Could Contamination Avoidance Be an Endpoint That Protects the Environment? An Overview on How Species Respond to Copper, Glyphosate, and Silver Nanoparticles
Abstract
:1. Ecotoxicology and Avoidance in a Chemically Heterogeneous Landscape
2. Chemicals Used as Reference Contaminants
3. Avoidance Assays with Ag-NPs
4. Sensitivity Profile by Biological Groups: Definition
5. The Hazard Concentration (HC5) Based on the Species Sensitive Distribution (SSD)
6. Results: Sensitivity Profile by Biological Group
6.1. Copper
6.2. Glyphosate
6.3. Silver Nanoparticles
7. Sensitivity of Avoidance Response According to SSD and HC5
8. Avoidance Response: Relevance and Final Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Truhaut, R. Ecotoxicology—A new branch of toxicology: A general survey of its aims methods, and prospects. In Ecological Toxicology Research; McIntyre, A.D., Mills, C.F., Eds.; Springer: Boston, MA, USA, 1975. [Google Scholar]
- U.S. EPA—U.S. Environmental Protection Agency. Methods for Acute Toxicity Test with Fish, Macroinvertebrates, and Amphibians; National Environmental Research Center: Corvallis, OR, USA, 1975; p. 62.
- Roberts, M.H.; Warinner, J.E.; Tsai, C.F.; Wright, D.; Cronin, L.E. Comparison of estuarine species sensitivities to three toxicants. Arch. Environ. Contam. Toxicol. 1982, 11, 681–692. [Google Scholar] [CrossRef]
- Cairns, J., Jr. Are single species toxicity tests alone adequate for estimating environmental hazard? Environ. Monitor. Assess. 1984, 4, 259–273. [Google Scholar] [CrossRef]
- Cairns, J.; Niederlehner, B.R. Problems associated with selecting the most sensitive species for toxicity testing. Hydrobiologia 1987, 153, 87–94. [Google Scholar] [CrossRef]
- Posthuma, L.; Traas, T.P.; Suter, G.W., II (Eds.) General introduction and species sensitive distribution. In Species Sensitive Distribution in Ecotoxicology; Lewis Publishers: Boca Raton, FL, USA, 2002; pp. 3–10. [Google Scholar]
- Koivisto, S. Is Daphnia magna an ecological representative zooplankton species in toxicity tests? Environ. Pollut. 1995, 90, 263–267. [Google Scholar] [CrossRef]
- Gray, J.S. Do bioassays adequately predict ecological effects of pollutants? In Environmental Bioassay Techniques and Their Application; Springer: Berlin/Heidelberg, Germany, 1989; Volume 188–189, pp. 397–402. [Google Scholar]
- Lacher, T.E., Jr.; Goldstein, M.I. Tropical ecotoxicology: Status and needs. Environ. Toxicol. Chem. 1997, 16, 100–111. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, P.; Wang, P.; Yang, J.; Baird, D.J. Omics advances in ecotoxicology. Environ. Sci. Technol. 2018, 52, 3842–3851. [Google Scholar] [CrossRef]
- Van den Brink, P.J. Ecological risk assessment: From book-keeping to chemical stress ecology. Environ. Sci. Technol. 2008, 42, 8999–9004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, V.E.; Schmolke, A.; Accolla, C.; Grimm, V. A plea for consistency, transparency, and reproducibility in risk assessment effect models. Environ. Toxicol. Chem. 2019, 38, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Jutfelt, F.; Sundin, J.; Raby, G.D.; Krang, A.-S.; Clark, T.D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 2017, 8, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Lopes, I.; Baird, D.J.; Ribeiro, R. Avoidance of copper contamination by field populations of Daphnia longispina. Environ. Toxicol. Chem. 2004, 23, 1702–1708. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.V.M.; Roque, D.; Blasco, J.; Ribeiro, R.; Moreira-Santos, M.; Toribio, A.; Aguirre, E.; Barro, S. Stress-driven emigration in a complex scenario of habitat disturbance: The heterogeneous multi-habitat assay system (HeMHAS). Sci. Total Environ. 2018, 644, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Vera-Vera, V.C.; Guerrero, F.; Blasco, J.; Araújo, C.V.M. Habitat selection response of the freshwater shrimp Atyaephyra desmarestii experimentally exposed to heterogeneous copper contamination scenarios. Sci. Total Environ. 2019, 662, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.V.M.; Laissaoui, A.; Silva, D.C.V.R.; Ramos-Rodríguez, E.; González-Ortegón, E.; Espíndola, E.L.G.; Baldó, F.; Mena, F.; Parra, G.; Blasco, J.; et al. Not only toxic but repellent: What can organisms’ responses tell us about contamination and what are the ecological consequences when they flee from an environment. Toxics 2020, 8, 118. [Google Scholar] [CrossRef]
- Blasco, J.; Araújo, C.V.M.; Ribeiro, R.; Moreira-Santos, M. Do contaminants influence the spatial distribution of aquatic species? How new perspectives on ecotoxicological assays might answer this question. Environ. Toxicol. Chem. 2020, 39, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Loreau, M.; Mouquet, N.; Holt, R.D. Meta-ecosystems: A theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 2003, 6, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Moe, S.J.; De Schamphelaere, K.; Clements, W.H.; Sorensen, M.T.; Van den Brink, P.J.; Liess, M. Combined and interactive effects of global climate change and toxicants on populations and communities. Environ. Toxicol. Chem. 2013, 32, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, C.V.M.; Blasco, J. Spatial avoidance as a response to contamination by aquatic organisms in non-forced, multi-compartmented exposure systems: A complementary approach to the behavioral response. Environ. Toxicol. Chem. 2019, 38, 312–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanderson, H.; Solomon, K. Contaminants of emerging concern challenge ecotoxicology. Environ. Toxicol. Chem. 2009, 28, 1359. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Moreira-Santos, M.; Ribeiro, R. Active and passive spatial avoidance by aquatic organisms from environmental stressors: A complementary perspective and a critical review. Environ. Int. 2016, 92, 405–415. [Google Scholar] [CrossRef]
- Moreira-Santos, M.; Ribeiro, R.; Araújo, C.V.M. What if aquatic animals move away from pesticide-contaminated habitats before suffering adverse physiological effects? A critical review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 989–1025. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Gómez, L.; Silva, D.C.V.R.; Pintado-Herrera, M.G.; Lara-Martín, P.A.; Hampel, M.; Blasco, J. Risk of triclosan based on avoidance by the shrimp Palaemon varians in a heterogeneous contamination scenario: How sensitive is this approach? Chemosphere 2019, 235, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Nor, Y.M. Ecotoxicity of copper to aquatic biota: A review. Environ. Res. 1987, 43, 274–282. [Google Scholar] [CrossRef]
- Lee, D.R. Reference toxicants in quality control of aquatic bioassays. In Aquatic Invertebrate Bioassays, ASTM STP 715; Buikema, A.L., Jr., Cairns, J., Jr., Eds.; American Society for Testing Materials: West Conshohocken, PA, USA, 1980; pp. 188–199. [Google Scholar]
- Annett, R.; Habibi, H.R.; Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 2014, 34, 458–479. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Environ. Chem. Lett. 2018, 16, 401–426. [Google Scholar] [CrossRef]
- Blaser, S.A.; Scheringer, M.; MacLeod, M.; Hungerbühler, K. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 2008, 390, 396–409. [Google Scholar] [CrossRef]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sendra, M.; Yeste, M.P.; Gatica, J.M.; Moreno-Garrido, I.; Blasco, J. Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere 2017, 179, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Blasco, J.; Araújo, C.V.M. Spatial avoidance, inhibition of recolonization and population isolation in zebrafish (Danio rerio) caused by copper exposure under a non-forced approach. Sci. Total Environ. 2019, 653, 504–511. [Google Scholar] [CrossRef]
- Rosa, R.; Moreira-Santos, M.; Lopes, I.; Picado, A.; Mendonça, F.; Ribeiro, R. Development and sensitivity of a 12-h laboratory test with Daphnia magna Straus based on avoidance of pulp mill effluents. Bull. Environ. Contam. Toxicol. 2008, 81, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, R.; Materatski, P.; Moreira-Santos, M.; Sousa, J.P.; Ribeiro, R. A scaled-up system to evaluate zooplankton spatial avoidance and the population immediate decline concentration. Environ. Toxicol. Chem. 2012, 31, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- Venâncio, C.; Ribeiro, R.; Lopes, I. Active emigration from climate change-caused seawater intrusion into freshwater habitats. Environ. Pollut. 2020, 258, 113805. [Google Scholar] [CrossRef] [PubMed]
- Mena, F.; González-Ortegón, E.; Solano, K.; Araújo, C.V.M. The effect of the insecticide diazinon on the osmoregulation and the avoidance response of the white leg shrimp (Penaeus vannamei) is salinity dependent. Ecotoxicol. Environ. Saf. 2020, 206, 111364. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.A.; Araújo, C.V.M.; da Silva Pinto, T.J.; da Silva, L.C.M.; Goulart, B.V.; Viana, N.P.; Montagner, C.C.; Fernandes, M.N.; Espindola, E.L.G. Fipronil and 2, 4-D effects on tropical fish: Could avoidance response be explained by changes in swimming behavior and neurotransmission impairments? Chemosphere 2021, 263, 127972. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Moreira-Santos, M.; Ribeiro, R. Stressor-driven emigration and recolonisation patterns in disturbed habitats. Sci. Total Environ. 2018, 643, 884–889. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; González-Ortegón, E.; Pintado-Herrera, M.G.; Biel-Maeso, M.; Lara-Martín, P.A.; Tovar-Sánchez, A.; Blasco, J. Disturbance of ecological habitat distribution driven by a chemical barrier of domestic and agricultural discharges: An experimental approach to test habitat fragmentation. Sci. Total Environ. 2019, 651, 2820–2829. [Google Scholar] [CrossRef]
- Raimondo, S.; Vivian, D.N.; Delos, C.; Barron, M.G. Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment. Environ. Toxicol. Chem. 2008, 27, 2599–2607. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, B. Species sensitivity distribution for chlorpyrifos to aquatic organisms: Model choice and sample size. Ecotoxicol. Environ. Saf. 2016, 125, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, W.R.; Cotsifas, J.S.; Ogle, R.S.; DePalma, S.G.; Smith, D.S. A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations. Environ. Toxicol. Chem. 2010, 29, 311–319. [Google Scholar] [CrossRef]
- Rathnayake, I.V.N.; Megharaj, M.; Krishnamurti, G.S.R.; Bolan, N.S.; Naidu, R. Heavy metal toxicity to bacteria—Are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 2013, 90, 1195–1200. [Google Scholar] [CrossRef]
- Hooper, M.J.; Ankley, G.T.; Cristol, D.A.; Maryoung, L.A.; Noyes, P.D.; Pinkerton, K.E. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environ. Toxicol. Chem. 2013, 32, 32–48. [Google Scholar] [CrossRef] [Green Version]
Classification of the Effect | Ecotoxicological Responses |
---|---|
Mortality/Immobilization | Death; immobilization |
Biochemical | Biomarkers of exposure and effects, enzymes, proteins |
Physiological | Respiration rate; heartbeat |
Feeding | Ingestion; excretion; post-exposure feeding |
Growth/Reproduction | Increase in the body size; population growth (cell numbers) |
Morphological | Any morphological alterations |
Behavioral | Changes in the movement patterns; all the effects related to swimming; fleeing from a predator; sinking; burrowing |
Spatial avoidance | Avoidance behavior related to the habitat selection response measured exclusively in multi-compartmented exposure systems |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcívar, M.A.; Sendra, M.; Silva, D.C.V.R.; González-Ortegón, E.; Blasco, J.; Moreno-Garrido, I.; Araújo, C.V.M. Could Contamination Avoidance Be an Endpoint That Protects the Environment? An Overview on How Species Respond to Copper, Glyphosate, and Silver Nanoparticles. Toxics 2021, 9, 301. https://doi.org/10.3390/toxics9110301
Alcívar MA, Sendra M, Silva DCVR, González-Ortegón E, Blasco J, Moreno-Garrido I, Araújo CVM. Could Contamination Avoidance Be an Endpoint That Protects the Environment? An Overview on How Species Respond to Copper, Glyphosate, and Silver Nanoparticles. Toxics. 2021; 9(11):301. https://doi.org/10.3390/toxics9110301
Chicago/Turabian StyleAlcívar, M. Antonella, Marta Sendra, Daniel C. V. R. Silva, Enrique González-Ortegón, Julián Blasco, Ignacio Moreno-Garrido, and Cristiano V. M. Araújo. 2021. "Could Contamination Avoidance Be an Endpoint That Protects the Environment? An Overview on How Species Respond to Copper, Glyphosate, and Silver Nanoparticles" Toxics 9, no. 11: 301. https://doi.org/10.3390/toxics9110301