fujimaki, M.; et al. Radical modulation activity of pine cone extracts of Pinus elliottii var. Elliottii. Anticancer Res. 1999, 19, 357–364. [Google Scholar] [PubMed]
- Sakagami, H.; Yoshihara, M.; Fujimaki, M.; Wada, C.; Komatsu, N.; Nakashima, H.; Murakami, T.; Yamamoto, N. Effect of pine seed shell extract on microbial and viral infection. Lett. Appl. Microbiol. 1992, 6, 13–16. [Google Scholar]
- Manabe, H.; Sakagami, H.; Ishizone, H.; Kusano, H.; Fujimaki, M.; Wada, C.; Komatsu, N.; Nakashima, H.; Murakami, T.; Yamamoto, N. Effects of Catuaba extracts on microbial and HIV infection. In Vivo 1992, 6, 161–165. [Google Scholar] [PubMed]
- Sakagami, H.; Satoh, K.; Fukamachi, H.; Ikarashi, T.; Shimizu, A.; Yano, K.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Hasegawa, H.; et al. Anti-HIV and vitamin C-synergized radical scavenging activity of cacao husk lignin fractions. In Vivo 2008, 22, 327–332. [Google Scholar] [PubMed]
- Sakagami, H.; Kawano, M.; Thet, M.M.; Hashimoto, K.; Satoh, K.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Haishima, Y.; Maeda, Y.; Sakurai, K. Anti-HIV and immunomodulation activities of cacao mass lignin carbohydrate complex. In Vivo 2011, 25, 229–236. [Google Scholar] [PubMed]
- Kawano, M.; Sakagami, H.; Satoh, K.; Shioda, S.; Kanamoto, T.; Terakubu, S.; Nakashima, H.; Makino, T. Lignin-like activity of Lentinus edodes mycelia extract (LEM). In Vivo 2010, 24, 543–551. [Google Scholar] [PubMed]
- Sakagami, H.; Asano, K.; Satoh, K.; Takahashi, K.; Kobayashi, M.; Koga, N.; Takahashi, H.; Tachikawa, R.; Tashiro, T.; Hasegawa, A.; et al. Anti-stress, anti-HIV and vitamin C-synergized radical scavenging activity of mulberry juice fractions. In Vivo 2007, 21, 499–505. [Google Scholar] [PubMed]
- Nakashima, H.; Murakami, T.; Yamamoto, N.; Naoe, T.; Kawazoe, Y.; Konno, K.; Sakagami, H. Lignified materials as medicinal resources. V. Anti-HIV (human immunodeficiency virus) activity of some synthetic lignins. Chem. Pharm. Bull. 1992, 40, 2102–2105. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, H.; Kushida, T.; Oizumi, T.; Nakashima, H.; Makino, T. Distribution of lignin carbohydrate complex in plant kingdom and its functionality as alternative medicine. Pharmacol. Ther. 2010, 128, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, H.; Murakami, T.; Yamamoto, N.; Sakagami, H.; Tanuma, S.; Hatano, T.; Yoshida, T.; Okuda, T. Inhibition of human immunodeficiency viral replication by tannins and related compounds. Antivir. Res. 1992, 18, 91–103. [Google Scholar] [CrossRef]
- Fukai, T.; Sakagami, H.; Toguchi, M.; Takayama, F.; Iwakura, I.; Atsumi, T.; Ueha, T.; Nakashima, H.; Nomura, T. Cytotoxic activity of low molecular weight polyphenols against human oral tumor cell lines. Anticancer Res. 2000, 20, 2525–2536. [Google Scholar] [PubMed]
- Sakagami, H.; Ohkoshi, E.; Amano, S.; Satoh, K.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Sunaga, K.; Otsuki, T.; Ikeda, H.; et al. Efficient utilization of plant resources by alkaline extraction. Altern. Integr. Med. 2013, 2, 2013. [Google Scholar]
- Ohno, H.; Miyoshi, S.; Araho, D.; Kanamoato, T.; Terakubo, S.; Nakashima, H.; Tsuda, T.; Sunaga, K.; Amano, S.; Ohkoshi, E.; et al. Efficient utilization of licorice root by alkaline extraction. In Vivo 2014, 28, 785–794. [Google Scholar] [PubMed]
- Kato, T.; Horie, N.; Matsuta, T.; Umemura, N.; Shimoyama, T.; Kaneko, T.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Kusama, K.; et al. Anti-UV/HIV activity of Kampo medicines and constituent plant extracts. In Vivo 2012, 26, 1007–1013. [Google Scholar] [PubMed]
- Huang, W.; Yu, X.; Liang, N.; Ge, W.; Kwok, H.F.; Lau, C.B.; Li, Y.; Chung, H.Y. Anti-angiogenic Activity and Mechanism of Sesquiterpene Lactones from Centipeda minima. Nat. Prod. Commun. 2016, 11, 435–438. [Google Scholar]
- Huang, W.; Wang, J.; Liang, Y.; Ge, W.; Wang, G.; Li, Y.; Chung, H.Y. Potent anti-angiogenic component in Croton crassifolius and its mechanism of action. J. Ethnopharmacol. 2015, 175, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; Yu, M.S.; Lai, C.S.; So, K.F.; Yuen, W.H.; Chang, R.C. Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity. Brain Res. 2007, 16, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Wen, Y.; Kapu, N.S.; Beatson, R.; Mark Martinez, D. A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol. Biotechnol. Biofuels 2017, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Hse, C.Y.; De Hoop, C.F.; Hu, T.; Qi, J.; Shupe, T.F. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydr. Polym. 2016, 151, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, H.; Sheng, H.; Okudaira, N.; Yasui, T.; Wakabayashi, H.; Jia, J.; Natori, T.; Suguro-Kitajima, M.; Oizumi, H.; Oizumi, T. Prominent Anti-UV activity and possible cosmetic potential of lignin-carbohydrate complex. In Vivo 2016, 30, 331–339. [Google Scholar] [PubMed]
- Nanbu, T.; Shimada, J.; Kobayashi, M.; Hirano, K.; Koh, T.; Machino, M.; Ohno, H.; Yamamoto, M.; Sakagami, H. Anti-UV activity of lignin-carbohydrate complex and related compounds. In Vivo 2013, 27, 133–140. [Google Scholar]
- Kato, T.; Segami, N.; Sakagami, H. Anti-inflammatory activity of hangeshashinto in IL-1β -stimulated gingival and periodontal ligament fibroblasts. In Vivo 2016, 30, 257–264. [Google Scholar] [PubMed]
- Sakagami, H.; Shi, H.; Bandow, K.; Tomomura, M.; Tomomura, A.; Horiuchi, M.; Fujisawa, T.; Oizumi, T. Search of neuroprotective polyphenols using the “overlay” isolated method. Molecules 2018, 23, 1840. [Google Scholar] [CrossRef]
- Sakagami, H.; Fukuchi, K.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Natori, T.; Suguro-Kitajima, M.; Oizumi, H.; Yasui, T.; Oizumi, T. Synergism of alkaline extract of the leaves of Sasa senanensis Rehder and antiviral agents. In Vivo 2016, 30, 421–426. [Google Scholar]
- Sakagami, H.; Amano, S.; Yasui, T.; Satoh, K.; Shioda, S.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Watanabe, K.; Sugiura, T.; et al. Biological interaction between Sasa senanensis Rehder leaf extract and toothpaste ingredients. In Vivo 2013, 27, 275–284. [Google Scholar]
- Matsuta, T.; Sakagami, H.; Kitajima, M.; Oizumi, H.; Oizumi, T. Anti-UV activity of alkaline extracts of the leaves of Sasa senanensis Rehder. In Vivo 2011, 25, 751–755. [Google Scholar] [PubMed]
- Sakagami, H.; Amano, S.; Kikuchi, H.; Nakamura, Y.; Kuroshita, R.; Watanabe, S.; Satoh, K.; Hasegawa, H.; Nomura, A.; Kanamoto, T.; et al. Antiviral, antibacterial and vitamin C-synergized radical scavenging activity of Sasa senanensis Rehder extract. In Vivo 2008, 22, 471–476. [Google Scholar] [PubMed]
- Tomomura, M.; Tomomura, A.; Oizumi, T.; Yasui, T.; Sakagami, H. Extract of Sasa senanensis Rehder leaf promotes osteoblast differentiation in MC3T3-E1 cells. J. Meikai Dent. Med. 2017, 46, 111–116. [Google Scholar]
- Sakagami, H.; Iwamoto, S.; Matsuta, T.; Satoh, K.; Shimada, C.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Morita, Y.; Ohkubo, A.; et al. Comparative study of biological activity of three commercial products of Sasa senanensis Rehder leaf extract. In Vivo 2012, 26, 259–264. [Google Scholar] [PubMed]
- Matsuta, T.; Sakagami, H.; Tanaka, S.; Machino, M.; Tomomura, M.; Tomomura, A.; Yasui, T.; Itoh, K.; Sugiura, T.; Kitajima, M.; et al. Pilot clinical study of Sasa senanensis Rehder leaf extract treatment on lichenoid dysplasia. In Vivo 2012, 26, 957–962. [Google Scholar] [PubMed]
- Yamauchi, N.; Nakagawa, R.; Namiki, K.; Hayashi, T.; Iguchi, A.; Kubota, I.; Oizumi, T.; Ito, A. Effect of Fe Chlorophyllin on Shunt Clot; Kidney and Free Radical Series 4; Tokyo Igakusha: Tokyo, Japan, 1998; pp. 66–70. [Google Scholar]
- Sakagami, H.; Sheng, H.; Ono, K.; Komine, Y.; Miyadai, T.; Terada, Y.; Nakada, D.; Tanaka, S.; Matsumoto, M.; Yasui, T.; et al. Anti-halitosis effect of toothpaste supplemented with alkaline extract of the leaves of Sasa senanensis Rehder. In Vivo 2016, 30, 107–111. [Google Scholar] [PubMed]
- Hara, T.; Matsui, H.; Shimizu, H. Suppression of microbial metabolic pathways inhibits the generation of the human body odor component diacetyl by Staphylococcus spp. PLoS ONE 2014, 9, e111833. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Shoda, H.; Tanura, N.; Takeshima, H.; Shimada, J. Comparisons between the effects of herb treatments and cases in which cevimeline hydrochloride (Saligren®) is administered for xerostomia. Jpn. J. Oral Diagnos. Oral Med. 2008, 21, 205–211. (In Japanese) [Google Scholar]
- Mori, K.; Onuki, H.; Yoshida, A.; Tamura, N.; Maekawa, Y.; Konno, C.; Iida, S.; Shimada, J. Two cases of Xerostomia that showed an improvement after being treated with Chinese herbal medicine. J. Meikai Dent. Med. 2008, 37, 153–158. (In Japanese) [Google Scholar]
- Dietz, H.C. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991, 352, 337–339. [Google Scholar] [CrossRef]
- McKusick, V.A. The defect in Marfan syndrome. Nature 1991, 352, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Judge, D.P.; Dietz, H.C. Marfan’s syndrome. Lancet 2005, 366, 1965–1976. [Google Scholar] [CrossRef]
- Ramirez, F.; Dietz, H.C. Extracellular microfibrils in vertebrate development and disease processes. J. Biol. Chem. 2009, 284, 14677–14681. [Google Scholar] [CrossRef] [PubMed]
- Habashi, J.P.; Judge, D.P.; Holm, T.M.; Cohn, R.D.; Loeys, B.L.; Cooper, T.K.; Myers, L.; Klein, E.C.; Liu, G.; Calvi, C.; et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006, 312, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Brooke, B.S. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N. Engl. J. Med. 2008, 358, 2787–2795. [Google Scholar] [CrossRef] [PubMed]
- Neptune, E.R.; Frischmeyer, P.A.; Arking, D.E.; Myers, L.; Bunton, T.E.; Gayraud, B.; Ramirez, F.; Sakai, L.Y.; Dietz, H.C. Dysregulation of TGF-ꞵ activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 2003, 33, 407–411. [Google Scholar] [CrossRef]
- Sumners, C.; Tang, W.; Zelezna, B.; Raizada, M.K. Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain. Proc. Natl. Acad. Sci. USA 1991, 88, 7567–7571. [Google Scholar] [CrossRef]
- Habashi, J.P.; Doyle, J.J.; Holm, T.M.; Aziz, H.; Schoenhoff, F.; Bedja, D.; Chen, Y.; Modiri, A.N.; Judge, D.P.; Dietz, H.C. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 2011, 332, 361–365. [Google Scholar] [CrossRef]
- Holm, T.M.; Habashi, J.P.; Doyle, J.J.; Bedja, D.; Chen, Y.; van Erp, C.; Lindsay, M.E.; Kim, D.; Schoenhoff, F.; Cohn, R.D.; et al. Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 2011, 332, 358–361. [Google Scholar] [CrossRef]
- Takagi, H.; Yamamoto, H.; Iwata, K.; Goto, S.N.; Umemoto, T.; ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. An evidence-based hypothesis for beneficial effects of telmisartan on Marfan syndrome. Int. J. Cardiol. 2012, 158, 101–102. [Google Scholar] [CrossRef]
- De Coster, P.J.; Martens, L.C.; De Paepe, A. Oral manifestations of patients with Marfan syndrome: A case-control study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002, 93, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Shiga, M.; Saito, M.; Hattori, M.; Torii, C.; Kosaki, K.; Kiyono, T.; Suda, N. Characteristic phenotype of immortalized periodontal cells isolated from a Marfan syndrome type I patient. Cell Tissue Res. 2008, 331, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Suda, N.; Shiga, M.; Ganburged, G.; Moriyama, K. Marfan syndrome and its disorder in periodontal tissues. J. Exp. Zool. B. Mol. Dev. Evol. 2009, 312B, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Hujoel, P.; Zina, L.G.; Cunha-Cruz, J.; Lopez, R. Historical perspectives on theories of periodontal disease etiology. Periodontology 2012, 58, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.H. New considerations in the prevalence of periodontal disease. Curr. Opin. Dent. 1992, 2, 5–11. [Google Scholar] [PubMed]
- Fox, C.; Jette, A.M.; McGuire, S.M.; Feldman, H.A.; Douglass, C.W. Periodontal disease among New England elders. J. Periodontol. 1994, 65, 676–684. [Google Scholar] [CrossRef] [PubMed]
- O’Dowd, L.K.; Durham, J.; McCracken, G.I.; Preshaw, P.M. Patients’ experiences of the impact of periodontal disease. J. Clin. Periodontol. 2010, 37, 334–339. [Google Scholar] [CrossRef]
- Pihlstrom, B.L. Periodontal risk assessment, diagnosis and treatment planning. Periodontology 2000, 2001, 37–58. [Google Scholar] [CrossRef]
- Page, R.C.; Schroeder, H.E. Periodontitis in Man and Other Animals: A Comparative Review; Karger Medical and Scientific: Basel, Switzerland, 1982; pp. 5–41. [Google Scholar]
- Christersson, L.A.; Zambon, J.J.; Genco, R.J. Dental bacterial plaques. Nature and role in periodontal disease. J. Clin. Periodontol. 1991, 18, 441–446. [Google Scholar] [CrossRef]
- Suzuki, J.; Imai, Y.; Aoki, M.; Fujita, D.; Aoyama, N.; Tada, Y.; Akazawa, H.; Izumi, Y.; Isobe, M.; Komuro, I.; et al. High incidence and severity of periodontitis in patients with Marfan syndrome in Japan. Heart Vessels 2015, 30, 692–695. [Google Scholar] [CrossRef]
- Suzuki, J.; Imai, Y.; Aoki, M.; Fujita, D.; Aoyama, N.; Tada, Y.; Wakayama, K.; Akazawa, H.; Izumi, Y.; Isobe, M.; et al. Periodontitis in cardiovascular disease patients with or without Marfan syndrome—A possible role of Prevotella intermedia. PLoS ONE 2014, 9, e95521. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Lee, S.Y.; Gayraud, B.; Andrikopoulos, K.; Shapiro, S.D.; Bunton, T.; Biery, N.J.; Dietz, H.C.; Sakai, L.Y.; Ramirez, F. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc. Natl. Acad. Sci. USA 1999, 96, 3819–3823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganburged, G.; Suda, N.; Saito, M.; Yamazaki, Y.; Isokawa, K.; Moriyama, K. Dilated capillaries, disorganized collagen fibers and differential gene expression in periodontal ligaments of hypomorphic fibrillin-1 mice. Cell Tissue Res. 2010, 341, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Karlberg, B.E.; Lins, L.E.; Hermansson, K. Efficacy and safety of telmisartan, a selective AT1 receptor antagonist, compared with enalapril in elderly patients with primary hypertension. TEES Study Group. J. Hypertens. 1999, 17, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Benson, S.C.; Pershadsingh, H.A.; Ho, C.I.; Chittiboyina, A.; Desai, P.; Pravenec, M.; Qi, N.; Wang, J.; Avery, M.A.; Kurtz, T.W. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 2004, 43, 993–1002. [Google Scholar] [CrossRef]
- Kaschina, E.; Schrader, F.; Sommerfeld, M.; Kemnitz, U.R.; Grzesiak, A.; Krikov, M.; Unger, T. Telmisartan prevents aneurysm progression in the rat by inhibiting proteolysis, apoptosis and inflammation. J. Hypertens. 2008, 26, 2361–2373. [Google Scholar] [CrossRef]
- Ohno, K.; Amano, Y.; Kakuta, H.; Niimi, T.; Takakura, S.; Orita, M.; Miyata, K.; Sakashita, H.; Takeuchi, M.; Komuro, I.; et al. Unique “delta lock” structure of telmisartan is involved in its strongest binding affinity to angiotensin II type 1 receptor. Biochem. Biophys. Res. Commun. 2011, 404, 434–437. [Google Scholar] [CrossRef]
- Suda, N.; Moriyama, K.; Ganburged, G. Effect of angiotensin II receptor blocker on experimental periodontitis in a mouse model of Marfan syndrome. Infect. Immun. 2013, 81, 182–188. [Google Scholar] [CrossRef]
- Mao, W.; Zhang, L.; Zou, C.; Li, C.; Wu, Y.; Su, G.; Guo, X.; Wu, Y.; Lu, F.; Lin, Q.; et al. Rationale and design of the Helping Ease Renal failure with Bupi Yishen compared with the Angiotensin II Antagonist Losartan (HERBAAL) trial: A randomized controlled trial in non-diabetes stage 4 chronic kidney disease. BMC Complement. Altern. Med. 2015, 15, 316. [Google Scholar] [CrossRef]
- Tu, X.; Ye, X.; Xie, C.; Chen, J.; Wang, F.; Zhong, S. Combination Therapy with Chinese Medicine and ACEI/ARB for the Management of Diabetic Nephropathy: The Promise in Research Fragments. Curr. Vasc. Pharmacol. 2015, 13, 526–539. [Google Scholar] [CrossRef]
- Yesudas, R.; Gumaste, U.; Snyder, R.; Thekkumkara, T. Tannic acid down-regulates the angiotensin type 1 receptor through a MAPK-dependent mechanism. Mol. Endocrinol. 2012, 26, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, H.; Zhou, L.; Kawano, M.; Thet, M.M.; Tanaka, S.; Machino, M.; Amano, S.; Kuroshita, R.; Watanabe, S.; Chu, Q.; et al. Multiple biological complex of alkaline extract of the leaves of Sasa senanensis Rehder. In Vivo 2010, 24, 735–743. [Google Scholar] [PubMed]
Compounds | CC50 (μM) | TSM | TSE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Human Oral Squamous Cell Carcinoma | Human Oral Normal Cells | Mes | Epi | ||||||||||||
Mesenchymal Cells | Epithelial Cells | vs | vs | ||||||||||||
Ca9-22 | HSC-2 | HSC-3 | HSC-4 | mean | HGF | HPLF | HPC | mean | HOK | HGEP | mean | OSCC | OSCC | Ref. | |
(A) | (B) | (C) | (B/A) | (C/A) | |||||||||||
Exp. 1 Anticancer drugs: | |||||||||||||||
CPT | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | 200 | 10 | 146 | 119 | 0.3 | 3.9 | 2.1 | >1853 | >33 | [27] |
SN-38 | <0.06 | <0.06 | <0.06 | <0.06 | <0.06 | 143 | 29 | 16 | 63 | <0.075 | 1.5 | <0.77 | >979 | <12 | [27] |
DXR | 0.13 | 0.06 | 0.09 | 0.06 | 0.09 | 7.3 | 1.3 | 9.3 | 6.0 | 0.1 | 0.2 | 0.1 | 69.9 | 1.7 | [27] |
DNR | 0.27 | 0.07 | 0.13 | 0.09 | 0.14 | 4.9 | 10.0 | 8.2 | 7.7 | <0.004 | 0.4 | <0.21 | 54.6 | <1.5 | [27] |
ETP | 11.3 | 3.0 | 2.7 | 2.5 | 4.9 | 351 | 500 | 500 | 450 | 1.8 | 3.2 | 2.5 | 92.9 | 0.5 | [27] |
MMC | 3.97 | 0.36 | 0.14 | 0.78 | 1.31 | 22 | 65 | 34 | 40 | 0.10 | 0.28 | 0.19 | 30.8 | 0.1 | [27] |
MTX | 9.0 | 0.2 | <0.13 | <0.13 | <2.35 | >400 | >400 | >400 | >400 | 1000 | <0.13 | 500 | >170 | >212 | [27] |
5-FU | 15.3 | 100.3 | 186.3 | 92.7 | 98.7 | 1000 | 1000 | 1000 | 1000 | 11.7 | 14.2 | 12.9 | >10 | 0.1 | [27] |
DOC | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | 70 | 100 | 91 | 87 | 0.12 | 0.03 | 0.08 | >2708 | >2.4 | [27] |
MEL | 114.0 | 29.0 | 18.3 | 19.0 | 45.1 | 153 | 197 | 170 | 173 | 13.5 | 18.7 | 16.1 | 3.8 | 0.4 | [27] |
Gefitinib | 18.0 | 22.3 | 15.7 | 13.7 | 17.4 | 58 | 68 | 83 | 70 | 3.5 | 4.1 | 3.8 | 4.0 | 0.2 | [27] |
Exp. 2 Chromone derivatives: | |||||||||||||||
A | 2.1 | 1.0 | 3.6 | 1.2 | 2.0 | 67 | 74 | 272 | 138 | 19 | >800 | >410 | 69.0 | >205 | [30] |
B | 3.2 | 11.3 | 7.3 | >400 | >400 | >400 | 3.8 | 3.3 | 3.6 | >55.2 | 0.5 | [32] | |||
C | 3.5 | 1.5 | 5.5 | 8.3 | 4.7 | 400 | 41 | 400 | 280 | >400 | >400 | >400 | 59.9 | >85.1 | [33] |
D | 1.6 | 1.3 | 1.5 | 36 | 35 | 36 | 24.1 | [34] | |||||||
E | 46.0 | 20.0 | 36.7 | 26.3 | 32.3 | 390 | >400 | >400 | >397 | >400 | >400 | >12.3 | >12.4 | [36] | |
F | 9.1 | 6.0 | 3.7 | 3.1 | 5.5 | 244 | >400 | >400 | >348 | 356 | 355.7 | 63.4 | 65.2 | [35] | |
G | 13.8 | 27.7 | 70.1 | 37.2 | 185 | 273 | 324 | 261 | 7.0 | [37] | |||||
H | 4.7 | 5.3 | 5.0 | 247 | 233 | 240 | 20 | 20 | 47.8 | 4.1 | [38] |
Category | Number of Descriptors Searched | T | N | T-N | Ref. | |
---|---|---|---|---|---|---|
A | 3-Styrylchromones | OMe at R1 | vsurf_DD23 | OH at R3 | [30] | |
OH at R3 | G1u | vsurf_DD23 | ||||
G2u | ||||||
B | 3-Benzylidenechromanones | 3134 | RDF095i | Mor03v | Mor3m | [32] |
RDF095u | Mor03m | Mor03v | ||||
RDF095e | Mor09m | SpMAD_AEA(dm) | ||||
vsurf_IW6 | G1u | vsurf_HB7 | ||||
vsurf_ID7 | Mor03p | R3m+ | ||||
vsurf_ID1 | R3m+ | Mor25v | ||||
C | 3-Styryl-2H-chromenes | 330 | chi1v | std_dim2 | std_dim3 | [33] |
KierFlex | E_tor | BCUT_SLOGP_1 | ||||
KierA1 | E_oop | vsurf_D4 | ||||
SMR_VSA7 | std_dim3 | vsurf_R | ||||
KierA3 | vsurf_A | vsurf_D5 | ||||
Weight | BCUT_SMR_1 | E-oop | ||||
D | 2-Azolylchromones | 3062 | G3m | SpMin8_Bh(s) | Kp | [34] |
G3e | Q_RPC- | P1p | ||||
G3v | G3s | Mor32i | ||||
Gm | G3e | P2p | ||||
G3p | G3m | Mor32u | ||||
G3s | Gm | CATS2D_02_LL | ||||
E | 3-(N-Cyclicamino)chromones | 3096 | RDF075v | Mor28s | CATS3D_12_LL | [36] |
RDF075p | CATS3D_02_AL | VE3sign_G | ||||
Mor06s | CATS2D_02_AL | J_D/Dt | ||||
SpMAD_AEA(dm) | Inflammat-80 | FCASA- | ||||
RDF090p | Depressant-80 | CATS3D_11_LL | ||||
E3m | TDB05i | Chi_G/D | ||||
F | 2-(N-Cyclicamino)chromones | 3089 | SpPosA_B(m) | Mor32u | Mor22m | [35] |
SpPosA_B(e) | Mor32e | GCUT_SLOGP_1 | ||||
GCUT_SLOGP_1 | VR2_G/D | Mor17v | ||||
Mor17v | JGI4 | Mor17m | ||||
Mor17m | VR2_G | |||||
VE1sign_B(v) | SPH | |||||
G | Furo[2,3-b]chromones | 2820 | b_double | rsynth | b_double | [37] |
SlogP_VSA2 | b_double | SlogP_VSA2 | ||||
rsynth | SlogP_VSA2 | rsynth | ||||
std_dim3 | std_dim3 | std_dim3 | ||||
E_str | E_str | b_rotR | ||||
dens | dens | E_str | ||||
H | Pyrano[4,3-b]chromones | 3072 | R8s | R6v+ | R8s | [38] |
J_G | R1s | HATS7i | ||||
RDF055s | R4v | HATS3i | ||||
R7s | J_G | HATS3u | ||||
HATS7s | R4p | HATS7u | ||||
RTs | R3v+ | Mor10i |
Samples | Anti-HIV activity (SI) | Ref. |
---|---|---|
Lignin-carbohydrate complex | ||
Pine cone of Pinus parviflora Sieb. et Zucc | 14 | [77] |
Pine cone of Pinus elliottii var. Elliottii | 28 | [78] |
Pine seed shell of Pinus parviflora Sieb. et Zucc | 12 | [79] |
Bark of Erythroxylum catuaba Arr. Cam. | 43 | [80] |
Husk of cacao beans of Theobroma | 311 | [81] |
Mass of cacao beans of Theobroma | 46 | [82] |
Lentinus edodes mycelia extract (L·E·M) | 94 | [83] |
Precipitating fiber fraction of mulberry juice | 7 | [84] |
Dehydrogenation polymers of phenylpropenoids (n = 23) | 105 | [85] |
Polysaccharides | ||
Neutral polysaccharides of pine cone of P. parviflora Sieb. et Zucc | 1 | [86] |
Uronic acid-containing polysaccharides of pine cone | 1 | [86] |
Lower molecular weight polyphenols | ||
Hydrolysable tannins (monomer) (MW: 484–1255) (n = 21) | 1.8 ± 2.8 | [87] |
Hydrolysable tannins (dimer) (MW: 1571–2282) (n = 39) | 2.3 ± 3.2 | [87] |
Hydrolysable tannins (trimer) (MW: 2354–2658) (n = 4) | 3.4 ± 3.7 | [87] |
Hydrolysable tannins (tetramer) (MW: 3138–3745) (n = 3) | 7.3 ± 6.5 | [87] |
Condensed tannins (MW: 290–1764) (n = 8) | 1.1 ± 0.4 | [87] |
Flavonoids (MW: 84–648) (n = 92) | 1.5 ± 1. 9 | [88] |
Herb extracts | ||
Green tea leaves Hot water extraction | [89] | |
Alkaline extraction | 3 | |
Oolong tea leaves Hot water extraction | <0.033 | [89] |
Alkaline extraction | 13 | |
Orange flower Hot water extraction | <0.5 | [89] |
Alkaline extraction | >15 | |
Licorice root Hot water extraction | 4 | [90] |
Alkaline extraction | 42 | |
Alkaline extract of leaves of Sasa sp. | 86 | [86] |
Kampo medicines (n = 10) | 1.0 ± 0.0 | [91] |
Constituent plant extracts of Kampo medicines (n = 25) | 1.3 ± 0.8 | [91] |
Chromones | ||
(E)-3-(4-Hydroxystyryl)- 6-methoxy-4H-chromen-4-one | <1 | [30] |
(E)-3-(4-Chlorostyryl)-7-methoxy-2H-chromene | <1 | [30] |
Positive Controls | ||
Dextran sulfate (molecular mass, 5 kDa) | 2956 | |
Curdlan sulfate (molecular mass, 79 kDa) | 11718 | |
Azidothymidine | 23261 | |
2′,3′-Dideoxycytidine (ddC) | 2974 |
Samples | Anti-HIV | Anti-UV | Anti-Inflammation | Neuroprotection |
---|---|---|---|---|
(Target cells) | (T-cell leukemia) | (HSC-2) | (HPLF) | (Differentiated PC12) |
Evaluated by | CC50/EC50 (+HIV) | CC50/EC50(+UV) | CC50/EC50(+IL-1ꞵ) | CC50/EC50(+Aꞵ25-35) |
SE | 86 | 38.5 | >96.8 | 56.8 |
Curcumin | <1.0 | 1.5 | 17.3 | |
Gallic acid | <1.0 | 5.4 | 0.9 | |
Ferulic acid | <1.0 | >2.9 | ||
p-Coumaric acid | <1.0 | >3.1 | ||
EGCG | <1.0 | 7.7 | 10.7 | |
Resveratrol | <1.0 | <1.0 | ||
Rikkosan | <1.0 | 24.1 | >4.3 | |
Hangesyashinto | <1.0 | >4.9 | 285 | |
Glycyrrhiza | <1.0 | 4.3 | 59 | |
Ref. | [84] | [97,98] | [99] | [100] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakagami, H.; Watanabe, T.; Hoshino, T.; Suda, N.; Mori, K.; Yasui, T.; Yamauchi, N.; Kashiwagi, H.; Gomi, T.; Oizumi, T.; et al. Recent Progress of Basic Studies of Natural Products and Their Dental Application. Medicines 2019, 6, 4. https://doi.org/10.3390/medicines6010004
Sakagami H, Watanabe T, Hoshino T, Suda N, Mori K, Yasui T, Yamauchi N, Kashiwagi H, Gomi T, Oizumi T, et al. Recent Progress of Basic Studies of Natural Products and Their Dental Application. Medicines. 2019; 6(1):4. https://doi.org/10.3390/medicines6010004
Chicago/Turabian StyleSakagami, Hiroshi, Taihei Watanabe, Tomonori Hoshino, Naoto Suda, Kazumasa Mori, Toshikazu Yasui, Naoki Yamauchi, Harutsugu Kashiwagi, Tsuneaki Gomi, Takaaki Oizumi, and et al. 2019. "Recent Progress of Basic Studies of Natural Products and Their Dental Application" Medicines 6, no. 1: 4. https://doi.org/10.3390/medicines6010004
APA StyleSakagami, H., Watanabe, T., Hoshino, T., Suda, N., Mori, K., Yasui, T., Yamauchi, N., Kashiwagi, H., Gomi, T., Oizumi, T., Nagai, J., Uesawa, Y., Takao, K., & Sugita, Y. (2019). Recent Progress of Basic Studies of Natural Products and Their Dental Application. Medicines, 6(1), 4. https://doi.org/10.3390/medicines6010004