Exposure to Cadmium and Other Trace Elements Among Individuals with Mild Cognitive Impairment
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Biomarkers of Neurodegeneration
2.3. Trace Element (Cd, Cu, Fe, Mn, Zn) Determination
2.4. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbaek, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Bakulski, K.M.; Seo, Y.A.; Hickman, R.C.; Brandt, D.; Vadari, H.S.; Hu, H.; Park, S.K. Heavy metals exposure and Alzheimer’s disease and related dementias. J. Alzheimers Dis. 2020, 76, 1215–1242. [Google Scholar] [CrossRef] [PubMed]
- Ruczaj, A.; Brzoska, M.M. Environmental exposure of the general population to cadmium as a risk factor of the damage to the nervous system: A critical review of current data. J. Appl. Toxicol. 2023, 43, 66–88. [Google Scholar] [CrossRef]
- Chatterjee, M.; Kortenkamp, A. Cadmium exposures and deteriorations of cognitive abilities: Estimation of a reference dose for mixture risk assessments based on a systematic review and confidence rating. Environ. Health 2022, 21, 69. [Google Scholar] [CrossRef]
- Min, J.; Min, K. Blood cadmium levels and Alzheimer’s disease mortality risk in older US adults. Environ. Health 2016, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, H.; Amir, M.; Asghar, S.; Hameed, A.; Riaz, M. Health risk assessment of lead and cadmium exposure from food and snuff in Pakistani population. J. Trace Elem. Med. Biol. 2024, 86, 127544. [Google Scholar] [CrossRef]
- Arruebarrena, M.A.; Hawe, C.T.; Lee, Y.M.; Branco, R.C. Mechanisms of cadmium neurotoxicity. Int. J. Mol. Sci. 2023, 24, 16558. [Google Scholar] [CrossRef]
- Forcella, M.; Lau, P.; Oldani, M.; Melchioretto, P.; Bogni, A.; Gribaldo, L.; Fusi, P.; Urani, C. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. Neurotoxicology 2020, 76, 162–173. [Google Scholar] [CrossRef]
- Stelmashook, E.V.; Alexandrova, O.P.; Genrikhs, E.E.; Novikova, S.V.; Salmina, A.B.; Isaev, N.K. Effect of zinc and copper ions on cadmium-induced toxicity in rat cultured cortical neurons. J. Trace Elem. Med. Biol. 2022, 73, 127012. [Google Scholar] [CrossRef] [PubMed]
- Gale, J.; Aizenman, E. The physiological and pathophysiological roles of copper in the nervous system. Eur. J. Neurosci. 2024, 60, 3505–3543. [Google Scholar] [CrossRef]
- Squitti, R.; Faller, P.; Hureau, C.; Granzotto, A.; White, A.R.; Kepp, K.P. Copper Imbalance in Alzheimer’s disease and its link with the amyloid hypothesis: Towards a combined clinical, chemical, and genetic etiology. J. Alzheimers Dis. 2021, 83, 23–41. [Google Scholar] [CrossRef]
- Oggiano, R.; Pisano, A.; Sabalic, A.; Farace, C.; Fenu, G.; Lintas, S.; Forte, G.; Bocca, B.; Madeddu, R. An overview on amyotrophic lateral sclerosis and cadmium. Neurol. Sci. 2021, 42, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Wei, R.; Yong, V.W.; Xue, M. The important role of zinc in neurological diseases. Biomolecules 2022, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Ayton, S.; Bush, A.I. The essential elements of Alzheimer’s disease. J. Biol. Chem. 2021, 296, 100105. [Google Scholar] [CrossRef] [PubMed]
- Levi, S.; Ripamonti, M.; Moro, A.S.; Cozzi, A. Iron imbalance in neurodegeneration. Mol. Psychiatry 2024, 29, 1139–1152. [Google Scholar] [CrossRef]
- Takeuchi, H.; Taki, Y.; Nouchi, R.; Yokoyama, R.; Kotozaki, Y.; Nakagawa, S.; Sekiguchi, A.; Iizuka, K.; Yamamoto, Y.; Hanawa, S.; et al. Association of iron levels in hair with brain structures and functions in young adults. J. Trace Elem. Med. Biol. 2020, 58, 126436. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, R.C.; Mukhopadhyay, S.; McBride, D.; Veevers, J.; Harrison, F.E.; Aschner, M.; Haynes, E.N.; Bowman, A.B. Brain manganese and the balance between essential roles and neurotoxicity. J. Biol. Chem. 2020, 295, 6312–6329. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific opinion on the tolerable upper intake level for manganese. EFSA J. 2023, 21, e8413. [Google Scholar] [CrossRef] [PubMed]
- Solovyev, N.; Lucio, M.; Mandrioli, J.; Forcisi, S.; Kanawati, B.; Uhl, J.; Vinceti, M.; Schmitt-Kopplin, P.; Michalke, B. Interplay of metallome and metabolome in amyotrophic lateral sclerosis: A study on cerebrospinal fluid of patients carrying disease-related gene mutations. ACS Chem. Neurosci. 2023, 14, 3035–3046. [Google Scholar] [CrossRef]
- Pamphlett, R.; Mak, R.; Lee, J.; Buckland, M.E.; Harding, A.J.; Kum Jew, S.; Paterson, D.J.; Jones, M.W.M.; Lay, P.A. Concentrations of toxic metals and essential trace elements vary among individual neurons in the human locus ceruleus. PLoS ONE 2020, 15, e0233300. [Google Scholar] [CrossRef]
- Ali, T.; Khan, A.; Alam, S.I.; Ahmad, S.; Ikram, M.; Park, J.S.; Lee, H.J.; Kim, M.O. Cadmium, an environmental contaminant, exacerbates Alzheimer’s pathology in the aged mice’s brain. Front. Aging Neurosci. 2021, 13, 650930. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.; Langkammer, C.; Goessler, W.; Ropele, S.; Fazekas, F.; Yen, K.; Scheurer, E. Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. J. Trace Elem. Med. Biol. 2014, 28, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abukuri, D.N. Novel biomarkers for Alzheimer’s Disease: Plasma neurofilament light and cerebrospinal fluid. Int. J. Alzheimers Dis. 2024, 2024, 6668159. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Backman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment--beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef]
- Limongi, F.; Noale, M.; Bianchetti, A.; Ferrara, N.; Padovani, A.; Scarpini, E.; Trabucchi, M.; Maggi, S. The instruments used by the Italian centres for cognitive disorders and dementia to diagnose mild cognitive impairment (MCI). Aging Clin. Exp. Res. 2019, 31, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Jessen, F.; Amariglio, R.E.; Buckley, R.F.; van der Flier, W.M.; Han, Y.; Molinuevo, J.L.; Rabin, L.; Rentz, D.M.; Rodriguez-Gomez, O.; Saykin, A.J.; et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020, 19, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Sachs-Ericsson, N.; Blazer, D.G. The new DSM-5 diagnosis of mild neurocognitive disorder and its relation to research in mild cognitive impairment. Aging Ment. Health 2015, 19, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Urbano, T.; Maramotti, R.; Tondelli, M.; Gallingani, C.; Carbone, C.; Iacovino, N.; Vinceti, G.; Zamboni, G.; Chiari, A.; Bedin, R. Comparison of serum and cerebrospinal fluid neurofilament light chain concentrations measured by EllaTM and LumipulseTM in patients with cognitive impairment. Diagnostics 2024, 14, 2408. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Urbano, T.; Filippini, T.; Bedin, R.; Simonini, C.; Soraru, G.; Trojsi, F.; Michalke, B.; Mandrioli, J. Changes in cerebrospinal fluid concentrations of selenium species induced by Tofersen administration in subjects with amyotrophic lateral sclerosis carrying SOD1 gene mutations. Biol. Trace Elem. Res. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- DFG. The use of ICP-MS for human biomonitoring [Biomonitoring Methods, 1999]. In The MAK-Collection for Occupational Health and Safety; Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area of the Deutsche Forschungsgemeinschaft, Ed.; Wiley-VCH: Hoboken, NJ, USA, 1999; pp. 1–45. [Google Scholar]
- Urbano, T.; Filippini, T.; Malavolti, M.; Fustinoni, S.; Michalke, B.; Wise, L.A.; Vinceti, M. Adherence to the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet and exposure to selenium species: A cross-sectional study. Nutr. Res. 2024, 122, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Urbano, T.; Grill, P.; Malagoli, C.; Ferrari, A.; Marchesi, C.; Natalini, N.; Michalke, B.; Vinceti, M. Human serum albumin-bound selenium (Se-HSA) in serum and its correlation with other selenium species. J. Trace Elem. Med. Biol. 2023, 79, 127266. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ruan, X.; Gu, C.; Dan, L.; Ye, J.; Diao, F.; Wu, L.; Luo, M. Blood-cerebrospinal fluid barrier permeability of metals/metalloids and its determinants in pediatric patients. Ecotoxicol. Environ. Saf. 2023, 266, 115599. [Google Scholar] [CrossRef]
- Roy, S.; Lutsenko, S. Mechanism of Cu entry into the brain: Many unanswered questions. Neural Regen. Res. 2024, 19, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- Patti, F.; Fiore, M.; Chisari, C.G.; D’Amico, E.; Lo Fermo, S.; Toscano, S.; Copat, C.; Ferrante, M.; Zappia, M. CSF neurotoxic metals/metalloids levels in amyotrophic lateral sclerosis patients: Comparison between bulbar and spinal onset. Environ. Res. 2020, 188, 109820. [Google Scholar] [CrossRef]
- Zheng, W.; Monnot, A.D. Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol. Ther. 2012, 133, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, J.; Ogawa, M. Intake and excretion of cadmium of Japanese adult. J. Trace Elem. Med. Biol. 2024, 86, 127535. [Google Scholar] [CrossRef]
- Yu, J.; Wang, C.; Liu, Y.; Tao, T.; Yang, L.; Liu, R.; Liang, D.; Zhang, Y.; He, Z.; Sun, Y. A comparative study of urinary levels of multiple metals and neurotransmitter correlations between GDM and T2DM populations. J. Trace Elem. Med. Biol. 2024, 84, 127447. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Mandrioli, J.; Violi, F.; Bargellini, A.; Weuve, J.; Fini, N.; Grill, P.; Michalke, B. Lead, cadmium and mercury in cerebrospinal fluid and risk of amyotrophic lateral sclerosis: A case-control study. J. Trace Elem. Med. Biol. 2017, 43, 121–125. [Google Scholar] [CrossRef]
- Bocca, B.; Forte, G.; Pisano, A.; Farace, C.; Giancipoli, E.; Pinna, A.; Dore, S.; Madeddu, R. A pilot study to evaluate the levels of aqueous humor trace elements in open-angle glaucoma. J. Trace Elem. Med. Biol. 2020, 61, 126560. [Google Scholar] [CrossRef]
- Verzelloni, P.; Urbano, T.; Wise, L.A.; Vinceti, M.; Filippini, T. Cadmium exposure and cardiovascular disease risk: A systematic review and dose-response meta-analysis. Environ. Pollut. 2024, 345, 123462. [Google Scholar] [CrossRef]
- Verzelloni, P.; Giuliano, V.; Wise, L.A.; Urbano, T.; Baraldi, C.; Vinceti, M.; Filippini, T. Cadmium exposure and risk of hypertension: A systematic review and dose-response meta-analysis. Environ. Res. 2024, 263, 120014. [Google Scholar] [CrossRef]
- Corbaton Anchuelo, A.; Martell Claros, N.; Abad Cardiel, M.; Garcia Donaire, J.A.; Fuentes Ferrer, M.; Bravo Gomez, A.; Llorente Martin, E.; Zamora Trillo, A.; Bonmati Torres, G.; Gonzalez-Estecha, M. Are lead, cadmium and mercury risk factors for resistant hypertension? J. Trace Elem. Med. Biol. 2024, 84, 127417. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Barone, R.; Copat, C.; Grasso, A.; Cristaldi, A.; Rizzo, R.; Ferrante, M. Metal and essential element levels in hair and association with autism severity. J. Trace Elem. Med. Biol. 2020, 57, 126409. [Google Scholar] [CrossRef]
- Kooshki, A.; Farmani, R.; Mehrpour, O.; Naghizadeh, A.; Amirabadizadeh, A.; Kavoosi, S.; Vohra, V.; Nakhaee, S. Alzheimer’s disease and circulatory imbalance of toxic heavy metals: A systematic review and meta-analysis of clinical studies. Biol. Trace Elem. Res. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Venkatesan, D.; Muthukumar, S.; Iyer, M.; Babu, H.W.S.; Gopalakrishnan, A.V.; Yadav, M.K.; Vellingiri, B. Heavy metals toxicity on epigenetic modifications in the pathogenesis of Alzheimer’s disease (AD). J. Biochem. Mol. Toxicol. 2024, 38, e23741. [Google Scholar] [CrossRef]
- Li, K.; Li, A.; Mei, Y.; Zhao, J.; Zhou, Q.; Li, Y.; Yang, M.; Xu, Q. Trace elements and Alzheimer dementia in population-based studies: A bibliometric and meta-analysis. Environ. Pollut. 2023, 318, 120782. [Google Scholar] [CrossRef] [PubMed]
- Jongsiriyanyong, S.; Limpawattana, P. Mild cognitive impairment in clinical practice: A review article. Am. J. Alzheimers Dis. Other Demen. 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, Y.; Angley, M.; Bejerano, S.; Brockman, J.D.; McClure, L.A.; Unverzagt, F.W.; Fly, A.D.; Kahe, K. Association of urinary cadmium concentration with cognitive impairment in US adults: A longitudinal cohort study. Neurology 2024, 103, e209808. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Carpenter, D.O. Associations between metal exposures and cognitive function in American older adults. Int. J. Environ. Res. Public Health 2022, 19, 2327. [Google Scholar] [CrossRef]
- Song, S.; Liu, N.; Wang, G.; Wang, Y.; Zhang, X.; Zhao, X.; Chang, H.; Yu, Z.; Liu, X. Sex specificity in the mixed effects of blood heavy metals and cognitive function on elderly: Evidence from NHANES. Nutrients 2023, 15, 2874. [Google Scholar] [CrossRef] [PubMed]
- Urbano, T.; Filippini, T.; Wise, L.A.; Lasagni, D.; De Luca, T.; Sucato, S.; Polledri, E.; Malavolti, M.; Rigon, C.; Santachiara, A.; et al. Associations of urinary and dietary cadmium with urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine and blood biochemical parameters. Environ. Res. 2022, 210, 112912. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dai, Y.; Li, M.; Guo, L.; Cao, C.; Huang, Y.; Ma, R.; Qiu, S.; Su, X.; Zhong, K.; et al. Exposure to cadmium induces neuroinflammation and impairs ciliogenesis in hESC-derived 3D cerebral organoids. Sci. Total Environ. 2021, 797, 149043. [Google Scholar] [CrossRef] [PubMed]
- De Benedictis, C.A.; Vilella, A.; Grabrucker, A.M. The role of trace metals in Alzheimer’s Disease. In Alzheimer’s Disease; Wisniewski, T., Ed.; Codon Publications: Brisbane, Australia, 2019. [Google Scholar]
- National Center for Environmental Health. National Report on Human Exposure to Environmental Chemicals. Available online: https://stacks.cdc.gov/view/cdc/133100 (accessed on 19 November 2024).
- Schubert, C.R.; Paulsen, A.J.; Pinto, A.A.; Chappell, R.J.; Chen, Y.; Ferrucci, L.; Hancock, L.M.; Cruickshanks, K.J.; Merten, N. Effect of neurotoxin exposure on blood biomarkers of neurodegeneration and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2023, 37, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Doroszkiewicz, J.; Farhan, J.A.; Mroczko, J.; Winkel, I.; Perkowski, M.; Mroczko, B. Common and trace metals in Alzheimer’s and Parkinson’s diseases. Int. J. Mol. Sci. 2023, 24, 15721. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Fan, Y.R.; Wang, Y.Z.; Lu, H.Y.; Li, P.X.; Dong, Q.; Jiang, Y.F.; Chen, X.D.; Cui, M. Brain iron in signature regions relating to cognitive aging in older adults: The Taizhou Imaging Study. Alzheimers Res. Ther. 2024, 16, 211. [Google Scholar] [CrossRef] [PubMed]
- Spotorno, N.; Acosta-Cabronero, J.; Stomrud, E.; Lampinen, B.; Strandberg, O.T.; van Westen, D.; Hansson, O. Relationship between cortical iron and tau aggregation in Alzheimer’s disease. Brain 2020, 143, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Tyczynska, M.; Gedek, M.; Brachet, A.; Strek, W.; Flieger, J.; Teresinski, G.; Baj, J. Trace elements in Alzheimer’s disease and dementia: The current state of knowledge. J. Clin. Med. 2024, 13, 2381. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Sun, J.; Cong, S. Levels of iron and iron-related proteins in Alzheimer’s disease: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2023, 80, 127304. [Google Scholar] [CrossRef] [PubMed]
- Sensi, S.L.; Granzotto, A.; Siotto, M.; Squitti, R. Copper and zinc dysregulation in Alzheimer’s disease. Trends Pharmacol. Sci. 2018, 39, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Siotto, M.; Prasad, R.; Squitti, R. Towards a unified vision of copper involvement in Alzheimer’s disease: A review connecting basic, experimental, and clinical research. J. Alzheimers Dis. 2015, 44, 343–354. [Google Scholar] [CrossRef]
- Sabalic, A.; Mei, V.; Solinas, G.; Madeddu, R. The role of copper in Alzheimer’s disease etiopathogenesis: An updated systematic review. Toxics 2024, 12, 755. [Google Scholar] [CrossRef] [PubMed]
- Mezzaroba, L.; Alfieri, D.F.; Colado Simao, A.N.; Vissoci Reiche, E.M. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 2019, 74, 230–241. [Google Scholar] [CrossRef]
- Gorska, A.; Markiewicz-Gospodarek, A.; Markiewicz, R.; Chilimoniuk, Z.; Borowski, B.; Trubalski, M.; Czarnek, K. Distribution of iron, copper, zinc and cadmium in glia, their Influence on glial cells and relationship with neurodegenerative diseases. Brain Sci. 2023, 13, 911. [Google Scholar] [CrossRef] [PubMed]
- Squitti, R.; Barbati, G.; Rossi, L.; Ventriglia, M.; Dal Forno, G.; Cesaretti, S.; Moffa, F.; Caridi, I.; Cassetta, E.; Pasqualetti, P.; et al. Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. Neurology 2006, 67, 76–82. [Google Scholar] [CrossRef]
- Ventriglia, M.; Brewer, G.J.; Simonelli, I.; Mariani, S.; Siotto, M.; Bucossi, S.; Squitti, R. Zinc in Alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. J. Alzheimers Dis. 2015, 46, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Nyarko-Danquah, I.; Pajarillo, E.; Digman, A.; Soliman, K.F.A.; Aschner, M.; Lee, E. Manganese accumulation in the brain via various transporters and its neurotoxicity mechanisms. Molecules 2020, 25, 5880. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. (Landmark Ed.) 2018, 23, 1655–1679. [Google Scholar] [CrossRef]
- Martins, A.C., Jr.; Morcillo, P.; Ijomone, O.M.; Venkataramani, V.; Harrison, F.E.; Lee, E.; Bowman, A.B.; Aschner, M. New insights on the role of manganese in Alzheimer’s disease and Parkinson’s disease. Int. J. Environ. Res. Public Health 2019, 16, 3546. [Google Scholar] [CrossRef]
- Gu, L.; Yu, J.; Fan, Y.; Wang, S.; Yang, L.; Liu, K.; Wang, Q.; Chen, G.; Zhang, D.; Ma, Y.; et al. The association between trace elements exposure and the cognition in the elderly in China. Biol. Trace Elem. Res. 2021, 199, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Liu, M.; Pan, Y.; Zhong, X.; Wei, M. Association of serum manganese levels with Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Nutrients 2017, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Gallingani, C.; Carbone, C.; Tondelli, M.; Zamboni, G. Neurofilaments light chain in neurodegenerative dementias: A review of imaging correlates. Brain Sci. 2024, 14, 272. [Google Scholar] [CrossRef] [PubMed]
- Blandino, V.; Colletti, T.; Ribisi, P.; Tarantino, D.; Mosca, V.; Agnello, L.; Ciaccio, M.; Piccoli, T. Cerebrospinal fluid neurofilaments light-chain differentiate patients affected by Alzheimer’s disease with different Rate of Progression (RoP): A preliminary study. Brain Sci. 2024, 14, 960. [Google Scholar] [CrossRef]
- Babic Leko, M.; Mihelcic, M.; Jurasovic, J.; Nikolac Perkovic, M.; Spanic, E.; Sekovanic, A.; Orct, T.; Zubcic, K.; Langer Horvat, L.; Pleic, N.; et al. Heavy metals and essential metals are associated with cerebrospinal fluid biomarkers of Alzheimer’s disease. Int. J. Mol. Sci. 2022, 24, 467. [Google Scholar] [CrossRef] [PubMed]
MCI Participants (n = 128) | MCI with Serum TE Analysis (n = 89) | MCI with CSF TE Analysis (n = 45) | |
---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | |
Sex (n, %) | |||
Males | 53 (41.4) | 36 (40.5) | 20 (44.4) |
Females | 75 (58.6) | 53 (59.5) | 25 (55.6) |
Age at diagnosis (years) | 61 (56–65) | 61 (56–65) | 61 (56–64) |
Age in categories (n, %) | |||
<65 years | 90 (70.3) | 60 (67.4) | 35 (77.8) |
≥65 years | 38 (29.7) | 29 (32.6) | 10 (22.2) |
Education (years) | 11 (8–13) | 11 (8–13) | 12 (8–13) |
Education in categories (n, %) | |||
Elementary school | 11 (8.6) | 10 (11.2) | 5 (11.1) |
Middle school | 46 (35.9) | 33 (37.1) | 12 (26.7) |
High school | 48 (37.5) | 30 (33.7) | 18 (40.0) |
College or more | 23 (18.0) | 16 (18.0) | 10 (22.2) |
Marital status (n, %) | |||
Single | 9 (7.0) | 4 (4.5) | 3 (6.7) |
Married/unmarried | 83 (64.8) | 61 (68.5) | 32 (71.1) |
Separated/divorced | 13 (10.2) | 9 (10.1) | 2 (4.4) |
Widowed | 8 (6.3) | 6 (6.7) | 4 (8.9) |
Missing | 15 (11.7) | 9 (10.1) | 4 (8.9) |
BMI in categories (n, %) | |||
<18.5 kg/m2 | 4 (3.1) | 3 (3.4) | 2 (4.4) |
18.5–24.9 kg/m2 | 42 (32.8) | 24 (27.0) | 11 (24.4) |
≥25.0 kg/m2 | 58 (45.3) | 46 (51.7) | 25 (55.6) |
Missing | 24 (18.6) | 16 (18.0) | 7 (15.6) |
MMSE score | 27 (25–29) | 27 (25–29) | 27 (25–29) |
CSF (n = 45) Median (IQR) | Serum (n = 89) Median (IQR) | |
---|---|---|
NfL (pg/mL) | 934.0 (665.0–1653.0) | 19.5 (12.7–35.0) |
Amyloid ratio | 0.088 (0.050–0.094) | - |
Total Tau (pg/mL) | 442.0 (215.0–774.0) | - |
p-Tau181 (pg/mL) | 46.1 (25.8–116.6) | - |
Cadmium (µg/L) | 0.01 (0.01–0.02) | 0.05 (0.03–0.12) |
Copper (µg/L) | 19.50 (11.00–30.50) | 869 (766–974) |
Iron (µg/L) | 28.50 (9.82–42.50) | 864 (694–1070) |
Manganese (µg/L) | 0.57 (0.38–0.94) | 2.74 (1.55–3.50) |
Zinc (µg/L) | 19.10 (10.90–30.30) | 741 (650–856) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbano, T.; Vinceti, M.; Carbone, C.; Wise, L.A.; Malavolti, M.; Tondelli, M.; Bedin, R.; Vinceti, G.; Marti, A.; Chiari, A.; et al. Exposure to Cadmium and Other Trace Elements Among Individuals with Mild Cognitive Impairment. Toxics 2024, 12, 933. https://doi.org/10.3390/toxics12120933
Urbano T, Vinceti M, Carbone C, Wise LA, Malavolti M, Tondelli M, Bedin R, Vinceti G, Marti A, Chiari A, et al. Exposure to Cadmium and Other Trace Elements Among Individuals with Mild Cognitive Impairment. Toxics. 2024; 12(12):933. https://doi.org/10.3390/toxics12120933
Chicago/Turabian StyleUrbano, Teresa, Marco Vinceti, Chiara Carbone, Lauren A. Wise, Marcella Malavolti, Manuela Tondelli, Roberta Bedin, Giulia Vinceti, Alessandro Marti, Annalisa Chiari, and et al. 2024. "Exposure to Cadmium and Other Trace Elements Among Individuals with Mild Cognitive Impairment" Toxics 12, no. 12: 933. https://doi.org/10.3390/toxics12120933
APA StyleUrbano, T., Vinceti, M., Carbone, C., Wise, L. A., Malavolti, M., Tondelli, M., Bedin, R., Vinceti, G., Marti, A., Chiari, A., Zamboni, G., Michalke, B., & Filippini, T. (2024). Exposure to Cadmium and Other Trace Elements Among Individuals with Mild Cognitive Impairment. Toxics, 12(12), 933. https://doi.org/10.3390/toxics12120933