A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure
Abstract
1. Introduction
1.1. The Use of Antibiotics in Global Animal Husbandry
1.2. Environmental Dissemination of Antibiotic Resistance Genes in Livestock Manure
1.3. Environmental Transmission and Health Impacts of Antibiotic Resistance Genes
2. Degradation of ARGs During the Composting Process of Livestock Waste
2.1. Composting Principle
2.2. The Basic Process of ARG Removal During Composting
2.2.1. Heating Phase
2.2.2. Thermophilic Phase
2.2.3. Cooling-Down Period
2.2.4. Maturity Period
2.3. ARG Removal Characteristics Under Different Composting Treatments
2.3.1. Aerobic Composting Method
2.3.2. Anaerobic Composting Method
2.3.3. Natural Composting Method
2.3.4. Comparison of Three Composting Methods in Degrading ARGs
3. Research on the Degradation Mechanism of ARGs During Aerobic Composting
3.1. High Temperature Inactivates the Host and Damages DNA
3.2. Succession of Communities Carrying Resistance Genes and Those Not Carrying Resistance Genes
3.3. Inhibiting Gene Horizontal Transfer
4. Influencing Factors of Degradation of ARGs During Aerobic Composting
4.1. Key Physicochemical Parameters of Compost
4.2. Use of Additives
4.3. Heavy Metal Residue
5. Environmental Risk Assessment of ARGs in Composted Organic Fertilizer
5.1. Conventional Safety Evaluation of Organic Fertilizers
5.2. Risk Assessment Based on ARG Residue
6. Current Challenges and Future Research Directions
- (1)
- Due to the thermotolerance of host bacteria, the abundance of certain ARGs remains unchanged or even increases after aerobic composting, leading to low removal efficiency of persistent ARGs. Ultra-high-temperature composting (UHTC) can decompose thermotolerant bacteria; optimal additives can be identified through experimental testing for the targeted removal of these bacteria.
- (2)
- High temperatures during aerobic composting release eARGs, whose concentrations increase during the maturation phase. Pathogens may uptake eARGs, generating new drug-resistant strains and causing secondary contamination. It is necessary to identify or develop eARG inactivators to specifically block eARG dissemination; validate the DNA cleavage efficiency of nanoscale zero-valent iron to reduce eARG abundance; and investigate bacteriophage lysins for targeted clearance of drug-resistant hosts.
- (3)
- The optimal temperature–duration combination for UHTC remains unclear: sulfonamide resistance gene (sulI) removal rates differ by 40% between 70 °C and 90 °C, yet the ideal temperature–duration parameters are undefined. A temperature–duration coupling model should be established to determine optimal degradation conditions for sulI and vancomycin resistance gene (vanA), such as maintaining 80 °C for 120 h.
- (4)
- Bacteriophages carry tetracycline resistance genes; however, research on viral communities in composting remains limited. Critical mechanisms underlying the roles of viruses in composting constitute a knowledge gap, necessitating comprehensive analyses that integrate metagenomics and viromics. Viromics should be employed to track associations between bacteriophages and ARGs in compost, thereby elucidating the interaction mechanisms between viruses and ARGs.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef] [PubMed]
- Manaia, C.M. Assessing the risk of antibiotic resistance transmission from the environment to humans: Non-direct proportionality between abundance and risk. Trends Microbiol. 2017, 25, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Vikesland, P.J.; Pruden, A.; Alvarez, P.J.J.; Aga, D.; Bürgmann, H.; Li, X.D.; Manaia, C.M.; Nambi, I.; Wigginton, K.; Zhang, T.; et al. Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. J. Environ. Sci. Technol. 2017, 51, 13061–13069. [Google Scholar] [CrossRef] [PubMed]
- Larrañaga, O.; Brown-Jaque, M.; Quiros, P.; Gómez-Gómez, C.; Blanch, A.R.; Rodríguez-Rubio, L.; Muniesa, M. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Environ. Int. 2018, 115, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, S.; Wen, Q.; Zheng, J. Effect of aeration rate on composting of penicillin mycelial dregs. J. Environ. Sci. 2015, 37, 172–178. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, M.; Johansen, A.; Cheng, D.; Xue, J.; Feng, Y.; Fan, S.; Li, Z. Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. Sci. Total Environ. 2023, 870, 161785. [Google Scholar] [CrossRef]
- Tong, Z.; Liu, F.; Sun, B.; Tian, Y.; Zhang, J.; Duan, J.; Bi, W.; Qin, J.; Xu, S. Effect of biochars with different particle sizes on fates of antibiotics and antibiotic resistance genes during composting of swine manure. Bioresour. Technol. 2023, 370, 128542. [Google Scholar] [CrossRef]
- Han, Y.; Wang, H.; Wu, J.; Hu, Y.; Wen, H.; Yang, Z.; Wu, H. Hydrogen peroxide treatment mitigates antibiotic resistance gene and mobile genetic element propagation in mariculture sediment. Environ. Pollut. 2023, 328, 121652. [Google Scholar] [CrossRef]
- You, Y.; Silbergeld, E.K. Learning from agriculture: Understanding low-dose antimicrobials as drivers of resistome expansion. Front. Microbiol. 2014, 5, 284. [Google Scholar] [CrossRef]
- Wang, X.; Ryu, D.; Houtkooper, R.H.; Auwerx, J. Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment. Bioessays 2015, 37, 1045–1053. [Google Scholar] [CrossRef]
- Rahman, S.; Hollis, A. The effect of antibiotic usage on resistance in humans and food-producing animals: A longitudinal, One Health analysis using European data. Front. Public Health 2023, 11, 170426. [Google Scholar] [CrossRef]
- Ezzariai, A.; Barret, M.; Merlina, G.; Pinelli, E.; Hafidi, M. Evaluation of the antibiotic’s effects on the physical and chemical parameters during the composting of sewage sludge with palm wastes in a bioreactor. Waste Manag. 2017, 68, 388–397. [Google Scholar] [CrossRef]
- Ji, X.; Shen, Q.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.; Wu, M. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012, 235, 178–185. [Google Scholar] [CrossRef]
- Tang, X.; Lou, C.; Wang, S.; Lu, Y.; Liu, M.; Hashmi, M.Z.; Liang, X.; Li, Z.; Liao, Y.; Qin, W.; et al. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biol. Biochem. 2015, 90, 179–187. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Guo, W.; Xi, B.; Wang, W. Antibiotics in the aquatic environments: A review of lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Zhao, R.; Qiu, S.; Wang, L.; Song, H. Antibiotics crisis in China. Science 2015, 348, 1100–1101. [Google Scholar] [CrossRef]
- Yang, F.; Han, B.; Gu, Y.; Zhang, K. Swine liquid manure: A hotspot of mobile genetic elements and antibiotic resistance genes. Sci. Rep. 2020, 10, 15037. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, H.; Yang, H.; Wu, J.; Chen, Z.; Jiang, H.; Liu, M.; Liu, Q.; Huang, L.; Gao, J.; et al. Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance. Microbiome 2022, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, H.; Shi, R.; Lv, J.; Li, B.; Yang, F.; Zheng, X.; Xu, J. Antibiotic resistance genes in different animal manures and their derived organic fertilizer. Environ. Sci. Eur. 2020, 32, 102. [Google Scholar] [CrossRef]
- Qiu, T.; Huo, L.; Guo, Y.; Gao, M.; Wang, G.; Hu, D.; Li, C.; Wang, Z.; Liu, G.; Wang, X. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost. Environ. Microbiom 2022, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Qiu, T.; Guo, Y.; Gao, H.; Zhang, L.; Gao, M. Aerosolization behavior of antimicrobial resistance in animal farms: A field study from feces to fine particulate matter. Front. Microbiol. 2023, 14, 1175265. [Google Scholar] [CrossRef]
- Wang, H.; Du, D.; Ding, Y.; Zhang, K.; Zhi, S. Removal of antibiotic resistance genes from animal wastewater by ecological treatment technology based on plant absorption. Int. J. Environ. Res. Public Health 2023, 20, 4357. [Google Scholar] [CrossRef]
- Zhu, D.; Giles, M.; Yang, X.R.; Daniell, T.; Neilson, R.; Zhu, Y.G. Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes. Environ. Pollut. 2019, 252, 227–235. [Google Scholar] [CrossRef]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563, 366–376. [Google Scholar] [CrossRef]
- Guo, X.; Song, R.; Lu, S.; Liu, X.; Chen, J.; Wan, Z.; Bi, B. Multi-media occurrence of antibiotics and antibiotic resistance genes in East Dongting Lake. Front. Environ. Sci. 2022, 10, 66332. [Google Scholar] [CrossRef]
- Zhao, R.; Feng, J.; Liu, J.; Fu, W.; Li, X.; Li, B. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics. Water Res. 2019, 151, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Amangelsin, Y.; Semenova, Y.; Dadar, M.; Aljofan, M.; Bjørklund, G. The impact of tetracycline pollution on the aquatic environment and removal strategies. Antibiotic 2023, 12, 440. [Google Scholar] [CrossRef]
- Wang, C.; Song, Y.; Liang, J.; Wang, Y.; Zhang, D.; Zhao, Z. Antibiotic resistance genes are transferred from manure-contaminated water bodies to the gut microbiota of animals through the food chain. Environ. Pollut. 2024, 363, 125087. [Google Scholar] [CrossRef]
- Li, S.; Ondon, B.S.; Ho, S.H.; Li, F. Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. Environ Res. 2023, 219, 115132. [Google Scholar] [CrossRef]
- Yuan, X.X.; Liang, J.Y.; Fan, L.X.; Wang, L.; Dong, Y.; Zhao, S. Effects of manure application on source and transport of antibiotic-resistant genes in soil and their affecting factors. Acta Pedol. Sin. 2020, 57, 36–47. [Google Scholar]
- Delgado-Baquerizo, M.; Hu, H.W.; Maestre, F.T.; Guerra, C.A.; Eisenhauer, N.; Eldridge, D.J.; Zhu, Y.G.; Chen, Q.L.; Trivedi, P.; Du, S.; et al. The global distribution and environmental drivers of the soil antibiotic resistome. Microbiome. 2022, 10, 219. [Google Scholar] [CrossRef]
- Sun, J.; Jin, L.; He, T.; Wei, Z.; Liu, X.; Zhu, L.; Li, X. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. Sci. Total Environ. 2020, 740, 140001. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Zheng, S.; Kai, Z.; Jin, T.; Shi, R.; Huang, H.; Zheng, X. Effects of wastewater treatment and manure application on the dissemination of antimicrobial resistance around swine feedlots. J. Clean. Prod. 2021, 280, 123794. [Google Scholar] [CrossRef]
- Chen, B.; Yuan, K.; Chen, X.; Yang, Y.; Zhang, T.; Wang, Y.; Luan, T.; Zou, S.; Li, X. Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the Tibetan environment. Environ. Sci. Technol. 2016, 50, 6670–6679. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Lv, Z.; Zhang, Z.; Han, Y.; Liu, Z.; Zhang, H. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: Occurrence, contamination, and transmission. Toxics 2023, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Ocaña, E.R.; Abendroth, C.; Domínguez, I.C.; Sánchez, A.; Dornack, C.J.W.M. Life cycle assessment of biowaste and green waste composting systems: A review of applications and implementation challenges. Waste Manag. 2023, 171, 350–364. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in soil and water in China—A systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar] [CrossRef]
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef]
- Gao, X.; Shao, M.; He, X.; Ouyang, F.; Shang, D.; Li, J. Distribution of airborne antibiotic resistance genes in wastewater treatment plants. Asian J. Ecotoxicol. 2015, 10, 89–94. [Google Scholar]
- Liang, Z.; Yu, Y.; Ye, Z.; Li, G.; Wang, W.; An, T. Pollution profiles of antibiotic resistance genes associated with airborne opportune istic pathogens from the typical area, Pearl River Estuary and their exposure risk to humans. Environ. Int. 2020, 143, 105934. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, Q.; Lei, C.; Lu, T.; Qian, H. Atmospheric antibiotic resistome driven by air pollutants. Sci. Total Environ. 2023, 902, 165942. [Google Scholar] [CrossRef]
- Xie, J.W.; Jin, L.; Luo, X.S.; Zhao, Z.; Li, X.D. Seasonal disparities in airborne bacteria and associated antibiotic resistance genes in PM2.5 between urban and rural sites. Environ. Sci. Technol. Lett. 2018, 5, 74–79. [Google Scholar] [CrossRef]
- Sanganyado, E.; Gwenzi, W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci. Total Environ. 2019, 669, 785–797. [Google Scholar] [CrossRef]
- Wang, F.H.; Qiao, M.; Chen, Z.; Su, J.Q.; Zhu, Y.G. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J. Hazard. Mater. 2015, 299, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Chen, Q.; Chen, S.; Zhu, Y.G. Does organically produced lettuce harbor a higher abundance of antibiotic resistance genes than conventionally produced lettuce? Environ. Int. 2017, 98, 152–159. [Google Scholar] [CrossRef]
- Marti, R.; Scott, A.; Tien, Y.C.; Murray, R.; Sabourin, L.; Zhang, Y.; Topp, E. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Appl. Environ. Microbiol. 2013, 79, 5701–5709. [Google Scholar] [CrossRef] [PubMed]
- Ling, A.L.; Pace, N.R.; Hernandez, M.T.; LaPara, T.M. Tetracycline resistance and class 1 integron genes associated with indoor and outdoor aerosols. Environ. Sci. Technol. 2013, 47, 4046–4052. [Google Scholar] [CrossRef]
- Fang, H.; Wang, H.; Cai, L.; Yu, Y. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by the metagenomic survey. Environ. Sci. Technol. 2015, 49, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, K.J.; Reyes, A.; Wang, B.; Selleck, E.M.; Sommer, M.O.; Dantas, G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337, 1107–1111. [Google Scholar] [CrossRef]
- Graham, D.W.; Knapp, C.W.; Christensen, B.T.; McCluskey, S.; Dolfing, J. The appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci. Rep. 2016, 6, 21550. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Abdellah, Y.A.Y.; Shi, Z.J.; Sun, S.S.; Luo, Y.S.; Yang, X.; Hou, W.T.; Wang, R.L. An assessment of composting conditions, humic matters formation and product maturity in response to different additives: A meta-analysis. J. Clean. Prod. 2022, 366, 132953. [Google Scholar] [CrossRef]
- Raut, M.P.; William, S.P.; Bhattacharyya, J.K.; Chakrabarti, T.; Devotta, S. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste–a compost maturity analysis perspective. Bioresour. Technol. 2008, 99, 6512–6519. [Google Scholar] [CrossRef]
- Mahongnao, S.; Sharma, P.; Ahamad, A.; Dohare, N.; Dhamija, N.; Mangla, A.G.; Nanda, S. Characterization of the Bacterial Microbiome Structure and Identification of the Beneficial Genera in the Leaf Litter Compost for its Potential Application as a Bioorganic Fertilizer. Nat. Environ. Pollut. Technol. 2024, 23, 1301–1317. [Google Scholar] [CrossRef]
- Finore, I.; Feola, A.; Russo, L.; Cattaneo, A.; Donato, P.D.; Nicolaus, B.; Poli, A.; Romano, I. Thermophilic bacteria and their thermozymes in composting processes: A review. Chem. Biol. Technol. Agric. 2023, 10, 7. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, R.; Ma, Y.; Fang, Y.; Xie, G.; Gao, X.; Xiao, Y.; Liu, J.; Fang, Z. Development of a consortium-based microbial agent beneficial to composting of distilled grain waste for Pleurotus ostreatus cultivation. Biotechnol. Biofuel 2021, 14, 242. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Y.; Zhong, G.; Huang, Y.; Jones, K.C. Comprehensive assessment of environmental emissions, fate, and risks of veterinary antibiotics in China: An environmental fate modeling approach. Environ. Sci. Technol. 2024, 58, 5534–5547. [Google Scholar] [CrossRef] [PubMed]
- Robledo-Mahón, T.; Calvo, C.; Aranda, E. Enzymatic potential of bacteria and fungi isolates from the sewage sludge composting process. Appl. Sci. 2020, 10, 7763. [Google Scholar] [CrossRef]
- Yao, D.; Han, X.; Gao, H.; Wang, B.; Fang, Z.; Li, H.; Fang, W.; Xiao, Y. Enhanced extracellular production of raw starch-degrading α-amylase in Bacillus subtilis through expression regulatory element modification and fermentation optimization. Microb. Cell Factories 2023, 22, 118. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.; Cui, P.; Liu, C.; Wu, J.; Xu, Y.; Liang, X.; Yang, Q.; Tang, X.; Zhou, S.; Liao, H.; et al. Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. Appl. Environ. Microbiol. 2024, 90, e00695-24. [Google Scholar] [CrossRef]
- Li, K.; Cao, R.; Mo, S.; Yao, R.; Ren, Z.; Wu, J. Swine manure composting with compound microbial inoculants: Removal of antibiotic resistance genes and their associations with microbial community. Front. Microbiol. 2020, 11, 592592. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Friman, V.P.; Geisen, S.; Zhao, Q.; Cui, P.; Lu, X.; Chen, Z.; Yu, Z.; Zhou, S. Horizontal gene transfer and shifts in linked bacterial community composition are associated with maintenance of antibiotic resistance genes during food waste composting. Sci. Total Environ. 2019, 660, 841–850. [Google Scholar] [CrossRef]
- Wang, M.; Lv, H.; Xu, L.; Zhang, K.; Mei, Y.; Zhang, S.; Wu, M.; Guan, Y.; Zhang, M.; Pang, H.; et al. Screening of cold-adapted strains and its effects on physicochemical properties and microbiota structure of mushroom residue composting. Fermentation 2023, 9, 354. [Google Scholar] [CrossRef]
- Ding, S.; Wu, D. Comprehensive analysis of compost maturity differences across stages and materials with statistical models. Waste Manag. 2025, 193, 250–260. [Google Scholar] [CrossRef]
- Wang, G.; Kong, Y.; Yang, Y.; Ma, R.; Li, L.; Li, G.; Yuan, J. Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure. Environ. Pollut. 2022, 303, 119174. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Wen, X.; Li, Q. Antibiotic resistance gene profiles and evolutions in composting regulated by reactive oxygen species generated via nano ZVI loaded on biochar. Sci. Total Environ. 2023, 902, 166487. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, R.; Wang, Q.P.; Zhang, Y.R.; Yang, Z.H. Sludge anaerobic digestion with high concentrations of tetracyclines and sulfonamides: Dynamics of microbial communities and change of antibiotic resistance genes. Bioresour. Technol. 2019, 276, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Proia, L.; Osorio, V. The Effect of PhACs on Biological Communities in Rivers: Field Studies. Compr. Anal. Chem. 2013, 62, 649–670. [Google Scholar]
- Lin, H.; Li, R.; Chen, Y.; Cheng, Y.; Yuan, Q.; Luo, Y. Enhanced sensitivity of extracellular antibiotic resistance genes (ARGs) to environmental concentrations of antibiotic. Chemosphere 2024, 360, 142434. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Xin, Y.; Wang, G.; Dai, X.; Yao, J. Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Bioresour. Technol. 2020, 318, 124271. [Google Scholar] [CrossRef] [PubMed]
- Sha, G.; Zhang, L.; Wu, X.; Chen, T.; Tao, X.; Li, X.; Shen, J.; Chen, G.; Wang, L. Integrated meta-omics study on rapid tylosin removal mechanism and dynamics of antibiotic resistance genes during aerobic thermophilic fermentation of tylosin mycelial dregs. Bioresour. Technol. 2022, 351, 127010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, M.M.; Wang, B.; Xin, Y.; Gao, J.; Liu, H. The effects of bio-available copper on macrolide antibiotic resistance genes and mobile elements during tylosin fermentation dregs co-composting. Bioresour. Technol. 2018, 251, 230–237. [Google Scholar] [CrossRef]
- Wang, G.; Liu, H.; Gong, P.; Wang, J.; Dai, X.; Wang, P. Insight into the evolution of antibiotic resistance genes and microbial community during spiramycin fermentation residue composting process after thermally activated peroxy disulfate pretreatment. J. Hazard. Mater. 2022, 424, 127287. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.; Gavioli, D.; Ferraz, A. Metabolite secretion, A., Fe3+-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869. Fungal Biol. 2014, 118, 935–942. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, Q.; Wen, Q.; Wu, Y.; Bao, H.; Guo, J. Microbial community competition rather than high temperature predominates ARGs elimination in swine manure composting. J. Hazard. Mater. 2022, 423, 127149. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Zheng, J.; Zhao, X.; Zhong, W. The behavior of tetracyclines and their degradation products during swine manure composting. Bioresour. Technol. 2011, 102, 5924–5931. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Bary, A.; Cogger, C.G.; Teel, A.L.; Watts, R.J. Antibiotic degradation during thermophilic composting. Water Air Soil Pollut. 2015, 226, 13. [Google Scholar] [CrossRef]
- Arikan, O.A.; Mulbry, W.; Rice, C. Management of antibiotic residues from agricultural sources: Use of composting to reduce chlorate and tetracycline residues in beef manure from treated animals. J. Hazard. Mater. 2009, 164, 483–489. [Google Scholar] [CrossRef]
- Pruden, A.; Larsson, D.J.; Amézquita, A.; Collignon, P.; Brandt, K.K.; Graham, D.W.; Lazorchak, J.M.; Suzuki, S.; Silley, P.; Snape, J.R.; et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ. Health Perspect. 2013, 121, 878–885. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Palma, P.; Sengo, J.; Morais, M.C.; Cunha-Queda, C. Quality assessment of a battery of organic wastes and composts using maturity, stability and enzymatic parameters. Waste Biomass Valorization 2016, 7, 455–465. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Yang, X.; Yang, E.; Xu, H.; Chen, Y.; Chagan, I.; Yan, J. Alternative splicing of heat shock transcription factor 2 regulates expression of the laccase gene family in response to copper in Trametes trogii. Appl. Environ. Microbiol. 2021, 87, e00055-21. [Google Scholar] [CrossRef]
- Rajeswari, M.; Bhuvaneswari, V. Production of extracellular laccase from the newly isolated Bacillus sp. PK4. Afr. J. Biotechnol. 2016, 15, 1813–1826. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Paredes, A.; Valdés, G.; Araneda, N.; Valdebenito, E.; Hansen, F.; Nuti, M. Microbial community in the composting process and its positive impact on the soil biota in sustainable agriculture. Agronomy 2023, 13, 542. [Google Scholar] [CrossRef]
- Liao, H.; Lu, X.; Rensing, C.; Friman, V.P.; Geisen, S.; Chen, Z.; Yu, Z.; Wei, Z.; Zhou, S.; Zhu, Y. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environ. Sci. Technol. 2018, 52, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qian, X.; Gu, J.; Wang, X.J.; Duan, M.L. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Sci. Rep. 2016, 6, 30237. [Google Scholar] [CrossRef]
- Xu, S.; Schwinghamer, T.; Sura, S.; Cessna, A.J.; Zvomuya, F.; Zaheer, R.; Larney, F.J.; McAllister, T.A. Degradation of antimicrobial resistance genes within stockpiled beef cattle feedlot manure. J. Environ. Sci. Health Part A 2021, 56, 1093–1106. [Google Scholar] [CrossRef]
- Guo, H.; Gu, J.; Wang, X.; Yu, J.; Nasir, M.; Peng, H.; Zhang, R.; Hu, T.; Wang, Q.; Ma, J. Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting. Environ. Pollut. 2019, 252, 1097–1105. [Google Scholar] [CrossRef]
- Westhoff, S.; Kloosterman, A.M.; van Hoesel, S.F.A.; van Wezel, G.P.; Rozen, D.E.; Wright, G.D. Competition sensing changes antibiotic production in Streptomyces. MBio 2021, 12, e02729-20. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, W.; Zhang, P.; Cai, J.; Lou, Y.; Hu, B. Microbial cooperation promotes humification to reduce antibiotic resistance genes abundance in food waste composting. Bioresour. Technol. 2022, 362, 127824. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, Z.; Zhang, Y. Evolution of physicochemical properties and bacterial community in aerobic composting of swine manure based on a patent compost tray. Bioresour. Technol. 2022, 343, 126136. [Google Scholar] [CrossRef]
- Li, Y.; Deng, X.; Zhang, N.; Shen, Z.; Li, R.; Shen, Q.; Salles, J.F. Rhizosphere suppression hinders antibiotic resistance gene (ARG) spread under bacterial invasion. One Health 2023, 16, 100481. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.M.; Kanak Sirari, K.S. Comparative study of aerobic and anaerobic composting for better understanding of organic waste management. Renew. Sustain. Energy Rev. 2018, 89, 151–167. [Google Scholar]
- Xi, B.; Zhao, X.; He, X.; Huang, C.; Tan, W.; Gao, R.; Zhang, H.; Li, D. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. Bioresour. Technol. 2016, 219, 204–211. [Google Scholar] [CrossRef]
- Yu, M.; He, X.; Liu, J.; Wang, Y.; Xi, B.; Li, D.; Zhang, H.; Yang, C. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost. Sci. Total Environ. 2018, 635, 275–283. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Zhang, L.; Zhang, X.; Cao, Y.; Xiao, R.; Bai, Z.; Ma, L. Meta-analysis addressing the potential of antibiotic resistance gene elimination through aerobic composting. Waste Manag. 2024, 182, 197–206. [Google Scholar] [CrossRef]
- Yang, X.; Sun, P.; Liu, B.; Ahmed, I.; Xie, Z.; Zhang, B. Effect of Extending High-Temperature Duration on ARG Rebound in a Co-Composting Process for Organic Wastes. Sustainability 2024, 16, 5284. [Google Scholar] [CrossRef]
- Basil, S.; Zhu, C.; Huo, Z.; Xu, S. Current Progress on Antibiotic Resistance Genes Removal by Composting in Sewage Sludge: Influencing Factors and Possible Mechanisms. Water 2024, 16, 3066. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, A.; Guo, T.; Zhu, Y.; Shao, Y. Biochar and hyperthermophiles as additives accelerate the removal of antibiotic resistance genes and mobile genetic elements during composting. Materials 2021, 14, 5428. [Google Scholar] [CrossRef]
- Ahmed, I.; Zhang, Y.; Sun, P.; Zhang, B. Co-occurrence pattern of ARGs and N-functional genes in the aerobic composting system with initial elevated temperature. J. Environ. Manag. 2023, 343, 118073. [Google Scholar] [CrossRef]
- Zheng, N.G.; Huang, N.; Wang, W.W.; Yu, M.; Chen, X.Y.; Yao, Y.L.; Wang, W.P.; Hong, C.L. Effects of thermophilic composting on antibiotic resistance genes (ARGs) of swine manure source. Huan Jing Ke Xue 2016, 37, 986–1992. [Google Scholar]
- Ma, R.; Wang, J.; Liu, Y.; Wang, G.; Yang, Y.; Liu, Y.; Kong, Y.; Lin, J.; Li, Q.; Li, G.; et al. Dynamics of antibiotic resistance genes and bacterial community during pig manure, kitchen waste, and sewage sludge composting. J. Environ. Manag. 2023, 345, 118651. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Xu, C.; Shen, Y.; Li, C.; Dong, L.; Huhe, T.; Zhi, J.; Wang, C.; Jiang, X.; Niu, D. Environmental factors induced macrolide resistance genes in composts consisting of erythromycin fermentation residue, cattle manure, and maize straw. Environ. Sci. Pollut. Res. 2023, 30, 65119–65128. [Google Scholar] [CrossRef]
- Leton, T.G.; Stentiford, E.I. Control of aeration in static pile composting. Waste Manag. Res. 1990, 8, 299–306. [Google Scholar] [CrossRef]
- Ileleji, K.E.; Martin, C.; Jones, D. Basics of Energy Production Through Anaerobic Digestion of Livestock Manure. In Bioenergy; Academic Press: Cambridge, MA, USA, 2015; pp. 287–295. [Google Scholar]
- Youngquist, C.P.; Mitchell, S.M.; Cogger, C.G. Fate of antibiotics and antibiotic resistance during digestion and composting: A review. J. Environ. Qual. 2016, 45, 537–545. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, M.; Wang, L.; Zheng, W.; Zeng, Q.; Wang, K. Comparison of the basic processes of aerobic, anaerobic, and aerobic-anaerobic coupling composting of Chinese medicinal herbal residues. Bioresour. Technol. 2023, 379, 128996. [Google Scholar] [CrossRef]
- Komilis, D.; Barrena, R.; Grando, R.L.; Vogiatzi, V.; Sánchez, A.; Font, X. A state of the art literature review on anaerobic digestion of food waste: Influential operating parameters on methane yield. Rev. Environ. Sci. Biotechnol 2017, 16, 347–360. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Pruden, A. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach. Appl. Microbiol. Biotechnol. 2015, 99, 7771–7779. [Google Scholar] [CrossRef]
- Ma, Y.; Wilson, C.A.; Novak, J.T.; Riffat, R.; Aynur, S.; Murthy, S.; Pruden, A. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons. Environ. Sci. Technol. 2011, 45, 7855–7861. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Yin, X.; Wang, N.; Chen, N.; Jiang, Y.; Deng, L.; Xiao, W.; Zhou, K.; He, Y.; Zhao, X.; et al. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. J. Environ. Manag. 2024, 370, 122766. [Google Scholar] [CrossRef]
- Bai, B.; Wang, L.; Guan, F.; Pi, H.; Wang, A.; Zhai, L. Maturity phase is crucial for removing antibiotic resistance genes during composting: Novel insights into dissolved organic matter-microbial symbiosis system. Bioresour. Technol. 2025, 431, 132607. [Google Scholar] [CrossRef]
- Li, R.; Luo, X.; Liu, Y.; Zhang, L.; Yu, W.; Cai, R. The effect of moisture content on dynamics changes of antibiotic resistance genes during sheep manure composting on Qinghai-Tibet Plateau: Insight into changes in potential host microorganisms. Environ. Technol. Innov. 2025, 39, 104251. [Google Scholar] [CrossRef]
- Li, H.C.; Duan, M.L.; Gu, J.; Zhang, Y.J.; Qian, X.; Ma, J.; Zhang, R.R.; Wang, X.J. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicol. Environ. Saf. 2017, 140, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Zhou, G.; Wang, H. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. J. Hazard. Mater. 2022, 422, 126883. [Google Scholar] [CrossRef]
- Tong, Z.; Liu, F.; Tian, Y.; Zhang, J.; Liu, H.; Duan, J.; Bi, W.; Qin, J.; Xu, S. Effect of biochar on antibiotics and antibiotic resistance genes variations during co-composting of pig manure and corn straw. Front. Bioeng. Biotechnol. 2022, 10, 960476. [Google Scholar] [CrossRef]
- Miller, J.H.; Novak, J.T.; Knocke, W.R.; Pruden, A. Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters. Front. Microbiol. 2016, 7, 263. [Google Scholar] [CrossRef]
- Xu, X.; Ma, W.; Zhou, K.; An, B.; Huo, M.; Lin, X.; Wang, L.; Wang, H.; Liu, Z.; Cheng, G.; et al. Effects of composting on the fate of doxycycline, microbial community, and antibiotic resistance genes in swine manure and broiler manure. Sci. Total Environ. 2022, 832, 155039. [Google Scholar] [CrossRef]
- Chen, X.; Wu, C.; Li, Q.; Zhou, P.; Chen, Z.; Han, Y.; Shi, J.; Zhao, Z. Effect of thermophilic microbial agents on antibiotic resistance genes and microbial communities during co-composting of pig manure and tea stalks. Sustainability 2022, 14, 12593. [Google Scholar] [CrossRef]
- Ren, S.; Lu, A.; Guo, X.; Zhang, Q.; Wang, Y.; Guo, X.; Wang, L.; Zhang, B. Effects of co-composting of lincomycin mycelia dregs with furfural slag on lincomycin degradation, degradation products, antibiotic resistance genes and bacterial community. Bioresour. Technol. 2019, 272, 83–91. [Google Scholar] [CrossRef]
- Fang, J.; Jin, L.; Meng, Q.; Shan, S.; Wang, D.; Lin, D. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via transformation. J. Hazard. Mater. 2022, 423, 127150. [Google Scholar] [CrossRef]
- Huang, H.; Huang, D.; Chen, S.; Wang, G.; Chen, Y.; Tao, J.; Chen, H.; Gao, L. Removing antibiotic resistance genes under heavy metal stress with carbon-based materials and clay minerals: By sorption alone? J. Chem. Eng. J. 2022, 446, 137121. [Google Scholar] [CrossRef]
- Huang, C.; Tang, Z.; Xi, B.; Tan, W.; Guo, W.; Wu, W.; Ma, C. Environmental effects and risk control of antibiotic resistance genes in the organic solid waste aerobic composting system: A review. Front. Environ. Sci. Eng. 2021, 15, 127. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, J.; Wang, X.; Ma, J.; Hu, T.; Peng, H.; Bao, J.; Zhang, R. Effects of nano-zerovalent iron on antibiotic resistance genes and mobile genetic elements during swine manure composting. Environ. Pollut. 2020, 258, 113654. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, C.; Tian, Y.; Xi, B.; Guo, W.; Tan, W. Fate of antibiotic resistance genes in industrial-scale rapid composting of pharmaceutical fermentation residue: The role implications of microbial community structure and mobile genetic elements. Environ. Pollut. 2021, 291, 118155. [Google Scholar] [CrossRef]
- Zhu, P.; Qin, H.; Zhang, H.; Luo, Y.; Ru, Y.; Li, J.; San, K.; Wang, L.; Yu, X.; Guo, W. Variations in antibiotic resistance genes and removal mechanisms induced by C/N ratio of substrate during composting. Sci. Total Environ. 2021, 798, 149288. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Y.; Zheng, X.; Su, Y.; Wan, R.; Yang, S. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer. Bioresour. Technol. 2016, 218, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Sun, W.; Yu, Q.; Ma, J. Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure. Environ. Pollut. 2020, 263, 114439. [Google Scholar] [CrossRef]
- Sha, G.; Bi, W.; Zhang, L.; Chen, T.; Li, X.; Chen, G.; Wang, L. Dynamics and removal mechanisms of antibiotic and antibiotic resistance genes during the fermentation process of spectinomycin mycelial dregs: An integrated meta-omics study. J. Hazard. Mater. 2022, 421, 126822. [Google Scholar] [CrossRef]
- He, Y.W.; Yin, X.W.; Li, F.H.; Wu, B.; Zhu, L.; Ge, D.B.; Wang, N.Y.; Chen, A.W.; Zhang, L.H.; Yan, B.H.; et al. Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. Bioresour. Technol. 2023, 372, 128636. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Ma, J.; Su, Y.; Xie, B. Effect of nutritional energy regulation on the fate of antibiotic resistance genes during composting of sewage sludge. Bioresour. Technol. 2020, 297, 122513. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Xin, L.; Xu, X.; Qin, Y.; Wu, W. Dynamics of antibiotics and antibiotic resistance genes in four types of kitchen waste composting processes. J. Hazard. Mater. 2022, 424, 127526. [Google Scholar] [CrossRef]
- Peng, S.; Li, H.; Song, D.; Lin, X.; Wang, Y. Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting. Bioresour. Technol. 2018, 263, 393–401. [Google Scholar] [CrossRef]
- Guo, A.; Gu, J.; Wang, X.; Zhang, R.; Yin, Y.; Sun, W.; Tuo, X.; Zhang, L. Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting. Bioresour. Technol. 2017, 244, 658–663. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Sun, W.; Wang, X.; Li, H. Effects of passivators on antibiotic resistance genes and related mechanisms during composting of copper-enriched pig manure. Sci. Total Environ. 2019, 674, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Liu, J.; Li, Z.; Zou, X.; Guo, J.; Liu, Z.; Yang, J.; Zhou, Y. Antibiotic resistance gene abundances associated with heavy metals and antibiotics in the sediments of Changshou Lake in the Three Gorges Reservoir area, China. J. Ecol. Indic. 2020, 113, 106275. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Sui, Q.; Wan, H.; Tong, J.; Chen, M.; Wei, Y.; Wei, D. Effect of red mud addition on tetracycline and copper resistance genes and microbial community during the full scale swine manure composting. Bioresour. Technol. 2016, 216, 1049–1057. [Google Scholar] [CrossRef]
- Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; El Fels, L.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, E. Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. J. Hazard. Mater. 2018, 359, 465–481. [Google Scholar] [CrossRef]
- Werner, K.A.; Schneider, D.; Poehlein, A.; Diederich, N.; Feyen, L.; Axtmann, K.; Hübner, T.; Brüggemann, N.; Prost, K.; Daniel, R.; et al. Metagenomic insights into the changes of antibiotic resistance and pathogenicity factor pools upon thermophilic composting of human excreta. Front. Microbiol. 2022, 13, 826071. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Sui, Q.; Tong, J.; Jiang, C.; Lu, X.; Zhang, Y.; Wei, Y. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Res. 2016, 91, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Drigo, B.; Sarkar, B. Mitigation potential of antibiotic resistance genes in water and soil by clay-based adsorbents. NPJ Mater. Sustain. 2024, 2, 26. [Google Scholar] [CrossRef]
- Sadiq, S.T.; Yaşa, İ. New techniques used for removing antibiotic residues and antibiotic resistance genes from water. Recent Adv. Biol. Med. 2019, 5, 9454. [Google Scholar] [CrossRef]
- Zou, W.; Luo, Y.; Zhou, Q.X. Pollution and environmental regulation of antibiotic resistance genes (ARGs) in Livestock Manure. J. Agro Environ. Sci. 2014, 33, 2281–2287. [Google Scholar]
- Jauregi, L.; González, A.; Garbisu, C.; Epelde, L. Organic amendment treatments for antimicrobial resistance and mobile element genes risk reduction in soil-crop systems. Sci. Rep. 2023, 13, 863. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Li, G.; Su, Y.; Zhao, Y.; Ma, J.; Huang, G. Environmental drivers and interaction mechanisms of heavy metal and antibiotic resistome exposed to amoxicillin during aerobic composting. Front. Microbiol. 2023, 13, 1079114. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Song, Z.; Qian, X.; Sun, W.; Yu, J.; Lei, L. Metagenomic analysis of effects of oxytetracycline and copper on antibiotic resistance genes and associated pathogenic hosts in swine manure compost. Waste Manag. 2020. [Google Scholar] [CrossRef]
- Jeong, S.T.; Cho, S.R.; Lee, J.G.; Kim, P.J.; Kim, G.W. Composting and compost application: Trade-off between greenhouse gas emission and soil carbon sequestration in whole rice cropping system. J. Clean. Prod. 2019, 212, 1132–1142. [Google Scholar] [CrossRef]
- Akram, M.; Qazi, M.A.; Ahmad, N. Integrated Nutrient Management for Wheat by Municipal Solid Waste Manure in Rice-Wheat and Cotton-Wheat Cropping Systems. Pol. J. Environ. Stud. 2007, 16, 495–503. [Google Scholar]
- Sharma, M.; Reynnells, R. Importance of soil amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers. In Preharvest Food Safety; ASM Press: Washington, DC, USA, 2018; pp. 159–175. [Google Scholar]
- Kim, E.Y.; Hong, Y.K.; Lee, C.H.; Oh, T.K.; Kim, S.C. Effect of organic compost manufactured with vegetable waste on nutrient supply and phytotoxicity. Appl. Biol. Chem. 2018, 61, 509–521. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Guo, X.; Wang, H. Comparison of the effects of different maturity composts on soil nutrient, plant growth and heavy metal mobility in the contaminated soil. J. Environ. Manag. 2019, 250, 109525. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.P.; Owen, G.; Dinel, H.; Schnitzer, M. Determination of compost biomaturity. I. Literature review. Biol. Agric. Hortic. 1993, 10, 65–85. [Google Scholar] [CrossRef]
- Smith, S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 2009, 35, 142–156. [Google Scholar] [CrossRef]
- Nomeda, S.; Valdas, P.; Chen, S.-Y.; Lin, J.-G. Variations of metal distribution in sewage sludge composting. Waste Manag. 2008, 28, 1637–1644. [Google Scholar] [CrossRef]
- Su, K.; Zhang, Q.; Chen, A.; Wang, X.; Zhan, L.; Rao, Q.; Wang, J.; Yang, H. Heavy metals concentrations in commercial organic fertilizers and the potential risk of fertilization into soils. Sci. Rep. 2025, 15, 1230. [Google Scholar] [CrossRef]
- Parab, C.; Yadav, K.D. A review on green waste composting, role of additives and composting methods for process acceleration. Environ. Sci. Pollut. Res. 2024, 31, 63473–63500. [Google Scholar] [CrossRef] [PubMed]
- Selim, S.M.; Zayed, M.S.; Atta, H.M. Evaluation of phytotoxicity of compost during composting process. Nat. Sci. 2012, 10, 69–77. [Google Scholar]
- Luz, T.M.F.N.d. Integrated Evaluation of the Ecotoxicological Risk of Using Sewage Sludges in Agriculture and in Soil Restoration; Universidade de Coimbra: Coimbra, Portugal, 2011. [Google Scholar]
- Li, Y.; Li, L.; Liu, X.; Li, J.; Ye, J.; Chen, Z.; Zhu, C.; Geng, B. Treatment of piggery waste in an ectopic microbial fermentation system and safety evaluation of generated organic fertilizer. J. Chem. Technol. Biotechnol. 2022, 97, 1336–1344. [Google Scholar] [CrossRef]
- Oktiawan, W.; Zaman, B. Use of a germination bioassay to test compost maturity in Tekelan Village [C]//E3S Web of Conferences. EDP Sci. 2018, 31, 05012. [Google Scholar]
- Zhu, Y.G.; Zhao, Y.; Zhu, D.; Gillings, M.; Penuelas, J.; Ok, Y.S.; Capon, A.; Banwart, S. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 2019, 131, 105059. [Google Scholar] [CrossRef]
- Ma, C.; Lo, P.K.; Xu, J.; Li, M.; Jiang, Z.; Li, G.; Zhu, Q.; Li, X.; Leong, S.Y.; Li, Q. Molecular mechanisms underlying lignocellulose degradation and antibiotic resistance genes removal revealed via metagenomics analysis during different agricultural wastes composting. Bioresour. Technol. 2020, 314, 123731. [Google Scholar] [CrossRef] [PubMed]
- Browne, A.J.; Chipeta, M.G.; Haines-Woodhouse, G.; Kumaran, E.P.; Hamadani, B.H.K.; Zaraa, S.; Dolecek, C. Global antibiotic consumption and usage in humans, 2000–18: A spatial modelling study. Lancet Planet Health 2021, 5, e893–e904. [Google Scholar] [CrossRef] [PubMed]
Animal Type | Core ARG Types | Absolute Abundance | Key Influencing Factors | Removal Effect of Treatment Technologies on ARGs | References |
---|---|---|---|---|---|
Pig manure | 1. Tetracyclines (tetM, tetW) 2. Macrolides (ermB, ermF) 3. Sulfonamides (sul1, sul2) | 105–108 copies/g | Abundance in summer is higher than in winter Antibiotic use significantly increases multidrug resistance genes | Composting: Overall abundance reduced by 12–96%, but ermC may proliferate | [19,20,21] |
Chicken manure (broiler/layer) | 1. Sulfonamides (sul1) 2. βlactams (blaCTXM) 3. Multidrug resistance genes (mefA, acrB) | 2.8 × 105–7.8 × 105 copies/g | ARG diversity in broiler manure > layer manure Directly driven by feed additives (e.g., chlortetracycline) | Composting: Sulfonamide ARGs reduced, but vancomycin gene (vanA) abundance increased | [22,23] |
Cow manure (dairy cow/beef cattle) | 1. Tetracyclines (tetQ, tetO) 2. Aminoglycosides (aadA, strB) 3. Chloramphenicols (cmlA) | 2.1 × 105–3.3 × 105 copies/g | β-lactamase genes are still detected in cow manure without antibiotic use ARG abundance in dairy cow manure < beef cattle manure | Composting: Tetracycline gene abundance reduced to 10−10 copies/16S rRNA | [21,22] |
Mixed poultry manure | 1. Multidrug resistance genes 2. Quinolones (qnrS) | ARG concentration in PM2.5: 3.94 × 103 copies/m3 Potential pathogens in manure: 44 types | Aerosolization of manure leads to airborne transmission of ARGs Escherichia coli and Shigella as the main hosts | Constructed wetland: Removal rate of sul1 and tetA 12.3–39.2% Plant absorption (e.g., reed): Overall removal rate > 60% | [23,24,25] |
Composting Method | Characteristics | Degradation Rate of Resistance Genes | Key Factors Affecting ARG Removal | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Oxygen Supply Requirement | Treatment Cycle | Temperature Range | Dominant Microbial Community | Pathogen-Killing Effect | N/C Loss | Disadvantages | ||||
AerobicComposting | Requires forced ventilation or turning for oxygen supply | 3–6 months | 50–70 °C | Firmicutes, Actinomycetes, Thiobacillus | High temperature can effectively kill pathogens | High nitrogen loss (20–40%), high carbon loss (40–60%) | High energy consumption may produce odors | 70–90% | Physicochemical properties, additive application, antibiotic/heavy metal residues | [97,98,100,102,104,105,106] |
Anaerobic Composting | No need for oxygen supply, requires a sealed environment | 6 months to several years | <40 °C | Methanobacterium, Clostridium | Almost unable to kill pathogens | Low nitrogen/carbon loss | Slow decomposition may produce methane and odors | 50–60% | Microbial community, temperature change, product accumulation, and composting raw material characteristics | [92,107,108,109,110,111] |
Natural Composting | No need for oxygen supply, no manual intervention | 1–2 years | No stable high temperature | Opportunistic pathogens, resistance gene hosts, and parasite eggs | Unable to kill pathogens | Loss degree is uncertain, but degradation efficiency is low | Low degradation efficiency, easy to breed pests and pathogens | 20–30% | Natural environmental conditions; Natural succession of the microbial community | [92,113,114,116] |
Additive Type | Specific Substance | Target ARGs | Removal Rate | Core Mechanism | Reference |
---|---|---|---|---|---|
Biological Additives | Hyperthermophiles | Total ARGs | 89% | High temperature destroys DNA structure and inhibits host reproduction | [87] |
Compound Microbial Inoculants | sul1, sul2, tetA | 90% | Increases Bacillus abundance and accelerates nitrogen fixation | [63] | |
Physical Additives | Biochar (Rice husk-derived) | sul1, intI1 | 84.3% | Adsorbs extracellular DNA, reduces HGT | [101] |
Biochar (Mushroom residue-derived) | Total ARGs | 78% | Dose and feedstock-dependent | [140] | |
Bamboo Charcoal | Total ARGs | 54% | High specific surface area adsorbs | [141] | |
Natural Zeolite | Total ARGs | 19% | Limited effectiveness | [142] | |
Struvite-loaded Zeolite | intI1, sul1, tetG | 60% | Reduces the bioavailability of contaminants | [143] | |
Chemical Additives | Nano Zero-Valent Iron (nZVI) | tet(W) | 86.6% | Generates reactive oxygen species to destroy DNA | [144] |
Micro-scale Zero-Valent Iron | Tetracycline/glycopeptide | 90% | Inhibits host metabolism; effectiveness > nano-scale iron | [143] | |
Magnetic Fe2O3/Red Mud Nanoparticles | ermB | 85% | Iron ions interfere with electron transfer | [145] | |
Lime Nitrogen (CaCN2) | Total ARGs | 63.5% | Releases cyanamide to inactivate gut microorganisms | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, E.; Li, Y.; Zhang, J.; Geng, B. A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure. Toxics 2025, 13, 667. https://doi.org/10.3390/toxics13080667
Zhao E, Li Y, Zhang J, Geng B. A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure. Toxics. 2025; 13(8):667. https://doi.org/10.3390/toxics13080667
Chicago/Turabian StyleZhao, Enwang, Yongchao Li, Jin Zhang, and Bing Geng. 2025. "A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure" Toxics 13, no. 8: 667. https://doi.org/10.3390/toxics13080667
APA StyleZhao, E., Li, Y., Zhang, J., & Geng, B. (2025). A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure. Toxics, 13(8), 667. https://doi.org/10.3390/toxics13080667