A Thrombomodulin Gene Polymorphism (C1418T) Is Associated with Early Outcomes in Patients Undergoing Coronary Artery Bypass Graft Surgery with a Conventional Cardiopulmonary Bypass during Hospitalization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics and Patients
2.2. Conventional CPB, Beating-Heart CPB Technique and Off-Pump Technique
2.3. Biolaboratory Studies of Patients Undergoing Elective CABG Surgery
2.4. Extraction of Genomic DNA
2.5. Allele-Specific Primer PCR (ASP-PCR) Assay
2.6. Restriction Fragment Length Polymorphism (RFLP) Analysis
2.7. Statistical Analyses
3. Results
3.1. TM C1418T Polymorphism in Patients Who Underwent Elective CABG
3.2. Patients with Similar Characteristics before Elective CABG Were Assessed
3.3. Patients Encountered Perioperative Characteristics in Elective CABG
3.4. Blood and Biochemical Data in Elective CABG Patients
3.5. Patients with the TM CC Genotype Provide Better Early Outcomes during Hospitalization Than Those with the CT/TT Genotype in the Conventional CPB Group
4. Discussion
5. Limitations
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
PCI | Percutaneous coronary intervention |
CABG | coronary artery bridge graft |
CPB | cardiopulmonary bypass |
beating-heart CPB | on-pump beating-heart CPB |
TM | Thrombomodulin |
IABP | intra-aortic balloon pump |
CK-MB | creatine kinase |
BUN | blood urea nitrogen |
AST | aspartate aminotransferase |
ALT | alanine transaminase |
CRP | C-reactive protein |
pRBCs | packed red blood cells |
VCAM-1 | vascular cell adhesion molecule-1 |
References
- Mancini, G.B.; Farkouh, M.E.; Brooks, M.M.; Chaitman, B.R.; Boden, W.E.; Vlachos, H.; Hartigan, P.M.; Siami, F.S.; Sidhu, M.S.; Bittner, V.; et al. Medical treatment and revascularization options in patients with type 2 diabetes and coronary disease. J. Am. Coll. Cardiol. 2016, 68, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, T.; Wakusawa, R.; Okada, K.; Inada, S. Elevation of cytokines during open heart surgery with cardiopulmonary bypass: Participation of interleukin 8 and 6 in reperfusion injury. Can. J. Anaesth. 1993, 40, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Sbrana, S.; Parri, M.S.; De Filippis, R.; Gianetti, J.; Clerico, A. Monitoring of monocyte functional state after extracorporeal circulation: A flow cytometry study. Cytom. Part B Clin. Cytom. 2004, 58, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Hadley, J.S.; Wang, J.E.; Michaels, L.C.; Dempsey, C.M.; Foster, S.J. Alterations in inflammatory capacity and tlr expression on monocytes and neutrophils after cardiopulmonary bypass. Shock 2007, 27, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Li, J.; Metais, C.; Bianchi, C.; Sellke, F. Increased pulmonary vascular contraction to serotonin after cardiopulmonary bypass: Role of cyclooxygenase. J. Surg. Res. 2000, 90, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Castellheim, A.; Hoel, T.N.; Videm, V.; Fosse, E.; Pharo, A.; Svennevig, J.L.; Fiane, A.E.; Mollnes, T.E. Biomarker profile in off-pump and on-pump coronary artery bypass grafting surgery in low-risk patients. Ann. Thorac. Surg. 2008, 85, 1994–2002. [Google Scholar] [CrossRef] [PubMed]
- Matata, B.M.; Sosnowski, A.W.; Galinanes, M. Off-pump bypass graft operation significantly reduces oxidative stress and inflammation. Ann. Thorac. Surg. 2000, 69, 785–791. [Google Scholar] [CrossRef]
- Esmon, C.T. Inflammation and thrombosis. J. Thromb. Haemost. 2003, 1, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Esmon, C.T. The regulation of natural anticoagulant pathways. Science 1987, 235, 1348–1352. [Google Scholar] [CrossRef] [PubMed]
- Dittman, W.A.; Majerus, P.W. Structure and function of thrombomodulin: A natural anticoagulant. Blood 1990, 75, 329–336. [Google Scholar] [PubMed]
- Lentz, S.R.; Chen, Y.; Sadler, J.E. Sequences required for thrombomodulin cofactor activity within the fourth epidermal growth factor-like domain of human thrombomodulin. J. Biol. Chem. 1993, 268, 15312–15317. [Google Scholar] [PubMed]
- McCachren, S.S.; Diggs, J.; Weinberg, J.B.; Dittman, W.A. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 1991, 78, 3128–3132. [Google Scholar] [PubMed]
- Soff, G.A.; Jackman, R.W.; Rosenberg, R.D. Expression of thrombomodulin by smooth muscle cells in culture: Different effects of tumor necrosis factor and cyclic adenosine monophosphate on thrombomodulin expression by endothelial cells and smooth muscle cells in culture. Blood 1991, 77, 515–518. [Google Scholar] [PubMed]
- Koutsi, A.; Papapanagiotou, A.; Papavassiliou, A.G. Thrombomodulin: from haemostasis to inflammation and tumourigenesis. Int. J. Biochem. Cell Biol. 2008, 40, 1669–1673. [Google Scholar] [CrossRef] [PubMed]
- Joyce, D.E.; Gelbert, L.; Ciaccia, A.; DeHoff, B.; Grinnell, B.W. Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J. Biol. Chem. 2001, 276, 11199–11203. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; Huang, C.Y.; Shih, C.M.; Chang, W.L.; Shyue, S.K.; Tsai, Y.T.; Lin, C.Y.; Lee, C.Y.; Chang, Y.J.; Chang, N.C.; et al. The c-terminal domain of thrombomodulin regulates monocytes migration with interleukin-6-stimulation. Eur. J. Inflam. 2014, 12, 27–39. [Google Scholar] [CrossRef]
- Tsai, C.S.; Tsai, Y.T.; Lin, C.Y.; Lin, T.C.; Huang, G.S.; Hong, G.J.; Lin, F.Y. Expression of thrombomodulin on monocytes is associated with early outcomes in patients with coronary artery bypass graft surgery. Shock 2010, 34, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Crikis, S.; Zhang, X.M.; Dezfouli, S.; Dwyer, K.M.; Murray-Segal, L.M.; Salvaris, E.; Selan, C.; Robson, S.C.; Nandurkar, H.H.; Cowan, P.J.; et al. Anti-inflammatory and anticoagulant effects of transgenic expression of human thrombomodulin in mice. Am. J. Transplant. 2010, 10, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.K.; Aleksic, N.; Ahn, C.; Boerwinkle, E.; Folsom, A.R.; Juneja, H. Thrombomodulin ala455val polymorphism and risk of coronary heart disease. Circulation 2001, 103, 1386–1389. [Google Scholar] [CrossRef] [PubMed]
- Ireland, H.; Kunz, G.; Kyriakoulis, K.; Stubbs, P.J.; Lane, D.A. Thrombomodulin gene mutations associated with myocardial infarction. Circulation 1997, 96, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Chen, J.H.; Tsai, W.C.; Chao, T.H.; Guo, H.R.; Tsai, L.M.; Wu, H.L.; Shi, G.Y. Synergistic effect of thrombomodulin promoter -33g/a polymorphism and smoking on the onset of acute myocardial infarction. Thromb. Haemost. 2002, 87, 86–91. [Google Scholar] [PubMed]
- Li, Y.H.; Chen, C.H.; Yeh, P.S.; Lin, H.J.; Chang, B.I.; Lin, J.C.; Guo, H.R.; Wu, H.L.; Shi, G.Y.; Lai, M.L.; et al. Functional mutation in the promoter region of thrombomodulin gene in relation to carotid atherosclerosis. Atherosclerosis 2001, 154, 713–719. [Google Scholar] [PubMed]
- Conway, E.M.; Van de Wouwer, M.; Pollefeyt, S.; Jurk, K.; Van Aken, H.; De Vriese, A.; Weitz, J.I.; Weiler, H.; Hellings, P.W.; Schaeffer, P.; et al. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappab and mitogen-activated protein kinase pathways. J. Exp. Med. 2002, 196, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Delvaeye, M.; Noris, M.; De Vriese, A.; Esmon, C.T.; Esmon, N.L.; Ferrell, G.; Del-Favero, J.; Plaisance, S.; Claes, B.; Lambrechts, D.; et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 2009, 361, 345–357. [Google Scholar] [PubMed]
- Weinbroum, A.A.; Biderman, P.; Soffer, D.; Klausner, J.M.; Szold, O. Reliability of cardiac output calculation by the fick principle and central venous oxygen saturation in emergency conditions. J. Clin. Monit. Comput. 2008, 22, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Hiesmayr, M.J.; Spittler, A.; Lassnigg, A.; Berger, R.; Laufer, G.; Kocher, A.; Artemiou, O.; Boltz-Nitulescu, G.; Roth, E. Alterations in the number of circulating leucocytes, phenotype of monocyte and cytokine production in patients undergoing cardiothoracic surgery. Clin. Exp. Immunol. 1999, 115, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Hirose, H.; Ohishi, A.; Nakamura, H.; Sugiura, H.; Umezawa, A.; Hosoda, Y. Fatal splenic rupture in anabolic steroid-induced peliosis in a patient with myelodysplastic syndrome. Br. J. Haematol. 1991, 78, 128–129. [Google Scholar] [PubMed]
- Weerasinghe, A.; Athanasiou, T.; Philippidis, P.; Day, J.; Mandal, K.; Warren, O.; Anderson, J.; Taylor, K. Platelet-monocyte pro-coagulant interactions in on-pump coronary surgery. Eur. J. Cardiothorac. Surg. 2006, 29, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Laffey, J.G.; Boylan, J.F.; Cheng, D.C. The systemic inflammatory response to cardiac surgery: Implications for the anesthesiologist. Anesthesiology 2002, 97, 215–252. [Google Scholar] [PubMed]
- Parratt, R.; Hunt, B.J. Direct activation of factor x by monocytes occurs during cardiopulmonary bypass. Br. J. Haematol. 1998, 101, 40–46. [Google Scholar] [PubMed]
- Satta, N.; Toti, F.; Feugeas, O.; Bohbot, A.; Dachary-Prigent, J.; Eschwege, V.; Hedman, H.; Freyssinet, J.M. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J. Immunol. 1994, 153, 3245–3255. [Google Scholar] [PubMed]
- Kim, H.K.; Kim, J.E.; Chung, J.; Kim, Y.T.; Kang, S.H.; Han, K.S.; Cho, H.I. Lipopolysaccharide down-regulates the thrombomodulin expression of peripheral blood monocytes: Effect of serum on thrombomodulin expression in the thp-1 monocytic cell line. Blood Coagul. Fibrinolysis 2007, 18, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Grey, S.T.; Hancock, W.W. A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein c by human mononuclear phagocytes. J. Immunol. 1996, 156, 2256–2263. [Google Scholar] [PubMed]
- Van de Wouwer, M.; Collen, D.; Conway, E.M. Thrombomodulin-protein c-epcr system: Integrated to regulate coagulation and inflammation. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Jaggers, J.; Lawson, J.H. Coagulopathy and inflammation in neonatal heart surgery: Mechanisms and strategies. Ann. Thorac. Surg. 2006, 81, S2360–S2366. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.S.; Lin, Y.W.; Shih, C.C.; Chen, Y.H.; Lin, C.Y.; Tsai, Y.T.; Lee, C.Y.; Shih, C.M.; Huang, C.Y.; Chung, H.H.; et al. Thrombomodulin gene polymorphism (c1418t) is associated with the development of coronary allograft vasculopathy. Euro. J. Inflam. 2013, 11, 685–696. [Google Scholar] [CrossRef]
- Le Flem, L.; Picard, V.; Emmerich, J.; Gandrille, S.; Fiessinger, J.N.; Aiach, M.; Alhenc-Gelas, M. Mutations in promoter region of thrombomodulin and venous thromboembolic disease. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.H.; Li, Y.H.; Chen, J.H.; Wu, H.L.; Shi, G.Y.; Tsai, W.C.; Chen, P.S.; Liu, P.Y. Relation of thrombomodulin gene polymorphisms to acute myocardial infarction in patients <or = 50 years of age. Am. J. Cardiol. 2004, 93, 204–207. [Google Scholar]
- Park, H.Y.; Nabika, T.; Jang, Y.; Kwon, H.M.; Cho, S.Y.; Masuda, J. Association of g-33a polymorphism in the thrombomodulin gene with myocardial infarction in koreans. Hypertens. Res. 2002, 25, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Hirota, H.; Kimura, R.; Kokubo, Y.; Kawasaki, T.; Suehisa, E.; Okayama, A.; Tomoike, H.; Hayashi, T.; Nishigami, K.; et al. Haplotype of thrombomodulin gene associated with plasma thrombomodulin level and deep vein thrombosis in the japanese population. Thromb. Res. 2007, 119, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Ohlin, A.K.; Norlund, L.; Marlar, R.A. Thrombomodulin gene variations and thromboembolic disease. Thromb. Haemost. 1997, 78, 396–400. [Google Scholar] [PubMed]
- Aleksic, N.; Folsom, A.R.; Cushman, M.; Heckbert, S.R.; Tsai, M.Y.; Wu, K.K. Prospective study of the a455v polymorphism in the thrombomodulin gene, plasma thrombomodulin, and incidence of venous thromboembolism: The lite study. J. Thromb. Haemost. 2003, 1, 88–94. [Google Scholar] [PubMed]
- Raja, S.G.; Berg, G.A. Impact of off-pump coronary artery bypass surgery on systemic inflammation: Current best available evidence. J. Card. Surg. 2007, 22, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Gulielmos, V.; Menschikowski, M.; Dill, H.; Eller, M.; Thiele, S.; Tugtekin, S.M.; Jaross, W.; Schueler, S. Interleukin-1, interleukin-6 and myocardial enzyme response after coronary artery bypass graftingߞa prospective randomized comparison of the conventional and three minimally invasive surgical techniques. Eur. J. Cardiothorac. Surg. 2000, 18, 594–601. [Google Scholar] [CrossRef]
Operation | CABG Surgery with Conventional CPB | CABG Surgery with Beating-Heart CPB | CABG Surgery with Off-Pump Technique |
---|---|---|---|
CC Genotype | e116 | 41 | 44 |
CT Genotype | 62 | 19 | 28 |
TT Genotype | 20 | 9 | 8 |
Total | 198 | 69 | 80 |
Operation | CABG Surgery with Conventional CPB (n = 198) | CABG Surgery with Beating-Heart CPB (n = 69) | CABG Surgery with Off-Pump Technique (n = 80) | ||||||
---|---|---|---|---|---|---|---|---|---|
Genotype | CC (n = 116) | CT (n = 62) | TT (n = 20) | CC (n = 41) | CT (n = 19) | TT (n = 9) | CC (n = 44) | CT (n = 28) | TT (n = 8) |
Gender (Male/Female) | 62/54 | 32/30 | 15/5 | 20/21 | 13/6 | 5/4 | 22/22 | 18/10 | 5/3 |
Age (years) | 63.5 ± 9.8 | 67.8 ± 12.4 | 62.4 ± 11.5 | 68.98 ± 14.7 | 63.5 ± 15.4 | 70.4 ± 12.4 | 65.7 ± 11.9 | 67.1 ± 14.5 | 68.1 ± 10.9 |
Body weight (kg) | 69.2 ± 11.7 | 59.7 ± 15.4 | 67.4 ± 20.1 | 60.7 ± 16.4 | 69.9 ± 12.8 | 59.3 ± 15.3 | 62.7 ± 9.6 | 64.1 ± 12.9 | 55.7 ± 12.8 |
Body height (cm) | 165.8 ± 19.7 | 158.6 ± 10.5 | 159.8 ± 19.7 | 165.1 ± 18.2 | 160.9 ± 19.7 | 160.9 ± 16.4 | 158.3 ± 16.1 | 160.7 ± 12.7 | 159.8 ± 11.9 |
Hypertension (n, %) | 103, 88.8% | 50, 80.64% | 17, 85.0% | 30, 73.2% | 15, 78.9% | 7, 77.8% | 36, 81.8% | 22, 78.6% | 6, 75% |
Smoke (n, %) | 31, 26.7% | 15, 24.2% | 5, 25.0% | 12, 29.3% | 5, 26.3% | 3, 33.3% | 14, 31.8% | 9, 32.1% | 3, 37.5% |
Hypercholesterolemia (n, %) | 65, 56.0% | 34, 54.8% | 11, 55.0% | 18, 43.9% | 8, 42.1% | 3, 33.3% | 26, 59.1% | 15, 53.6% | 4, 50.0% |
Diabetes mellitus (n, %) | 57, 49.1% | 31, 50.0% | 11, 55% | 18, 43.9% | 8, 42.1% | 4, 44.4% | 20, 45.5% | 13, 46.4% | 4, 50.0% |
Peripheral vascular disease (n, %) | 13, 11.2% | 16, 25.8% | 3, 15.0% | 8, 19.5% | 4, 21.1% | 2, 22.2% | 11, 25.0% | 6, 21.4% | 1, 12.5% |
COPD (n, %) | 15, 12.9% | 9, 14.5% | 5, 25.0% | 6, 15.9% | 3, 15.8% | 2, 22.2% | 6, 13.6% | 4, 14.3% | 2, 25.0% |
Old stroke (n, %) | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% |
Prior myocardial infarction (n, %) | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% |
Ejection fraction (%) | 62.5 ± 8.2% | 61.5 ± 9.7% | 58.7 ± 8.9% | 61.8 ± 9.2% | 64.8 ± 11.7% | 62.7 ± 10.5% | 58.7 ± 9.1% | 58.9 ± 10.4% | 59.4 ± 9.0% |
IABP (n, %) | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% |
ECMO (n, %) | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% | 0, 0% |
Operation | CABG Surgery with Conventional CPB | CABG Surgery with Beating-Heart CPB | CABG Surgery with Off-Pump Technique | |||
---|---|---|---|---|---|---|
Genotype | CC | CT/TT | CC | CT/TT | CC | CC/CT |
Minimal esophageal temperature | 27.5 ± 2.5 °C | 27.5 ± 1.9 | 32.2 ± 1.9 ℃ | 31.5 ± 2.0 | 34.9 ± 1.6 °C | 34.1 ± 1.7 |
Heparin (Unit) | 20,900 ± 2230 | 21,000 ± 2190 | 20,500 ± 5657 | 20,670 ± 5340 | 19,500 ± 5500 | 19,800 ± 4500 |
CPB time (minutes) | 130.5 ± 48.7 | 126.8 ± 50.1 | 119.3 ± 49.6 | 123.0 ± 30.5 | − | − |
Aortic clamping time (minutes) | 65.8 ± 20.5 | 71.5 ± 13.9 | − | − | − | − |
Number of grafts | 3.5 | 3.7 | 3.6 | 3.5 | 3.6 | 3.6 |
Operation/ Genotype | CABG Surgery with Conventional CPB | CABG Surgery with Beating-Heart CPB | CABG Surgery with Off-Pump Technique | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Surgery | Post-Surgery | Pre-Surgery | Post-Surgery | Pre-Surgery | Post-Surgery | |||||||
CC | CT/TT | CC | CT/TT | CC | CT/TT | CC | CT/TT | CC | CT/TT | CC | CT/TT | |
Leukocytes Differenciation | ||||||||||||
Neutrophil (%) | 60.3 ± 9.5 | 65.3 ± 9.4 | 70.5 ± 6.1 | 72.1 ± 6.5 | 65.4 ± 5.7 | 66.4 ± 6.4 | 63.5 ± 6.8 | 68.5 ± 6.7 | 68.5 ± 6.9 | 65.3 ± 6.9 | 66.8 ± 9.7 | 69.8 ± 9.7 |
Eosinophil (%) | 3.7 ± 1.1 | 2.6 ± 1.6 | 3.7 ± 0.9 | 3.1 ± 0.6 | 3.6 ± 2.1 | 3.6 ± 1.4 | 3.7 ± 2.0 | 3.8 ± 1.0 | 3.7 ± 1.3 | 3.5 ± 1.2 | 4.0 ± 1.0 | 3.8 ± 1.0 |
Basophil (%) | 0.7 ± 0.4 | 0.5 ± 0.2 | 0.6 ± 0.2 | 0.6 ± 0.1 | 0.5 ± 0.2 | 0.7 ± 0.4 | 0.5 ± 0.3 | 0.7 ± 0.1 | 0.6 ± 0.2 | 0.7 ± 0.3 | 0.6 ± 0.1 | 0.6 ± 0.2 |
Monocyte (%) | 7.5 ± 1.8 | 6.5 ± 2.1 | 6.4 ± 2.8 | 7.6 ± 2.1 | 6.6 ± 2.4 | 6.8 ± 1.5 | 6.1 ± 2.1 | 7.0 ± 1.8 | 6.5 ± 2.0 | 8.1 ± 3.4 | 7.1 ± 2.0 | 6.8 ± 1.9 |
Lymphocyte (%) | 29.3 ± 7.2 | 29.3 ± 7.2 | 10.3 ± 5.3 * | 11.3 ± 5.3 * | 30.2 ± 9.5 | 23.5 ± 9.7 | 9.8 ± 2.7 * | 10.4 ± 6.7 * | 23.5 ± 6.7 | 20.4 ± 6.7 | 22.5 ± 6 | 19.8 ± 6.7 |
Platelet (× 1010/L) | 22.5 ± 5.4 | 26.5 ± 5.4 | 22.3 ± 5.1 | 20.3 ± 7.9 | 23.5 ± 9.7 | 19.8 ± 5.9 | 22.4 ± 10.5 | 20.6 ± 9.7 | 22.7 ± 9.7 | 20.8 ± 6.7 | 21.6 ± 9.7 | 20.4 ± 8.9 |
Myocardio Damage | ||||||||||||
CK-MB/CK (%) | 5.0 ± 1.3 | 4.2 ± 1.9 | 4.9 ± 2.7 | 5.1 ± 2.4 | 4.0 ± 1.6 | 5.0 ± 2.1 | 4.9 ± 2.0 | 4.6 ± 1.0 | 4.6 ± 0.9 | 4.7 ± 1.1 | 4.9 ± 1.3 | 4.7 ± 0.9 |
CK-MB (mg/dL) | 25.4 ± 10.4 | 27.4 ± 9.4 | 25.6 ± 10.3 | 27.9 ± 9.8 | 20.4 ± 11.3 | 26.8 ± 10.4 | 23.5 ± 9.7 | 26.4 ± 9.8 | 20.5 ± 6.7 | 22.5 ± 6.7 | 25.4 ± 9.8 | 26.4 ± 6.9 |
Troponin I (mg/L) | 3.5 ± 2.0 | 4.2 ± 2.0 | 15.4 ± 4.6 * | 20.4 ± 6.1* | 5.4 ± 4.5 | 3.9 ± 3.0 | 10.5 ± 10.1 | 11.5 ± 9.1 | 6.7 ± 5.1 | 5.4 ± 4.1 | 12.4 ± 10.0 | 9.8 ± 5.4 |
Kidney Function | ||||||||||||
BUN | 20.3 ± 4.5 | 16.4 ± 3.7 | 16.9 ± 7.3 | 20.4 ± 10.3 | 20.5 ± 6.9 | 19.6 ± 6.7 | 23.5 ± 13.7 | 18.6 ± 5.8 | 20.5 ± 6.6 | 21.3 ± 6.9 | 20.6 ± 10.5 | 23.5 ± 4.1 |
Creatinine (mg/dL) | 1.0 ± 0.3 | 1.1 ± 0.2 | 1.5 ± 0.4 | 2.0 ± 1.0 | 1.9 ± 0.5 | 2.0 ± 0.1 | 1.0 ± 0.2 | 1.0 ± 0.5 | 1.2 ± 0.5 | 1.1 ± 0.4 | 1.4 ± 0.2 | 1.2 ± 0.3 |
Liver Function | ||||||||||||
AST | 36.4 ± 17.7 | 36.5 ± 23.4 | 37.4 ± 15.4 | 36.9 ± 20.1 | 36.5 ± 15.6 | 38.4 ± 12.4 | 39.7 ± 11.5 | 38.4 ± 10.4 | 36.8 ± 12.7 | 39.4 ± 15.7 | 36.7 ± 15.4 | 39.4 ± 12.4 |
ALT | 40.0 ± 8.8 | 39.4 ± 9.7 | 42.3 ± 10.4 | 42.6 ± 13.4 | 43.1 ± 13.7 | 39.8 ± 13.7 | 39.4 ± 10.4 | 42.7 ± 8.5 | 40.9 ± 7.7 | 42.1 ± 6.4 | 40.3 ± 7.5 | 40.2 ± 9.7 |
Inflammation | ||||||||||||
Thrombomodulin (ng/mL) | 56.3 ± 18.4 | 62.1 ± 20.1 | 123.5 ± 25.1 * | 130.4 ± 21.0 * | 49.7 ± 25.4 | 55.3 ± 19.7 | 110.3 ± 16.4 * | 123.4 ± 19.7 * | 52.1 ± 17.9 | 60.2 ± 19.4 | 50.1 ± 16.4 | 54.3 ± 12.7 |
CRP (mg/L) | 3.0 ± 1.0 | 2.6 ± 1.2 | 9.0 ± 3.2 | 8.4 ± 2.1 * | 2.9 ± 1.5 | 3.1 ± 1.4 | 5.1 ± 2.4 | 3.4 ± 1.0 | 3.2 ± 1.0 | 2.9 ± 1.4 | 4.1 ± 1.5 | 3.4 ± 1.0 |
Operation/Genotype | CABG surgery with Conventional CPB | CABG Surgery with Beating-Heart CPB | CABG Surgery with Off-Pump Technique | |||
---|---|---|---|---|---|---|
CC | CT/TT | CC | CT/TT | CC | CT/TT | |
pRBC transfusion (unit) | 5.0 ± 2.7 | 5.2 ± 3.1 | 4.0 ± 2.6 | 4.1 ± 2.2 | 2.2 ± 1.2 | 2.5 ± 1.0 |
Drainage loss (mL) | 986.1 ± 123.7 | 980.1 ± 104.7 | 382.6 ± 101.6 * | 399.6 ± 121.8 # | 330.7 ± 121.3 * | 288.7 ± 91.9 # |
ICU stay (n, %, average days) | 4.0 | 5.0§ | 2.5 * | 2.4 # | 2.1 * | 2.1 # |
ICU fever (n, %, average days) | 46, 39.7%, 3.2 | 49, 60.0% §, 4.9 § | 14, 8.2% *, 2.0 * | 3, 10.7% #, 2.0 # | 5, 11.3% *, 2.1 * | 4, 11.1% #, 2.1 # |
Mortality after surgery for 48 h | 0 | 0 | 0 | 0 | 0 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pai, C.-C.; Lin, Y.-W.; Tsai, Y.-T.; Loh, S.-H.; Lin, C.-Y.; Lin, C.-S.; Lin, Y.-C.; Ke, H.-Y.; Lin, F.-Y.; Tsai, C.-S. A Thrombomodulin Gene Polymorphism (C1418T) Is Associated with Early Outcomes in Patients Undergoing Coronary Artery Bypass Graft Surgery with a Conventional Cardiopulmonary Bypass during Hospitalization. Medicines 2017, 4, 22. https://doi.org/10.3390/medicines4020022
Pai C-C, Lin Y-W, Tsai Y-T, Loh S-H, Lin C-Y, Lin C-S, Lin Y-C, Ke H-Y, Lin F-Y, Tsai C-S. A Thrombomodulin Gene Polymorphism (C1418T) Is Associated with Early Outcomes in Patients Undergoing Coronary Artery Bypass Graft Surgery with a Conventional Cardiopulmonary Bypass during Hospitalization. Medicines. 2017; 4(2):22. https://doi.org/10.3390/medicines4020022
Chicago/Turabian StylePai, Ching-Chou, Yi-Wen Lin, Yi-Ting Tsai, Shih-Hurng Loh, Chih-Yuan Lin, Chin-Sheng Lin, Yi-Chang Lin, Hung-Yen Ke, Feng-Yen Lin, and Chien-Sung Tsai. 2017. "A Thrombomodulin Gene Polymorphism (C1418T) Is Associated with Early Outcomes in Patients Undergoing Coronary Artery Bypass Graft Surgery with a Conventional Cardiopulmonary Bypass during Hospitalization" Medicines 4, no. 2: 22. https://doi.org/10.3390/medicines4020022
APA StylePai, C. -C., Lin, Y. -W., Tsai, Y. -T., Loh, S. -H., Lin, C. -Y., Lin, C. -S., Lin, Y. -C., Ke, H. -Y., Lin, F. -Y., & Tsai, C. -S. (2017). A Thrombomodulin Gene Polymorphism (C1418T) Is Associated with Early Outcomes in Patients Undergoing Coronary Artery Bypass Graft Surgery with a Conventional Cardiopulmonary Bypass during Hospitalization. Medicines, 4(2), 22. https://doi.org/10.3390/medicines4020022