Multi-Drug Resistant Gram-Negative Sepsis in Neonates: The Special Role of Ceftazidime/Avibactam and Ceftolozane/Tazobactam
Abstract
1. Introduction
1.1. Neonatal Sepsis
1.2. Antimicrobial Resistance in Neonatal Sepsis
1.3. Drug Resistance in Gram-Negative Bacteria
1.3.1. Antibiotic Resistance in Enterobacterales
1.3.2. MDR Pseudomonas aeruginosa
1.4. Management of MDR Infections
2. Materials and Methods
3. Ceftazidime/Avibactam
3.1. Mechanism of Action/Spectrum of Activity
3.2. Pharmacokinetics and Dosing
3.3. Efficacy
Author | Population | Pathogen | Site of Infection | Dosage | Duration | Concomitant Antibiotics | Efficacy | Potentially Treatment-Related Adverse Effects |
---|---|---|---|---|---|---|---|---|
Iosifidis, 2019 [60] | 6 neonates (GA: 25 + 5–37 + 3, CA: 6–134) | XDR/PDR Klebsiella Pneumoniae | Suspected/proven bloodstream infection | 50 mg/kg/12.5 mg/kg tid | 4–21 days | At least three of the following antibiotics: carbapenems, fosfomycin, amikacin, colistin | Microbiological/clinical response of all neonates | Hypomagnesemia (2) Direct hyperbilirubinemia (1) |
Esposito, 2019 [65] | 1 preterm neonate (2 courses) | KPC Klebsiella Pneumoniae | CSF | 75 mg/kg/20 mg/kg tid during the first 8 days and 25 mg/kg/6.5 mg/kg tid thereafter | 25 days | Fosfomycin meropenem | Microbiological/clinical response | Mild thrombocytopenia (high-dose) |
KPC Klebsiella Pneumoniae | Bloodstream | 25 mg/kg/6.5 mg/kg tid | 22 days | Fosfomycin meropenem | Microbiological/clinical response | No | ||
Coskun, 2020 [63] | 1 neonate (CA: 25 days, GA: 27 weeks) | PDR Klebsiella Pneumoniae | UTI | 40 mg/kg/10 mg/kg tid | 10 days | Monotherapy | Microbiological/clinical response | Glucosuria |
Asfour, 2022 [64] | 1 neonate (CA: 17 days, GA: 27 weeks) | CRE Klebsiella Pneumoniae | CSF, bloodstream | 50 mg/kg/12.5 mg/kg tid | 21 days | Colistin | Microbiological/clinical response | No |
1 neonate (CA: 56 days, GA: 28 weeks) | CRE Klebsiella Pneumoniae | bloodstream | 50 mg/kg/12.5 mg/kg tid | 5 days | Amikacin | Microbiological cure/patient died (CA: 61 days) | Significant creatinine increase | |
Nascimento, 2022 [72] | 1 neonate (CA: 46 days, GA: 29 weeks) | MDR Klebsiella Pneumoniae | bloodstream | 40 mg/kg/10 mg/kg tid | 14 days | Monotherapy | Microbiological/clinical response | Abdominal distention, hypokalemia |
Pu, 2023 [69] | 1 neonate (CA: 1 day, GA: 34 + 4 weeks) | CRE Klebsiella Pneumoniae | Bloodstream, osteoarthritis | 40 mg/kg/10 mg/kg tid | 14 days | Monotherapy | Microbiological/clinical response | No |
1 neonate (CA: 45 days, GA: 32 + 4 weeks) | CRE Klebsiella Pneumoniae | Puncture fluid (Hip arthritis, femoral osteomyelitis) | 40 mg/kg/10 mg/kg tid | 28 days | Monotherapy | Microbiological/clinical response | No | |
Marino, 2023 [62] | 8 neonates (median GA 26.5 weeks) | 7 ESBL Klebsiella Pneumoniae 1 CRE Klebsiella Pneumoniae | bloodstream | 40 mg/kg/10 mg/kg tid | 7–18 days | 7 fosfomycin 1 amikacin | Microbiological/clinical response | No |
Mangarov, 2023 [73] | 1 neonate (CA: 24 days, GA: 36 weeks) | MDR Klebsiella Pneumoniae | bloodstream | 40 mg/kg/10 mg/kg tid | 17 days | Imipenem/cilastatin metronidazole | Microbiological/clinical response | No |
Ftergioti, 2024 [61] | 21 neonates (median GA: 29 + 2, median CA: 44 days), 31 courses | CRE Klebsiella Pneumoniae, XDR A. baumannii | 12 bloodstream, 2 UTI, 1 VAP 61% empirical | 20 mg/kg/5 mg/kg tid to 50 mg/kg/12.5 mg/kg tid | 10 days (median) | In most cases, concomitant antibiotics were administered, including: Colistin Tigecycline Fosfomycin Amicakin | Clinical response >74% 5 deaths | No |
Chen, 2024 [74] | 1 neonate (CA: 25 days, GA: 32 weeks) | ESBL, OXA-48 Klebsiella Pneumoniae | bloodstream | 50 mg/kg/12.5 mg/kg tid | 15 days | Aztreonam fosfomycin | Microbiological/clinical response | No |
3.4. Safety
3.5. Clinical Points
- CAZ-AVI is highly effective against ESBL, CRE Enterobacterales, and MDR/XDR Pseudomonas aeruginosa.
- Although CAZ-AVI is currently approved for the treatment of complicated intra-abdominal infections, UTIs, and nosocomial pneumonia, it can also be used for the treatment of aerobic gram-negative infections of any localization when treatment options are limited.
- The safety profile of CAZ-AVI has been demonstrated to be favorable in the neonatal population.
4. Ceftolozane/Tazobactam
4.1. Mechanism of Action/Spectrum of Activity
4.2. Pharmacokinetics and Dosing
4.3. Efficacy
Author | Study Type | Population | Pathogens | Site of Infection | Dosage (Ceftolozane) | Duration | Efficacy | Potentially Treatment-Related Adverse Effects |
---|---|---|---|---|---|---|---|---|
Molloy, 2020 [95] | Case series | 13 patients, 3 months–19 years | MDR Pseudomonas aeruginosa | Pneumonia (7) Cystic fibrosis exacerbation (3) Intra-abdominal infection (2) Osteomyelitis (1) | 13.8–34.8 mg/kg tid | 5–61 days | 92.3% (12/13) clinical cure | Transaminitis (1) Neutropenia (1) |
Roilides, 2023 [93] | Phase 2 RCT | 71 patients, 7 days–18 years | Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa | Complicated UTI | 20 mg/kg tid (<12 years) 1 g tid (>12 years) | 6.1 days (mean) | 94.4% (67/71) clinical cure 93% (66/71) microbial eradication | Diarrhea (3) Increased appetite (3) Neutropenia (2) Increased aspartate aminotransferase (2) |
Jackson, 2023 [94] | Phase 2 RCT | 70 patients, 7 days–18 years | Escherichia coli Pseudomonas aeruginosa Bacteroides fragilis | Complicated intra-abdominal infection | 20 mg/kg tid (<12 years) 1 g tid (>12 years) Plus metronidazole | 6.4 days (mean) | 80% clinical cure | Diarrhea (4) Increased aspartate aminotransferase (4) Increased alanine aminotransferase (3) Increased alkaline phosphatase (2) Dysgeusia (2) |
4.4. Safety
4.5. Clinical Points
- CEF-TAZ is effective against various ESBL Enterobacterales and some anaerobes.
- This combination is very potent against MDR and XDR Pseudomonas aeruginosa.
- It is approved for complicated UTI or intra-abdominal infection combined with metronidazole. However, it has also been effective in infections of other sites caused by susceptible pathogens.
- There have been no reports of safety concerns in the neonatal population.
- CEF-TAZ and CAZ-AVI have both similarities and differences and represent valuable options for the treatment of MDR gram-negative infections in neonates (Table 5).
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Flannery, D.D.; Chiotos, K.; Gerber, J.S.; Puopolo, K.M. Neonatal multidrug-resistant gram-negative infection: Epidemiology, mechanisms of resistance, and management. Pediatr. Res. 2022, 91, 380–391. [Google Scholar] [CrossRef]
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global incidence and mortality of neonatal sepsis: A systematic review and meta-analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klinger, G.; Bromiker, R.; Zaslavsky-Paltiel, I.; Klinger, S.; Sokolover, N.; Lerner-Geva, L.; Reichman, B.; ISRAEL NEONATAL NETWORK. Late-Onset Sepsis in Very Low Birth Weight Infants. Pediatrics 2023, 152, e2023062223. [Google Scholar] [CrossRef] [PubMed]
- Nanduri, S.A.; Petit, S.; Smelser, C.; Apostol, M.; Alden, N.B.; Harrison, L.H.; Lynfield, R.; Vagnone, P.S.; Burzlaff, K.; Spina, N.L.; et al. Epidemiology of Invasive Early-Onset and Late-Onset Group B Streptococcal Disease in the United States, 2006 to 2015, Multistate Laboratory and Population-Based Surveillance. JAMA Pediatr. 2019, 173, 224–233. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; Committee on Fetus and Newborn; Committee on Infectious Diseases. Management of Neonates Born at ≥35 0/7 Weeks’ Gestation with Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 6, e20182894. [Google Scholar] [CrossRef]
- Coggins, S.A.; Glaser, K. Updates in Late-Onset Sepsis: Risk Assessment, Therapy, and Outcomes. Neoreviews 2022, 11, 738–755. [Google Scholar] [CrossRef]
- Flannery, D.D.; Edwards, E.M.; Coggins, S.A.; Horbar, J.D.; Puopolo, K.M. Late-Onset Sepsis Among Very Preterm Infants. Pediatrics 2022, 150, e2022058813. [Google Scholar] [CrossRef]
- Viswanathan, R.; Singh, A.K.; Basu, S.; Chatterjee, S.; Sardar, S.; Isaacs, D. Multi-drug resistant gram negative bacilli causing early neonatal sepsis in India. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F182–F187. [Google Scholar] [CrossRef] [PubMed]
- Okomo, U.; Akpalu, E.N.K.; Le Doare, K.; Roca, A.; Cousens, S.; Jarde, A.; Sharland, M.; Kampmann, B.; Lawn, J.E. Aetiology of invasive bacterial infection and antimicrobial resistance in neonates in sub-Saharan Africa: A systematic review and meta-analysis in line with the STROBE-NI reporting guidelines. Lancet Infect. Dis. 2019, 19, 1219–1234. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.K.; Huskins, W.C.; Thaver, D.; Bhutta, Z.A.; Abbas, Z.; Goldmann, D.A. Hospital-acquired neonatal infections in developing countries. Lancet 2005, 365, 1175–1188. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yang, C.; Yang, C.; Yan, W.; Shah, V.; Shah, P.S.; Lee, S.K.; Yang, Y.; Cao, Y.; Rein-Epiq Study Group. Epidemiology and microbiology of late-onset sepsis among preterm infants in China, 2015–2018: A cohort study. Int. J. Infect. Dis. 2020, 96, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Folgori, L.; Bielicki, J.; Heath, P.T.; Sharland, M. Antimicrobial-resistant Gram-negative infections in neonates: Burden of disease and challenges in treatment. Curr. Opin. Infect. Dis. 2017, 30, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, Y.; Hsia, Y.; Sharland, M.; Heath, P.T. Systematic review of carbapenem-resistant Enterobacteriaceae causing neonatal sepsis in China. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Folgori, L.; Ellis, S.J.; Bielicki, J.A.; Heath, P.T.; Sharland, M.; Balasegaram, M. Tackling antimicrobial resistance in neonatal sepsis. Lancet Glob. Health 2017, 5, e1066–e1068. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Bielicki, J.A.; Ahmed, A.S.M.N.U.; Islam, M.S.; Berezin, E.N.; Gallacci, C.B.; Guinsburg, R.; da Silva Figueiredo, C.E.; Santarone Vieira, R.; Silva, A.R.; et al. Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: Insights from the NeoAMR network. Arch. Dis. Child. 2020, 105, 26–31. [Google Scholar] [CrossRef]
- Hay, S.I.; Rao, P.C.; Dolecek, C.; Day, N.P.J.; Stergachis, A.; Lopez, A.D.; Murray, C.J.L. Measuring and mapping the global burden of antimicrobial resistance. BMC Med. 2018, 16, 78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakwan, N.; Chokephaibulkit, K.; Imberti, R. The Use of Colistin for the Treatment of Multidrug-resistant Gram-negative Infections in Neonates and Infants: A Review of the Literature. Pediatr. Infect. Dis. J. 2019, 38, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.J.; Murphy, M.; McCallion, N.; Brennan, M.; Cunney, R.; Drew, R.J. Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: A systematic review. Arch. Dis. Child. Fetal Neonatal. Ed. 2016, 101, F72–F78. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html (accessed on 2 February 2025).
- Center for Disease Control and Prevention. Available online: https://www.cdc.gov/antimicrobial-resistance/media/pdfs/antimicrobial-resistance-threats-update-2022-508.pdf (accessed on 2 February 2025).
- Williams, P.C.; Qazi, S.A.; Agarwal, R.; Velaphi, S.; Bielicki, J.A.; Nambiar, S.; Giaquinto, C.; Bradley, J.; Noel, G.J.; Ellis, S.; et al. Antibiotics needed to treat multidrug-resistant infections in neonates. Bull. World Health Organ. 2022, 12, 797–807. [Google Scholar] [CrossRef]
- Wilson, H.; Török, M.E. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb. Genom. 2018, 4, e000197. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect. Dis. Ther. 2022, 11, 661–682. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chevalier, S.; Bouffartigues, E.; Bodilis, J.; Maillot, O.; Lesouhaitier, O.; Feuilloley, M.G.J.; Orange, N.; Dufour, A.; Cornelis, P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol. Rev. 2017, 41, 698–722. [Google Scholar] [CrossRef] [PubMed]
- Breidenstein, E.B.; de la Fuente-Núñez, C.; Hancock, R.E. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Ortiz de la Rosa, J.M.; Nordmann, P.; Poirel, L. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2019, 74, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M. The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert Opin. Pharmacother. 2019, 20, 2169–2184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar] [CrossRef] [PubMed]
- Gore, R.; Chugh, P.K.; Tripathi, C.D.; Lhamo, Y.; Gautam, S. Pediatric Off-Label and Unlicensed Drug Use and Its Implications. Curr. Clin. Pharmacol. 2017, 12, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.; Smith, P.B.; Hornik, C.P.; Zimmerman, K.O.; Hornik, C.D.; Pradeep, S.; Clark, R.H.; Benjamin, D.K., Jr.; Laughon, M.; Greenberg, R.G. Medication Use in the Neonatal Intensive Care Unit and Changes from 2010 to 2018. J. Pediatr. 2022, 240, 66–71.e4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/209776s009lbl.pdf (accessed on 28 April 2025).
- Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212819s002lbl.pdf (accessed on 28 April 2025).
- Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/209445s004lbl.pdf (accessed on 28 April 2025).
- Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/206494s012lbl.pdf (accessed on 10 February 2025).
- Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/206829s011s012lbl.pdf (accessed on 14 February 2025).
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, D.; van Duin, D. Novel Beta-Lactamase Inhibitors: Unlocking Their Potential in Therapy. Drugs 2017, 77, 615–628. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shirley, M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Biedenbach, D.J.; Kazmierczak, K.M.; Stone, G.G.; Sahm, D.F. Activity of Ceftazidime-Avibactam against Extended-Spectrum- and AmpC β-Lactamase-Producing Enterobacteriaceae Collected in the INFORM Global Surveillance Study from 2012 to 2014. Antimicrob. Agents Chemother. 2016, 60, 2849–2857. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spiliopoulou, I.; Kazmierczak, K.; Stone, G.G. In vitro activity of ceftazidime/avibactam against isolates of carbapenem-non-susceptible Enterobacteriaceae collected during the INFORM global surveillance programme (2015–17). J. Antimicrob. Chemother. 2020, 75, 384–391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sader, H.S.; Huband, M.D.; Castanheira, M.; Flamm, R.K. Pseudomonas aeruginosa Antimicrobial Susceptibility Results from Four Years (2012 to 2015) of the International Network for Optimal Resistance Monitoring Program in the United States. Antimicrob. Agents Chemother. 2017, 61, e02252-16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castanheira, M.; Mills, J.C.; Costello, S.E.; Jones, R.N.; Sader, H.S. Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. hospitals (2011 to 2013) and characterization of β-lactamase-producing strains. Antimicrob. Agents Chemother. 2015, 59, 3509–3517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marshall, S.; Hujer, A.M.; Rojas, L.J.; Papp-Wallace, K.M.; Humphries, R.M.; Spellberg, B.; Hujer, K.M.; Marshall, E.K.; Rudin, S.D.; Perez, F.; et al. Can Ceftazidime-Avibactam and Aztreonam Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae? Antimicrob. Agents Chemother. 2017, 61, e02243-16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yasmin, M.; Fouts, D.E.; Jacobs, M.R.; Haydar, H.; Marshall, S.H.; White, R.; D’Souza, R.; Lodise, T.P.; Rhoads, D.D.; Hujer, A.M.; et al. Monitoring Ceftazidime-Avibactam and Aztreonam Concentrations in the Treatment of a Bloodstream Infection Caused by a Multidrug-Resistant Enterobacter sp. Carrying Both Klebsiella pneumoniae Carbapenemase-4 and New Delhi Metallo-β-Lactamase-1. Clin. Infect. Dis. 2020, 71, 1095–1098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olney, K.B.; Thomas, J.K.; Johnson, W.M. Review of novel β-lactams and β-lactam/β-lactamase inhibitor combinations with implications for pediatric use. Pharmacotherapy 2023, 43, 713–731. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/product-information/zavicefta-epar-product-information_en.pdf (accessed on 10 February 2025).
- Zhanel, G.G.; Lawson, C.D.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Lagacé-Wiens, P.R.; Denisuik, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; et al. Ceftazidime-avibactam: A novel cephalosporin/β-lactamase inhibitor combination. Drugs 2013, 73, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Peghin, M.; Mesini, A.; Castagnola, E. Optimal Management of Complicated Infections in the Pediatric Patient: The Role and Utility of Ceftazidime/Avibactam. Infect. Drug Resist. 2020, 13, 1763–1773. [Google Scholar] [CrossRef]
- Bradley, J.S.; Armstrong, J.; Arrieta, A.; Bishai, R.; Das, S.; Delair, S.; Edeki, T.; Holmes, W.C.; Li, J.; Moffett, K.S.; et al. Phase I Study Assessing the Pharmacokinetic Profile, Safety, and Tolerability of a Single Dose of Ceftazidime-Avibactam in Hospitalized Pediatric Patients. Antimicrob. Agents Chemother. 2016, 60, 6252–6259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bradley, J.S.; Broadhurst, H.; Cheng, K.; Mendez, M.; Newell, P.; Prchlik, M.; Stone, G.G.; Talley, A.K.; Tawadrous, M.; Wajsbrot, D.; et al. Safety and Efficacy of Ceftazidime-Avibactam Plus Metronidazole in the Treatment of Children ≥3 Months to <18 Years with Complicated Intra-Abdominal Infection: Results From a Phase 2, Randomized, Controlled Trial. Pediatr. Infect. Dis. J. 2019, 38, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Roilides, E.; Broadhurst, H.; Cheng, K.; Huang, L.M.; MasCasullo, V.; Newell, P.; Stone, G.G.; Tawadrous, M.; Wajsbrot, D.; et al. Safety and Efficacy of Ceftazidime-Avibactam in the Treatment of Children ≥3 Months to <18 Years with Complicated Urinary Tract Infection: Results from a Phase 2 Randomized, Controlled Trial. Pediatr. Infect. Dis. J. 2019, 38, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Franzese, R.C.; McFadyen, L.; Watson, K.J.; Riccobene, T.; Carrothers, T.J.; Vourvahis, M.; Chan, P.L.S.; Raber, S.; Bradley, J.S.; Lovern, M. Population Pharmacokinetic Modeling and Probability of Pharmacodynamic Target Attainment for Ceftazidime-Avibactam in Pediatric Patients Aged 3 Months and Older. Clin. Pharmacol. Ther. 2022, 111, 635–645. [Google Scholar] [CrossRef]
- Bradley, J.S.; Roilides, E.; England, R.; Tawadrous, M.; Yan, J.; Soto, E.; Stone, G.; Kamat, S. Pharmacokinetics, Safety, and Efficacy of Ceftazidime-Avibactam in Neonates and Young Infants with Bacterial Infections: Results from a Phase 2a, 2-part, Open-label, Non-randomized, Multicenter Trial. Open Forum Infect. Dis. 2023, 10, ofad500.2473. [Google Scholar] [CrossRef] [PubMed Central]
- Iosifidis, E.; Chorafa, E.; Agakidou, E.; Kontou, A.; Violaki, A.; Volakli, E.; Christou, E.-I.; Zarras, C.; Drossou-Agakidou, V.; Sdougka, M.; et al. Use of Ceftazidime-avibactam for the Treatment of Extensively drug-resistant or Pan drug-resistant Klebsiella pneumoniae in Neonates and Children <5 Years of Age. Pediatr. Infect. Dis. J. 2019, 38, 812–815. [Google Scholar] [CrossRef] [PubMed]
- Ftergioti, A.; Degli Antoni, M.; Kontou, A.; Kourti, M.; Pantzartzi, K.; Zarras, C.; Agakidou, E.; Sarafidis, K.; Roilides, E.; Iosifidis, E. Off-label Use of Ceftazidime/Avibactam in Neonatal Intensive Care Unit: A Real-life Experience and Literature Review. Pediatr. Infect. Dis. J. 2024, 43, e149–e154. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Pulvirenti, S.; Campanella, E.; Stracquadanio, S.; Ceccarelli, M.; Micali, C.; Tina, L.G.; Di Dio, G.; Stefani, S.; Cacopardo, B.; et al. Ceftazidime-Avibactam Treatment for Klebsiella pneumoniae Bacteremia in Preterm Infants in NICU: A Clinical Experience. Antibiotics 2023, 12, 1169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coskun, Y.; Atici, S. Successful Treatment of Pandrug-resistant Klebsiella pneumoniae Infection with Ceftazidime-avibactam in a Preterm Infant: A Case Report. Pediatr. Infect. Dis. J. 2020, 39, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Asfour, S.S.; Alaklobi, F.A.; Abdelrahim, A.; Taha, M.Y.; Asfour, R.S.; Khalil, T.M.; Al-Mouqdad, M.M. Intravenous Ceftazidime-Avibactam in Extremely Premature Neonates with Carbapenem-Resistant Enterobacteriaceae: Two Case Reports. J. Pediatr. Pharmacol. Ther. 2022, 27, 192–197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esposito, P.; Sbrana, F.; Di Toro, A.; Gombos, S.; Tascini, C. Ceftazidine-avibactam salvage therapy in newborn with KPC-producing Klebsiella pneumoniae invasive infections. Minerva Anestesiol. 2019, 85, 804–805. [Google Scholar] [CrossRef] [PubMed]
- Hussain, K.; Sohail Salat, M.; Ambreen, G.; Iqbal, J. Neurodevelopment Outcome of Neonates Treated with Intraventricular Colistin for Ventriculitis Caused by Multiple Drug-Resistant Pathogens-A Case Series. Front. Pediatr. 2021, 8, 582375. [Google Scholar] [CrossRef]
- Antachopoulos, C.; Karvanen, M.; Iosifidis, E.; Jansson, B.; Plachouras, D.; Cars, O.; Roilides, E. Serum and cerebrospinal fluid levels of Colistin in pediatric patients. Antimicrob. Agents Chemother. 2010, 54, 3985–3987. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, X.; Yuan, B.; Liang, P.; Liu, N.; Dong, D.; Ge, W.; Gu, Q. The pharmacokinetics/pharmacodynamics of ceftazidime/avibactam for central nervous system infections caused by carbapenem-resistant Gram-negatives: A prospective study. J. Antimicrob. Chemother. 2024, 79, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Fan, L.; Zhang, Y.; You, D.; Li, M.; Ma, L. Carbapenem-resistant Klebsiella pneumoniae Osteoarthritis in Two Preterm Infants Treated with Ceftazidime-avibactam. Pediatr. Infect. Dis. J. 2023, 42, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Rempenault, C.; Pagis, V.; Noussair, L.; Berbescu, S.; Duran, C.; Bouchand, F.; de Laroche, M.; Salomon, E.; Nich, C.; Bauer, T.; et al. Treatment of bone and joint infections by ceftazidime/avibactam and ceftolozane/tazobactam: A cohort study. J. Glob. Antimicrob. Resist. 2021, 25, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, A.; Pipitò, L.; Rubino, R.; Distefano, S.A.; Mangione, D.; Cascio, A. Ceftazidime-Avibactam as Osteomyelitis Therapy: A Miniseries and Review of the Literature. Antibiotics 2023, 12, 1328. [Google Scholar] [CrossRef]
- Nascimento, A.D.S.; Passaro, M.F.; Silva, P.S.S.; Rodriguez, S.F.; Martins, M.K.; Oliveira, S.C.P.; Moriel, P.; Visacri, M.B. Off-Label Use of Ceftazidime-Avibactam in a Premature Infant with Multidrug-Resistant Klebsiella pneumoniae Infection: A Case Report. J. Pharm. Pract. 2023, 36, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Mangarov, I.; Georgieva, R.; Petkova, V.; Nikolova, I. Off-Label Use of Ceftazidime/Avibactam for the Treatment of Pan-Drug-Resistant Klebsiella pneumoniae in a Neonate: Case Report and Literature Review. Antibiotics 2023, 12, 1302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Fang, C.; Luo, J.; Pan, X.; Gao, Z.; Tang, S.; Li, M. Combination Therapy for OXA-48 Carbapenemase-Producing Klebsiella Pneumoniae Bloodstream Infections in Premature Infant: A Case Report and Literature Review. Infect. Drug Resist. 2024, 17, 1987–1997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Venuti, F.; Romani, L.; De Luca, M.; Tripiciano, C.; Palma, P.; Chiriaco, M.; Finocchi, A.; Lancella, L. Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms 2023, 11, 1798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grupper, M.; Sutherland, C.; Nicolau, D.P. Multicenter Evaluation of Ceftazidime-Avibactam and Ceftolozane-Tazobactam Inhibitory Activity against Meropenem-Nonsusceptible Pseudomonas aeruginosa from Blood, Respiratory Tract, and Wounds. Antimicrob. Agents Chemother. 2017, 61, e00875-17. [Google Scholar] [CrossRef]
- Humphries, R.M.; Hindler, J.A.; Wong-Beringer, A.; Miller, S.A. Activity of Ceftolozane-Tazobactam and Ceftazidime-Avibactam against Beta-Lactam-Resistant Pseudomonas aeruginosa Isolates. Antimicrob. Agents Chemother. 2017, 61, e01858-17. [Google Scholar] [CrossRef]
- Carvalhaes, C.G.; Castanheira, M.; Sader, H.S.; Flamm, R.K.; Shortridge, D. Antimicrobial activity of ceftolozane-tazobactam tested against gram-negative contemporary (2015–2017) isolates from hospitalized patients with pneumonia in US medical centers. Diagn. Microbiol. Infect. Dis. 2019, 94, 93–102. [Google Scholar] [CrossRef]
- Shortridge, D.; Duncan, L.R.; Pfaller, M.A.; Flamm, R.K. Activity of ceftolozane-tazobactam and comparators when tested against Gram-negative isolates collected from paediatric patients in the USA and Europe between 2012 and 2016 as part of a global surveillance programme. Int. J. Antimicrob. Agents. 2019, 53, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Pazzini, C.; Ahmad-Nejad, P.; Ghebremedhin, B. Ceftolozane/Tazobactam Susceptibility Testing in Extended-Spectrum Betalactamase- and Carbapenemase-Producing Gram-Negative Bacteria of Various Clonal Lineages. Eur. J. Microbiol. Immunol. 2019, 9, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.C.; Fiorenza, M.A.; Estrada, S.J. Ceftolozane/Tazobactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination. Pharmacotherapy 2015, 35, 701–715. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/product-information/zerbaxa-epar-product-information_en.pdf (accessed on 14 February 2025).
- Ang, J.Y.; Arrieta, A.; Bradley, J.S.; Zhang, Z.; Yu, B.; Rizk, M.L.; Johnson, M.G.; Rhee, E.G. Ceftolozane/Tazobactam in Neonates and Young Infants: The Challenges of Collecting Pharmacokinetics and Safety Data in This Vulnerable Patient Population. Am. J. Perinatol. 2021, 38, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Ang, J.Y.; Arrieta, A.C.; Larson, K.B.; Rizk, M.L.; Caro, L.; Yang, S.; Yu, B.; Johnson, M.G.; Rhee, E.G. Pharmacokinetics and Safety of Single Intravenous Doses of Ceftolozane/Tazobactam in Children with Proven or Suspected Gram-Negative Infection. Pediatr. Infect. Dis. J. 2018, 37, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Larson, K.B.; Patel, Y.T.; Willavize, S.; Bradley, J.S.; Rhee, E.G.; Caro, L.; Rizk, M.L. Ceftolozane-Tazobactam Population Pharmacokinetics and Dose Selection for Further Clinical Evaluation in Pediatric Patients with Complicated Urinary Tract or Complicated Intra-abdominal Infections. Antimicrob. Agents Chemother. 2019, 63, e02578-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roilides, E.; Bradley, J.S.; Lonchar, J.; Huntington, J.A.; Wickremasingha, P.; Su, F.H.; Bruno, C.J.; Johnson, M.G. Subgroup analysis of phase 2 study of ceftolozane/tazobactam in neonates and young infants with pyelonephritis. Microbiol. Spectr. 2023, 11, e0180023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clinical Trials. Available online: https://clinicaltrials.gov/study/NCT04223752 (accessed on 20 February 2025).
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Lucasti, C.; Hershberger, E.; Miller, B.; Yankelev, S.; Steenbergen, J.; Friedland, I.; Solomkin, J. Multicenter, double-blind, randomized, phase II trial to assess the safety and efficacy of ceftolozane-tazobactam plus metronidazole compared with meropenem in adult patients with complicated intra-abdominal infections. Antimicrob. Agents Chemother. 2014, 58, 5350–5357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results from a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wagenlehner, F.M.; Umeh, O.; Steenbergen, J.; Yuan, G.; Darouiche, R.O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: A randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 2015, 385, 1949–1956. [Google Scholar] [CrossRef]
- Cheng, I.L.; Chen, Y.H.; Lai, C.C.; Tang, H.J. The use of ceftolozane-tazobactam in the treatment of complicated intra-abdominal infections and complicated urinary tract infections-A meta-analysis of randomized controlled trials. Int. J. Antimicrob. Agents 2020, 55, 105858. [Google Scholar] [CrossRef] [PubMed]
- Roilides, E.; Ashouri, N.; Bradley, J.S.; Johnson, M.G.; Lonchar, J.; Su, F.H.; Huntington, J.A.; Popejoy, M.W.; Bensaci, M.; De Anda, C.; et al. Safety and Efficacy of Ceftolozane/Tazobactam Versus Meropenem in Neonates and Children with Complicated Urinary Tract Infection, Including Pyelonephritis: A Phase 2, Randomized Clinical Trial. Pediatr. Infect. Dis. J. 2023, 42, 292–298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jackson, C.A.; Newland, J.; Dementieva, N.; Lonchar, J.; Su, F.H.; Huntington, J.A.; Bensaci, M.; Popejoy, M.W.; Johnson, M.G.; De Anda, C.; et al. Safety and Efficacy of Ceftolozane/Tazobactam Plus Metronidazole Versus Meropenem from a Phase 2, Randomized Clinical Trial in Pediatric Participants with Complicated Intra-abdominal Infection. Pediatr. Infect. Dis. J. 2023, 42, 557–563. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Molloy, L.; Abdulhamid, I.; Srivastava, R.; Ang, J.Y. Ceftolozane/Tazobactam Treatment of Multidrug-resistant Pseudomonas aeruginosa Infections in Children. Pediatr. Infect. Dis. J. 2020, 39, 419–420. [Google Scholar] [CrossRef]
Ambler Class | Active Site | Type of β-Lactamase | Representative Enzyme | β-Lactamase Inhibitor |
---|---|---|---|---|
Class A | Serine | penicillinases | KPC, CTX-M | avibactam, relebactam, vaborbactam |
Class B | Zinc | metallo-B-lactamases | NDM, VIM | None |
Class C | serine | cephalosporinases | AmpC | avibactam, relebactam |
Class D | Serine | oxacillinases | Oxa-48 | avibactam |
Database | Pubmed, Google Scholar |
---|---|
Timeframe | Up to January 2025 |
Keywords | neonatal sepsis, multidrug-resistant gram-negative bacteria, beta-lactams/beta-lactamase inhibitors, ceftazidime/avibactam, ceftolozane/tazobactam |
Inclusion and exclusion criteria | Only full-text articles written in the English language were included |
Ceftazidime/Avibactam | Ceftolozane/Tazobactam | |
---|---|---|
Classification of pharmaceutical substances. | Third-generation cephalosporin/diazabicyclooctane non-beta-lactam inhibitor | Fifth-generation cephalosporin/ sulfone-based inhibitor |
Pharmacokinetic properties | Low plasma protein binding Short half-life Both compounds are renally eliminated | Low plasma protein binding Short half-life Both compounds are renally eliminated |
Antimicrobial spectrum | Gram-negative Enterobacterales (including ESBL and AmpC) MDR/XDR Pseudomonas aeruginosa | Gram-negative pathogens (including a range of ESBL Enterobacterales) MDR/XDR Pseudomonas aeruginosa Certain anaerobes (including Bacteroides fragilis) Certain Streptococcus spp. |
Non-susceptible pathogens | Gram-positive pathogens Gram-negative anaerobes Strains producing class B carbapenemases | ESBL-producing Klebsiella pneumoniae Carbapenemase-producing Enterobacterales Anaerobic gram-positive cocci Strains that produce class B carbapenemase or class C oxacillinases |
Approved indications in pediatric patients | Complicated intra-abdominal infections Complicated UTIs Hospital-acquired/ventilator-associated bacterial pneumonia | Complicated UTI Complicated intra-abdominal infection in combination with metronidazole |
Other indications | Difficult to treat infections of any localization caused by susceptible pathogens | Difficult to treat infections of any localization caused by susceptible pathogens |
Safety concerns | Mild transient adverse effects have been reported in neonates | Mild transient adverse effects have been reported in neonates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dermitzaki, N.; Balomenou, F.; Serbis, A.; Atzemoglou, N.; Giaprou, L.; Baltogianni, M.; Giapros, V. Multi-Drug Resistant Gram-Negative Sepsis in Neonates: The Special Role of Ceftazidime/Avibactam and Ceftolozane/Tazobactam. Medicines 2025, 12, 17. https://doi.org/10.3390/medicines12030017
Dermitzaki N, Balomenou F, Serbis A, Atzemoglou N, Giaprou L, Baltogianni M, Giapros V. Multi-Drug Resistant Gram-Negative Sepsis in Neonates: The Special Role of Ceftazidime/Avibactam and Ceftolozane/Tazobactam. Medicines. 2025; 12(3):17. https://doi.org/10.3390/medicines12030017
Chicago/Turabian StyleDermitzaki, Niki, Foteini Balomenou, Anastasios Serbis, Natalia Atzemoglou, Lida Giaprou, Maria Baltogianni, and Vasileios Giapros. 2025. "Multi-Drug Resistant Gram-Negative Sepsis in Neonates: The Special Role of Ceftazidime/Avibactam and Ceftolozane/Tazobactam" Medicines 12, no. 3: 17. https://doi.org/10.3390/medicines12030017
APA StyleDermitzaki, N., Balomenou, F., Serbis, A., Atzemoglou, N., Giaprou, L., Baltogianni, M., & Giapros, V. (2025). Multi-Drug Resistant Gram-Negative Sepsis in Neonates: The Special Role of Ceftazidime/Avibactam and Ceftolozane/Tazobactam. Medicines, 12(3), 17. https://doi.org/10.3390/medicines12030017