Methods for Assessing Basic Particle Properties and Cytotoxicity of Engineered Nanoparticles
Abstract
:1. Introduction
2. Toxicity Assessment Methods for ENPs
2.1. Nanoparticle Synthesis and Dispersion Methods
2.2. Cytoxicity Assays
2.2.1. MTT Assay
2.2.2. LDH Assay
2.2.3. Other Assays
3. Measuring Health-Related Properties of ENPs
3.1. Microscopy Analysis
3.2. Measuring ENPs in the Air
3.3. Measuring ENPs in the Aquatic Environment
4. Conclusions
Conflicts of Interest
References
- Bhushan, B. Springer Handbook of Nanotechnology; Springer: Berlin Heidelberg, Germany, 2010. [Google Scholar]
- Schmid, G. Nanoparticles: From Theory to Application; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Woodrow Wilson Int. Center for Scholars. Nanotechnology Consumer Products Inventory. 2011. Available online: http://www.nanotechproject.org/inventories/consumer/ (accessed on 30 December 2013).
- O’Brien, N.; Cummins, E. Recent developments in nanotechnology and risk assessment strategies for addressing public and environmental health concerns. Hum. Ecol. Risk Assess. 2008, 14, 568–592. [Google Scholar] [CrossRef]
- Madl, A.K.; Pinkerton, K.E. Health effects of inhaled engineered and incidental nanoparticles. Crit. Rev. Toxicol. 2009, 39, 629–658. [Google Scholar] [CrossRef]
- Aschberger, K.; Micheletti, C.; Sokull-Kluettgen, B.; Christensen, F.M. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—Lessons learned from four case studies. Environ. Int. 2011, 37, 1143–1156. [Google Scholar]
- Maynard, A.; Rejeski, D. Too small to overlook. Nature 2009, 460, 174. [Google Scholar] [CrossRef]
- Oberdorster, G.; Stone, V.; Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 2007, 1, 2–25. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Westerhoff, P.; Hristovski, K.; Crittenden, J.C. Stability of commercial metal oxide nanoparticles in water. Water Res. 2008, 42, 2204–2212. [Google Scholar] [CrossRef]
- McMurry, P.H. A review of atmospheric aerosol measurements. Atmos. Environ. 2000, 34, 1959–1999. [Google Scholar]
- Tiede, K.; Boxall, A.B.A.; Tear, S.P.; Lewis, J.; David, H.; Hassellöv, M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. 2008, 25, 795–821. [Google Scholar] [CrossRef]
- Card, J.W.; Magnuson, B.A. A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int. J. Toxicol. 2010, 29, 402–410. [Google Scholar] [CrossRef]
- Kestell, A.E.; DeLorey, G.T. Nanoparticles: Properties, Classification, Characterization, and Fabrication; Nova Science Publishers: Hauppauge, NY, USA, 2010. [Google Scholar]
- Bonnemann, H.; Richards, R.M. Nanoscopic metal particles—Synthetic methods and potential applications. Eur. J. Inorg. Chem. 2001, 2001, 2455–2480. [Google Scholar] [CrossRef]
- Biskos, G.; Vons, V.; Yurteri, C.U.; Schmidt-Ott, A. Generation and sizing of particles for aerosol-based nanotechnology. Kona Powder Part. J. 2008, 26, 13–35. [Google Scholar]
- Bihari, P.; Vippola, M.; Schultes, S.; Praetner, M.; Khandoga, A.G.; Reichel, C.A.; Coester, C.; Tuomi, T.; Rehberg, M.; Krombach, F. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part. Fibre Toxicol. 2008, 5, 14. [Google Scholar] [CrossRef]
- Magdolenova, Z.; Bilanicova, D.; Pojana, G.; Fjellsbo, L.M.; Hudecova, A.; Hasplova, K.; Marcomini, A.; Dusinska, M. Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. Environ. Monit. 2012, 14. [Google Scholar] [CrossRef]
- Grosse, S.; Evje, L.; Syversen, T. Silver nanoparticle-induced cytotoxicity in rat brain endothelial cell culture. Toxicol. In Vitro 2013, 27, 305–313. [Google Scholar]
- Fadeel, B.; Pietroiusti, A.; Shvedova, A. Adverse Effects of Engineered Nanomaterials: Exposure, Toxicology, and Impact on Human Health, 1st ed.; Academic Press: Waltham, MA, USA, 2012. [Google Scholar]
- Muller, K.H.; Motskin, M.; Philpott, A.J.; Routh, A.F.; Shanahan, C.M.; Duer, M.J.; Skepper, J.N. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles inhuman monocyte-derived macrophages. Biomaterials 2014, 35, 1074–1088. [Google Scholar] [CrossRef]
- Hogan, C.J.; Kettleson, E.M.; Lee, M.-H.; Ramaswami, B.; Angenent, L.T.; Biswas, P. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J. Appl. Microbiol. 2005, 99, 1422–1434. [Google Scholar] [CrossRef]
- Bakand, S.; Winder, C.; Khalil, C.; Hayes, A. Toxicity assessment of industrial chemicals and airborne contaminants: Transition from in vivo to in vitro test methods: A review. Inhal. Toxicol. 2005, 17, 775–787. [Google Scholar] [CrossRef]
- Weyermann, J.; Lochmann, D.; Zimmer, A. A practical note on the use of cytotoxicity assays. Int. J. Pharm. 2005, 288, 369–376. [Google Scholar] [CrossRef]
- Monteiro-Riviere, N.A.; Inman, A.O.; Zhang, L.W. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 2009, 234, 222–235. [Google Scholar]
- L’Azou, B.; Jorly, J.; On, D.; Sellier, E.; Moisan, F.; Fleury-Feith, J.; Cambar, J.; Brochard, P.; Ohayon-Courtes, C. In vitro effects of nanoparticles on renal cells. Part. Fibre Toxicol. 2008, 5. [Google Scholar] [CrossRef]
- Sayes, C.M.; Fortner, J.D.; Guo, W.; Lyon, D.; Boyd, A.M.; Ausman, K.D.; Tao, Y.J.; Sitharaman, B.; Wilson, L.J.; Hughes, J.B.; et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004, 4, 1881–1887. [Google Scholar] [CrossRef]
- Wadhwa, S.; Rea, C.; O’Hare, P.; Mathur, A.; Roy, S.S.; Dunlop, P.S.M.; Byrne, J.A.; Burke, G.; Meenan, B.; McLaughlin, J.A. Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cells. J. Hazard. Mater. 2011, 191, 56–61. [Google Scholar] [CrossRef]
- Gutierrez-Praena, D.; Pichardo, S.; Sanchez, E.; Grilo, A.; Camean, A.M.; Jos, A. Influence of carboxylic acid functionalization on the cytotoxic effects induced by single wall carbon nanotubes on human endothelial cells (HUVEC). Toxicol. In Vitro 2011, 25, 1883–1888. [Google Scholar] [CrossRef]
- Lin, W.; Huang, Y.; Zhou, X.-D.; Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 2006, 217, 252–259. [Google Scholar] [CrossRef]
- Barillet, S.; Simon-Deckers, A.; Herlin-Boime, N.; Mayne-L’Hermite, M.; Reynaud, C.; Cassio, D.; Gouget, B.; Carriere, M. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: An in vitro study. J. Nanoparticle Res. 2010, 12, 61–73. [Google Scholar]
- Sayes, C.M.; Gobin, A.M.; Ausman, K.D.; Mendez, J.; West, J.L.; Colvin, V.L. Nano-C-60 cytotoxicity is due to lipid peroxidation. Biomaterials 2005, 26, 7587–7595. [Google Scholar] [CrossRef]
- Schrand, A.M.; Huang, H.; Carlson, C.; Schlager, J.J.; Osawa, E.; Hussain, S.M.; Dai, L. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B 2007, 111, 2–7. [Google Scholar]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Moeller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar]
- Isakovic, A.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.; Vranjes-Djuric, S.; Mirkovic, M.; Dramicanin, M.; Harhaji, L.; Raicevic, N.; Nikolic, Z.; et al. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol. Sci. 2006, 91, 173–183. [Google Scholar]
- Roberts, J.E.; Wielgus, A.R.; Boyes, W.K.; Andley, U.; Chignell, C.F. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicol. Appl. Pharmacol. 2008, 228, 49–58. [Google Scholar]
- Laurent, S.; Burtea, C.; Thirifays, C.; Häfeli, U.O.; Mahmoudi, M. Crucial ignored parameters on nanotoxicology: The importance of toxicity assay modifications and “cell vision”. PLoS One 2012, 7. [Google Scholar] [CrossRef]
- Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49. [Google Scholar] [CrossRef]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar]
- Da Silva, B.F.; Perez, S.; Gardinalli, P.; Singhal, R.K.; Mozeto, A.A.; Barcelo, D. Analytical chemistry of metallic nanoparticles in natural environments. Trac-Trends Anal. Chem. 2011, 30, 528–540. [Google Scholar] [CrossRef]
- Capannelli, G.; Castello, E.; Comite, A.; Costa, C.; Mamolini, G. Electron microscopy characterization of airborne micro- and nanoparticulate matter. J. Electron Microsc. 2011, 60, 117–131. [Google Scholar] [CrossRef]
- Lee, M.R. Transmission electron microscopy (TEM) of Earth and planetary materials: A review. Mineral. Mag. 2010, 74, 1–27. [Google Scholar] [CrossRef]
- Luo, P.; Morrison, I.; Dudkiewicz, A.; Tiede, K.; Boyes, E.; O’Toole, P.; Park, S.; Boxall, A.B. Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy. J. Microsc. 2013, 250, 32–41. [Google Scholar]
- Wise, M.E.; Biskos, G.; Martin, S.T.; Russell, L.M.; Buseck, P.R. Phase transitions of single salt particles studied using a transmission electron microscope with an environmental cell. Aerosol Sci. Technol. 2005, 39, 849–856. [Google Scholar]
- Rao, A.; Schoenenberger, M.; Gnecco, E.; Glatzel, T.; Meyer, E.; Braendlin, D.; Scandella, L. Characterization of Nanoparticles Using Atomic Force Microscopy. In Proceedings of the International Conference on Nanoscience and Technology; Meyer, E., Hegner, M., Gerber, C., Guntherodt, H.J., Eds.; IOP Publishing Ltd.: Bristol, UK, 2007; Volume 61, pp. 971–976. [Google Scholar]
- Agarwal, J.; Sem, G. Continuous-flow, single-particle-counting condensation nucleus counter. J. Aerosol Sci. 1980, 11, 343–357. [Google Scholar] [CrossRef]
- Schmidt-Ott, A.; Kauffeldt, T. Assessment of Particulate Air Pollution by New Sensor Concepts. In Recent Developments in Measurement and Assessment of Air Pollution; VDI-Berichte: Dusseldorf, Germany, 1999; Volume 1443, pp. 517–528. [Google Scholar]
- Knutson, E.O.; Whitby, K.T. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 1975, 6, 443–451. [Google Scholar] [CrossRef]
- Flagan, R.C. On differential mobility analyzer resolution. Aerosol Sci. Technol. 1999, 30, 556–570. [Google Scholar] [CrossRef]
- Wang, S.; Flagan, R. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 1990, 13, 230–240. [Google Scholar] [CrossRef]
- Rader, D.; Mcmurry, P. Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. J. Aerosol Sci. 1986, 17, 771–787. [Google Scholar] [CrossRef]
- Schmidtott, A. Insitu measurement of the fractal dimensionality of ultrafine aerosol-particles. Appl. Phys. Lett. 1998, 52, 954–956. [Google Scholar] [CrossRef]
- Biskos, G.; Russell, L.M.; Buseck, P.R.; Martin, S.T. Nanosize effect on the hygroscopic growth factor of aerosol particles. Geophys. Res. Lett. 2006. [Google Scholar] [CrossRef]
- Fissan, H.; Pui, D.Y.H. Characterization of nanoparticles in the gas-borne state and on surface. Nanostructured Mater. 1997, 9, 1–8. [Google Scholar]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering; Dover Publications: Mineola, NY, USA, 2000. [Google Scholar]
- Pecora, R. Dynamic light scattering measurement of nanometer particles in liquids. J. Nanoparticle Res. 2000, 2, 123–131. [Google Scholar] [CrossRef]
- Filella, M.; Zhang, J.; Newman, M.E.; Buffle, J. Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: Capabilities and limitations. Colloids Surf. Physicochem. Eng. Asp. 1997, 120, 27–46. [Google Scholar] [CrossRef]
- Montes-Burgos, I.; Walczyk, D.; Hole, P.; Smith, J.; Lynch, I.; Dawson, K. Characterisation of nanoparticle size and state prior to nanotoxicological studies. J. Nanoparticle Res. 2010, 12, 47–53. [Google Scholar] [CrossRef]
- Domingos, R.F.; Baalousha, M.A.; Ju-Nam, Y.; Reid, M.M.; Tufenkji, N.; Lead, J.R.; Leppard, G.G.; Wilkinson, K.J. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 2009, 43, 7277–7284. [Google Scholar] [CrossRef]
- Wahlund, K.-G.; Nilsson, L. Flow FFF—Basics and Key Applications. In Field-Flow Fractionation in Biopolymer Analysis; Williams, S.K.R., Caldwell, K.D., Eds.; Springer: Vienna, Austria, 2012; pp. 1–21. [Google Scholar]
- Hassellöv, M.; von der Kammer, F.; Beckett, R. Characterisation of Aquatic Colloids and Macromolecules by Field-Flow Fractionation. In Environmental Colloids and Particles; Wilkinson, K.J., Lead, J.R., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2007; pp. 223–276. [Google Scholar]
- Runyon, J.R.; Ulmius, M.; Nilsson, L. A perspective on the characterization of colloids and macromolecules using asymmetrical flow field-flow fractionation. Colloids Surf. Physicochem. Eng. Asp. 2014, 442, 25–33. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kalantzi, O.-I.; Biskos, G. Methods for Assessing Basic Particle Properties and Cytotoxicity of Engineered Nanoparticles. Toxics 2014, 2, 79-91. https://doi.org/10.3390/toxics2010079
Kalantzi O-I, Biskos G. Methods for Assessing Basic Particle Properties and Cytotoxicity of Engineered Nanoparticles. Toxics. 2014; 2(1):79-91. https://doi.org/10.3390/toxics2010079
Chicago/Turabian StyleKalantzi, Olga-Ioanna, and George Biskos. 2014. "Methods for Assessing Basic Particle Properties and Cytotoxicity of Engineered Nanoparticles" Toxics 2, no. 1: 79-91. https://doi.org/10.3390/toxics2010079
APA StyleKalantzi, O.-I., & Biskos, G. (2014). Methods for Assessing Basic Particle Properties and Cytotoxicity of Engineered Nanoparticles. Toxics, 2(1), 79-91. https://doi.org/10.3390/toxics2010079