Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells
Abstract
:1. Introduction
2. Environmental Impact and Fundamental Characteristics of PS-NPs
3. Cellular Uptake Mechanisms of PS-NPs
3.1. Clathrin and Caveolae-Mediated Endocytosis
3.2. Macropinocytosis
3.3. Lipid Raft/Cholesterol-Dependent Endocytosis
3.4. Integrin α5β1-Mediated Uptake
3.5. Regulation by the Protein Corona
3.6. Influence of Physicochemical Properties on Uptake
3.7. Role of Lysosomes and Autophagosomes
4. Cellular Biological Impacts of PS-NPs
4.1. Oxidative Stress by PS-NPs
4.2. Mitochondrial Damage by PS-NPs
4.3. DNA Damage by PS-NPs
4.4. Inflammation by PS-NPs
4.5. Autophagy Disruption by PS-NPs
4.6. Other Biological Effects of PS-NPs
5. Cell Death Induced by PS-NPs
5.1. Apoptosis Induced by PS-NPs
5.2. Ferroptosis Induced by PS-NPs
5.3. Necroptosis and Pyroptosis Induced by PS-NPs
6. Factors Influencing the Cytotoxicity of PS-NPs
6.1. Co-Exposure to Pollutants
6.2. Particle Size
6.3. Surface Functional Groups
6.4. Electric Charge
6.5. Shape
6.6. Aging
6.7. Protein Corona Formation
6.8. Exposure Time
6.9. Exposure Conditions
7. Challenges in Detecting PS-NPs
7.1. Sensitivity and Resolution
7.2. Matrix Interference
7.3. Separation and Characterization
7.4. Lack of Standardization
7.5. Emerging Techniques
7.6. Recommendations for Standardization and Improvement
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Chen, H.; Sarsaiya, S.; Qin, S.; Liu, H.; Awasthi, M.K.; Kumar, S.; Singh, L.; Zhang, Z.; Bolan, N.S.; et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review. J. Hazard. Mater. 2021, 409, 124967. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Hu, C.; Chen, Y.; Li, Y.; Sun, X.; Wu, H.; Yang, R.; Tang, Y.; Niu, F.; Wei, W.; et al. Dysregulation of the microbiota-brain axis during long-term exposure to polystyrene nanoplastics in rats and the protective role of dihydrocaffeic acid. Sci. Total Environ. 2023, 874, 162101. [Google Scholar] [CrossRef] [PubMed]
- Sui, A.; Yao, C.; Chen, Y.; Li, Y.; Yu, S.; Qu, J.; Wei, H.; Tang, J.; Chen, G. Polystyrene nanoplastics inhibit StAR expression by activating HIF-1α via ERK1/2 MAPK and AKT pathways in TM3 Leydig cells and testicular tissues of mice. Food Chem. Toxicol. 2023, 173, 113634. [Google Scholar] [CrossRef] [PubMed]
- Di, M.; Wang, J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Sci. Total Environ. 2018, 616–617, 1620–1627. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Jiménez, P.D.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Amobonye, A.; Bhagwat, P.; Raveendran, S.; Singh, S.; Pillai, S. Environmental Impacts of Microplastics and Nanoplastics: A Current Overview. Front. Microbiol. 2021, 12, 768297. [Google Scholar] [CrossRef]
- Mattsson, K.; Hansson, L.A.; Cedervall, T. Nano-plastics in the aquatic environment. Environ. Sci. Process Impacts 2015, 17, 1712–1721. [Google Scholar] [CrossRef]
- Kik, K.; Bukowska, B.; Sicińska, P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ. Pollut. 2020, 262, 114297. [Google Scholar] [CrossRef]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef]
- Shan, S.; Zhang, Y.; Zhao, H.; Zeng, T.; Zhao, X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere 2022, 298, 134261. [Google Scholar] [CrossRef]
- Bergami, E.; Pugnalini, S.; Vannuccini, M.L.; Manfra, L.; Faleri, C.; Savorelli, F.; Dawson, K.A.; Corsi, I. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat. Toxicol. 2017, 189, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, G.; Abdullah, A.L.B.; Han, M.; Jiang, Q.; Li, Y. Transcriptomic analysis following polystyrene nanoplastic stress in the Pacific white shrimp, Litopenaeus vannamei. Fish. Shellfish. Immunol. 2023, 143, 109207. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 2016, 145, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Sarma, D.K.; Dubey, R.; Samarth, R.M.; Shubham, S.; Chowdhury, P.; Kumawat, M.; Verma, V.; Tiwari, R.R.; Kumar, M. The Biological Effects of Polystyrene Nanoplastics on Human Peripheral Blood Lymphocytes. Nanomaterials 2022, 12, 1632. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, N.; Lu, L.; Li, N.; Hu, T.; Guo, J.; Zhang, J.; Zeng, Z.; Liang, J. Aggregation behavior of polystyrene nanoplastics: Role of surface functional groups and protein and electrolyte variation. Chemosphere 2024, 350, 140998. [Google Scholar] [CrossRef]
- Guo, S.; Shi, H.; Qi, Y.; Tian, G.; Wang, T.; He, F.; Li, X.; Liu, R. Environmental relevant concentrations of polystyrene nanoplastics and lead co-exposure triggered cellular cytotoxicity responses and underlying mechanisms in Eisenia fetida. Sci. Total Environ. 2023, 905, 167264. [Google Scholar] [CrossRef]
- Teng, M.; Zhao, X.; Wu, F.; Wang, C.; Wang, C.; White, J.C.; Zhao, W.; Zhou, L.; Yan, S.; Tian, S. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior. Environ. Int. 2022, 163, 107154. [Google Scholar] [CrossRef]
- Paul, M.B.; Stock, V.; Cara-Carmona, J.; Lisicki, E.; Shopova, S.; Fessard, V.; Braeuning, A.; Sieg, H.; Böhmert, L. Micro- and nanoplastics—Current state of knowledge with the focus on oral uptake and toxicity. Nanoscale Adv. 2020, 2, 4350–4367. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Liu, J.; Wu, H.; Zhang, Q.; Tang, X.R.; Li, D.; Li, C.S.; Liu, Y.; Cao, A.; Wang, H. Endocytosis, Distribution, and Exocytosis of Polystyrene Nanoparticles in Human Lung Cells. Nanomaterials 2022, 13, 84. [Google Scholar] [CrossRef]
- Monti, D.M.; Guarnieri, D.; Napolitano, G.; Piccoli, R.; Netti, P.; Fusco, S.; Arciello, A. Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells. J. Biotechnol. 2015, 193, 3–10. [Google Scholar] [CrossRef]
- Phuc, L.T.M.; Taniguchi, A. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis. Int. J. Mol. Sci. 2017, 18, 1301. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Liang, J.; Wang, K.; Si, Q.; Zhu, C.; Zhao, Y.; Khan, N.A.K.; Abdullah, A.L.B.; Shau-Hwai, A.T.; Li, Y.M.; et al. Integrin A5B1-mediated endocytosis of polystyrene nanoplastics: Implications for human lung disease and therapeutic targets. Sci. Total Environ. 2024, 953, 176017. [Google Scholar] [CrossRef]
- Oberländer, J.; Champanhac, C.; da Costa Marques, R.; Landfester, K.; Mailänder, V. Temperature, concentration, and surface modification influence the cellular uptake and the protein corona of polystyrene nanoparticles. Acta Biomater. 2022, 148, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, J.; Chen, R.; Feng, Q.; Zhan, X. Cellular Process of Polystyrene Nanoparticles Entry into Wheat Roots. Environ. Sci. Technol. 2022, 56, 6436–6444. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Feng, Y.; Han, C.; Yao, Z.; Liu, Y.; Luo, C.; Sheng, J. Autophagic response of intestinal epithelial cells exposed to polystyrene nanoplastics. Environ. Toxicol. 2023, 38, 205–215. [Google Scholar] [CrossRef]
- Chen, Y.; Hua, Y.; Li, X.; Arslan, I.M.; Zhang, W.; Meng, G. Distinct Types of Cell Death and the Implication in Diabetic Cardiomyopathy. Front. Pharmacol. 2020, 11, 42. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, C.; Ma, Z.; Zeng, L.; Wang, H.; Cheng, X.; Zhang, C.; Xue, Y.; Yuan, Y.; Li, J.; et al. Co-exposure to polystyrene nanoplastics and triclosan induces synergistic cytotoxicity in human KGN granulosa cells by promoting reactive oxygen species accumulation. Ecotoxicol. Environ. Saf. 2024, 273, 116121. [Google Scholar] [CrossRef]
- Liu, J.; Xu, F.; Guo, M.; Gao, D.; Song, Y. Nasal instillation of polystyrene nanoplastics induce lung injury via mitochondrial DNA release and activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-signaling cascade. Sci. Total Environ. 2024, 948, 174674. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, C.; Liu, D.; Wang, Y.; Qi, H.; Liu, X.; Zhang, Y.; Chen, H.; Zeng, Y.; Li, J. Polystyrene nanoplastics-induced lung apoptosis and ferroptosis via ROS-dependent endoplasmic reticulum stress. Sci. Total Environ. 2024, 912, 169260. [Google Scholar] [CrossRef]
- Ding, R.; Chen, Y.; Shi, X.; Li, Y.; Yu, Y.; Sun, Z.; Duan, J. Size-dependent toxicity of polystyrene microplastics on the gastrointestinal tract: Oxidative stress related-DNA damage and potential carcinogenicity. Sci. Total Environ. 2024, 912, 169514. [Google Scholar] [CrossRef]
- Contino, M.; Ferruggia, G.; Indelicato, S.; Pecoraro, R.; Scalisi, E.M.; Bracchitta, G.; Dragotto, J.; Salvaggio, A.; Brundo, M.V. In Vitro Nano-Polystyrene Toxicity: Metabolic Dysfunctions and Cytoprotective Responses of Human Spermatozoa. Biology 2023, 12, 624. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yang, Y.; Lu, C.; Cheng, Y.; Jiang, X.; Yang, B.; Li, Y.; Chen, Q.; Ao, L.; Cao, J.; et al. Polystyrene nanoplastics exposure triggers spermatogenic cell senescence via the Sirt1/ROS axis. Ecotoxicol. Environ. Saf. 2024, 279, 116461. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, J.; Pan, H.; Zhu, J.; Wang, X.; Song, L.; Deng, H. A novel tiRNA-Glu-CTC induces nanoplastics accelerated vascular smooth muscle cell phenotypic switching and vascular injury through mitochondrial damage. Sci. Total Environ. 2024, 912, 169515. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Qiao, B.; He, Y.; Liu, H.; Hong, P.; Rao, G.; Tang, L.; Tang, Z.; Hu, L. Co-exposure of arsenic and polystyrene-nanoplastics induced kidney injury by disrupting mitochondrial homeostasis and mtROS-mediated ferritinophagy and ferroptosis. Pestic. Biochem. Physiol. 2024, 201, 105904. [Google Scholar] [CrossRef]
- Qiu, W.; Ye, J.; Su, Y.; Zhang, X.; Pang, X.; Liao, J.; Wang, R.; Zhao, C.; Zhang, H.; Hu, L.; et al. Co-exposure to environmentally relevant concentrations of cadmium and polystyrene nanoplastics induced oxidative stress, ferroptosis and excessive mitophagy in mice kidney. Environ. Pollut. 2023, 333, 121947. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, T.; Ge, Y.; Cheng, Y.; Yin, L.; Pu, Y.; Chen, Z.; Liang, G. Ferritinophagy Mediated by Oxidative Stress-Driven Mitochondrial Damage Is Involved in the Polystyrene Nanoparticles-Induced Ferroptosis of Lung Injury. ACS Nano 2023, 17, 24988–25004. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Yu, H.; Ye, L.; Li, T.; Zhang, X.; Wang, C.; Li, P.; Ji, H.; Gao, Q.; et al. Nanoplastics promote arsenic-induced ROS accumulation, mitochondrial damage and disturbances in neurotransmitter metabolism of zebrafish (Danio rerio). Sci. Total Environ. 2023, 863, 161005. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Z.; Gao, X.; Zhao, J.; Zhang, H. Polystyrene nanoparticles induced mammalian intestine damage caused by blockage of BNIP3/NIX-mediated mitophagy and gut microbiota alteration. Sci. Total Environ. 2024, 907, 168064. [Google Scholar] [CrossRef]
- Kantha, P.; Liu, S.T.; Horng, J.L.; Lin, L.Y. Acute exposure to polystyrene nanoplastics impairs skin cells and ion regulation in zebrafish embryos. Aquat. Toxicol. 2022, 248, 106203. [Google Scholar] [CrossRef]
- Xu, D.; Ma, Y.; Peng, C.; Gan, Y.; Wang, Y.; Chen, Z.; Han, X.; Chen, Y. Differently surface-labeled polystyrene nanoplastics at an environmentally relevant concentration induced Crohn’s ileitis-like features via triggering intestinal epithelial cell necroptosis. Environ. Int. 2023, 176, 107968. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, B.; Li, Z.; Zhong, Y.; Wang, B.; Zhang, B.; Du, J.; Ye, R.; Xian, H.; Min, W.; et al. Polystyrene nanoplastic exposure induces excessive mitophagy by activating AMPK/ULK1 pathway in differentiated SH-SY5Y cells and dopaminergic neurons in vivo. Part. Fibre Toxicol. 2023, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Barguilla, I.; Domenech, J.; Rubio, L.; Marcos, R.; Hernández, A. Nanoplastics and Arsenic Co-Exposures Exacerbate Oncogenic Biomarkers under an In Vitro Long-Term Exposure Scenario. Int. J. Mol. Sci. 2022, 23, 2958. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Li, D.; Guo, J.; Chen, J. Mechanistic toxicity assessment of differently sized and charged polystyrene nanoparticles based on human placental cells. Water Res. 2022, 223, 118960. [Google Scholar] [CrossRef] [PubMed]
- Martin-Folgar, R.; González-Caballero, M.C.; Torres-Ruiz, M.; Cañas-Portilla, A.I.; de Alba González, M.; Liste, I.; Morales, M. Molecular effects of polystyrene nanoplastics on human neural stem cells. PLoS ONE 2024, 19, e0295816. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yu, T.; Li, H.; Sun, Q.; Chen, M.; Lin, Y.; Dai, J.; Wang, W.; Li, Q.; Ju, S. Polystyrene nanoplastic exposure actives ferroptosis by oxidative stress-induced lipid peroxidation in porcine oocytes during maturation. J. Anim. Sci. Biotechnol. 2024, 15, 117. [Google Scholar] [CrossRef]
- Ge, Y.; Yang, S.; Zhang, T.; Gong, S.; Wan, X.; Zhu, Y.; Fang, Y.; Hu, C.; Yang, F.; Yin, L.; et al. Ferroptosis participated in inhaled polystyrene nanoplastics-induced liver injury and fibrosis. Sci. Total Environ. 2024, 916, 170342. [Google Scholar] [CrossRef]
- Wen, Y.; Deng, S.; Wang, B.; Zhang, F.; Luo, T.; Kuang, H.; Kuang, X.; Yuan, Y.; Huang, J.; Zhang, D. Exposure to polystyrene nanoplastics induces hepatotoxicity involving NRF2-NLRP3 signaling pathway in mice. Ecotoxicol. Environ. Saf. 2024, 278, 116439. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Zhong, Y.; Liang, B.; Yang, X.; Wang, Q.; Sui, H.; Huang, Z. Impact of food matrices on the characteristics and cellular toxicities of ingested nanoplastics in a simulated digestive tract. Food Chem. Toxicol. 2023, 179, 113984. [Google Scholar] [CrossRef]
- Zhao, M.; Xie, J.; Zhang, J.; Zhao, B.; Zhang, Y.; Xue, J.; Zhang, R.; Zhang, R.; Wang, H.; Li, Y.; et al. Disturbance of mitochondrial dynamics led to spermatogenesis disorder in mice exposed to polystyrene micro- and nanoplastics. Environ. Pollut. 2024, 362, 124935. [Google Scholar] [CrossRef]
- Weber, A.; Schwiebs, A.; Solhaug, H.; Stenvik, J.; Nilsen, A.M.; Wagner, M.; Relja, B.; Radeke, H.H. Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells. Environ. Int. 2022, 163, 107173. [Google Scholar] [CrossRef]
- Huang, J.; Sun, X.; Wang, Y.; Su, J.; Li, G.; Wang, X.; Yang, Y.; Zhang, Y.; Li, B.; Zhang, G.; et al. Biological interactions of polystyrene nanoplastics: Their cytotoxic and immunotoxic effects on the hepatic and enteric systems. Ecotoxicol. Environ. Saf. 2023, 264, 115447. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Choi, J.; Ryu, K.Y. Stress Response of Mouse Embryonic Fibroblasts Exposed to Polystyrene Nanoplastics. Int. J. Mol. Sci. 2021, 22, 2094. [Google Scholar] [CrossRef] [PubMed]
- Annangi, B.; Villacorta, A.; López-Mesas, M.; Fuentes-Cebrian, V.; Marcos, R.; Hernández, A. Hazard Assessment of Polystyrene Nanoplastics in Primary Human Nasal Epithelial Cells, Focusing on the Autophagic Effects. Biomolecules 2023, 13, 220. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhang, Y.; Fang, Y.; Zhong, H.; Wei, T.; Akhtar, H.; Zhang, J.; Yang, M.; Li, Y.; Zhou, X.; et al. Polystyrene nanoplastics induce lipophagy via the AMPK/ULK1 pathway and block lipophagic flux leading to lipid accumulation in hepatocytes. J. Hazard. Mater. 2024, 476, 134878. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y.; Lu, L.; Ren, H.Y.; Hua, W.; Zheng, N.; Huang, F.Y.; Wang, J.; Tian, M.; Huang, Q. The size-dependence and reversibility of polystyrene nanoplastics-induced lipid accumulation in mice: Possible roles of lysosomes. Environ. Int. 2024, 185, 108532. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Ye, S.; Su, Y.; Hu, D.; Xiao, F. Endogenous hydrogen sulfide counteracts polystyrene nanoplastics-induced mitochondrial apoptosis and excessive autophagy via regulating Nrf2 and PGC-1α signaling pathway in mouse spermatocyte-derived GC-2spd(ts) cells. Food Chem. Toxicol. 2022, 164, 113071. [Google Scholar] [CrossRef]
- Park, Y.H.; Jeong, S.H.; Yi, S.M.; Choi, B.H.; Kim, Y.R.; Kim, I.K.; Kim, M.K.; Son, S.W. Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization. Toxicol. In Vitro 2011, 25, 1863–1869. [Google Scholar] [CrossRef]
- Dorney, J.; Bonnier, F.; Garcia, A.; Casey, A.; Chambers, G.; Byrne, H.J. Identifying and localizing intracellular nanoparticles using Raman spectroscopy. Analyst 2012, 137, 1111–1119. [Google Scholar] [CrossRef]
- Xue, Y.; Cheng, X.; Ma, Z.Q.; Wang, H.P.; Zhou, C.; Li, J.; Zhang, D.L.; Hu, L.L.; Cui, Y.F.; Huang, J.; et al. Polystyrene nanoplastics induce apoptosis, autophagy, and steroidogenesis disruption in granulosa cells to reduce oocyte quality and fertility by inhibiting the PI3K/AKT pathway in female mice. J. Nanobiotechnol. 2024, 22, 460. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Li, Y.; Yao, C.; Qu, J.; Tang, J.; Chen, G.; Han, Y. Acute exposure to polystyrene nanoplastics induces unfolded protein response and global protein ubiquitination in lungs of mice. Ecotoxicol. Environ. Saf. 2024, 280, 116580. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Z.; Liu, Y.; Mei, A.; Wang, X.; Shi, Q. Cellular absorption of polystyrene nanoplastics with different surface functionalization and the toxicity to RAW264.7 macrophage cells. Ecotoxicol. Environ. Saf. 2023, 252, 114574. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y.; Li, H.; Ren, H.; Zhang, X.; Huang, F.; Zhang, D.; Huang, Q.; Zhang, X. Size-dependent effects of polystyrene nanoplastics on autophagy response in human umbilical vein endothelial cells. J. Hazard. Mater. 2022, 421, 126770. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, J.; Zheng, Q.; Wang, D.; Wang, H.; He, Y.; Wang, J.; Zhan, X. In vitro wheat protoplast cytotoxicity of polystyrene nanoplastics. Sci. Total Environ. 2023, 882, 163560. [Google Scholar] [CrossRef] [PubMed]
- Florance, I.; Chandrasekaran, N.; Gopinath, P.M.; Mukherjee, A. Exposure to polystyrene nanoplastics impairs lipid metabolism in human and murine macrophages in vitro. Ecotoxicol. Environ. Saf. 2022, 238, 113612. [Google Scholar] [CrossRef]
- Yan, L.; Yu, Z.; Lin, P.; Qiu, S.; He, L.; Wu, Z.; Ma, L.; Gu, Y.; He, L.; Dai, Z.; et al. Polystyrene nanoplastics promote the apoptosis in Caco-2 cells induced by okadaic acid more than microplastics. Ecotoxicol. Environ. Saf. 2023, 249, 114375. [Google Scholar] [CrossRef]
- Li, Y.; Guo, M.; Niu, S.; Shang, M.; Chang, X.; Sun, Z.; Zhang, R.; Shen, X.; Xue, Y. ROS and DRP1 interactions accelerate the mitochondrial injury induced by polystyrene nanoplastics in human liver HepG2 cells. Chem. Biol. Interact. 2023, 379, 110502. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, S.; Zhang, Q.; Zhou, W.; Liang, J.; Xu, Y.; Su, W. Protective effect of Cordycepin on blood-testis barrier against pre-puberty polystyrene nanoplastics exposure in male rats. Part. Fibre Toxicol. 2024, 21, 30. [Google Scholar] [CrossRef]
- Xuan, L.; Wang, Y.; Qu, C.; Yi, W.; Yang, J.; Pan, H.; Zhang, J.; Chen, C.; Bai, C.; Zhou, P.K.; et al. Exposure to polystyrene nanoplastics induces abnormal activation of innate immunity via the cGAS-STING pathway. Ecotoxicol. Environ. Saf. 2024, 275, 116255. [Google Scholar] [CrossRef]
- Mao, Z.; Zhong, K.; Liu, X.; Zeng, X. Ferroptosis contributes to cyclophosphamide-induced hemorrhagic cystitis. Chem. Biol. Interact. 2023, 384, 110701. [Google Scholar] [CrossRef]
- Liu, L.; Luo, C.; Zheng, D.; Wang, X.; Wang, R.; Ding, W.; Shen, Z.; Xue, P.; Yu, S.; Liu, Y.; et al. TRPML1 contributes to antimony-induced nephrotoxicity by initiating ferroptosis via chaperone-mediated autophagy. Food Chem. Toxicol. 2024, 184, 114378. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Zhao, T.; Sun, M.; Xu, M.; Che, S.; Pan, Z.; Wu, C.; Shen, L. Polystyrenenanoplastics lead to ferroptosis in the lungs. J. Adv. Res. 2024, 56, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, X.; Du, Z.; Geng, X.; Li, M.; Yang, X.; Bo, C.; Jia, Q.; Yu, G.; Shi, L. Inhibiting ferroptosis in brain microvascular endothelial cells: A potential strategy to mitigate polystyrene nanoplastics–induced blood–brain barrier dysfunction. Environ. Res. 2024, 250, 118506. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Han, H.; Yang, H.; Xu, B.; Dai, W.; Liu, L.; He, T.; Du, X.; Pei, X. Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice. J. Zhejiang Univ. Sci. B 2024, 25, 307–323. [Google Scholar] [CrossRef]
- Shi, B.; Xu, T.; Chen, T.; Xu, S.; Yao, Y. Co-exposure of decabromodiphenyl ethane and polystyrene nanoplastics damages grass carp (Ctenopharyngodon idella) hepatocytes: Focus on the role of oxidative stress, ferroptosis, and inflammatory reaction. Sci. Total Environ. 2024, 940, 173575. [Google Scholar] [CrossRef]
- Chen, J.; Yan, L.; Zhang, Y.; Liu, X.; Wei, Y.; Zhao, Y.; Li, K.; Shi, Y.; Liu, H.; Lai, W.; et al. Maternal exposure to nanopolystyrene induces neurotoxicity in offspring through P53-mediated ferritinophagy and ferroptosis in the rat hippocampus. J. Nanobiotechnol. 2024, 22, 651. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Hua, W.; Lu, L.; Tian, M.; Huang, Q. The size-dependence and reversibility of polystyrene nanoplastics-induced hepatic pyroptosis in mice through TXNIP/NLRP3/GSDMD pathway. Toxicol. Res. 2024, 13, tfae106. [Google Scholar] [CrossRef]
- Qin, Y.; Gu, T.; Ling, J.; Luo, J.; Zhao, J.; Hu, B.; Hua, L.; Wan, C.; Jiang, S. PFOS facilitates liver inflammation and steatosis: An involvement of NLRP3 inflammasome-mediated hepatocyte pyroptosis. J. Appl. Toxicol. 2022, 42, 806–817. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, Y.; Bai, H.; Shimizu, K.; Li, R.; Zhang, C. Investigation of pulmonary toxicity evaluation on mice exposed to polystyrene nanoplastics: The potential protective role of the antioxidant N-acetylcysteine. Sci. Total Environ. 2023, 855, 158851. [Google Scholar] [CrossRef]
- Chen, X.; Xuan, Y.; Chen, Y.; Yang, F.; Zhu, M.; Xu, J.; Chen, J. Polystyrene nanoplastics induce intestinal and hepatic inflammation through activation of NF-κB/NLRP3 pathways and related gut-liver axis in mice. Sci. Total Environ. 2024, 935, 173458. [Google Scholar] [CrossRef]
- Ye, J.; Qiu, W.; Pang, X.; Su, Y.; Zhang, X.; Huang, J.; Xie, H.; Liao, J.; Tang, Z.; Chen, Z.; et al. Polystyrene nanoplastics and cadmium co-exposure aggravated cardiomyocyte damage in mice by regulating PANoptosis pathway. Environ. Pollut. 2024, 347, 123713. [Google Scholar] [CrossRef]
- Halimu, G.; Zhang, Q.; Liu, L.; Zhang, Z.; Wang, X.; Gu, W.; Zhang, B.; Dai, Y.; Zhang, H.; Zhang, C.; et al. Toxic effects of nanoplastics with different sizes and surface charges on epithelial-to-mesenchymal transition in A549 cells and the potential toxicological mechanism. J. Hazard. Mater. 2022, 430, 128485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qin, Z.; Bai, H.; Xue, M.; Tang, J. Photochemically induced aging of polystyrene nanoplastics and its impact on norfloxacin adsorption behavior. Sci. Total Environ. 2024, 930, 172511. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Li, J.; Song, Z.; Zhang, C.; Guan, B. Toxicity of polystyrene nanoplastics to human embryonic kidney cells and human normal liver cells: Effect of particle size and Pb2+ enrichment. Chemosphere 2023, 328, 138545. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, X.; Xuan, Y.; Shen, H.; Tang, Y.; Zhang, T.; Xu, J. Surface functionalization-dependent inflammatory potential of polystyrene nanoplastics through the activation of MAPK/ NF-κB signaling pathways in macrophage Raw 264.7. Ecotoxicol. Environ. Saf. 2023, 251, 114520. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Wang, J.; Digiacomo, L.; Amici, A.; De Lorenzi, V.; Pugliese, L.A.; Cardarelli, F.; Cerrato, A.; Laganà, A.; Cui, L.; et al. Protein corona alleviates adverse biological effects of nanoplastics in breast cancer cells. Nanoscale 2024, 16, 16671–16683. [Google Scholar] [CrossRef]
- Domenech, J.; de Britto, M.; Velázquez, A.; Pastor, S.; Hernández, A.; Marcos, R.; Cortés, C. Long-Term Effects of Polystyrene Nanoplastics in Human Intestinal Caco-2 Cells. Biomolecules 2021, 11, 1442. [Google Scholar] [CrossRef]
- des Rieux, A.; Fievez, V.; Théate, I.; Mast, J.; Préat, V.; Schneider, Y.J. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 2007, 30, 380–391. [Google Scholar] [CrossRef]
- Esch, M.B.; Mahler, G.J.; Stokol, T.; Shuler, M.L. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 2014, 14, 3081–3092. [Google Scholar] [CrossRef]
- Walczak, A.P.; Kramer, E.; Hendriksen, P.J.; Helsdingen, R.; van der Zande, M.; Rietjens, I.M.; Bouwmeester, H. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Nanotoxicology 2015, 9, 886–894. [Google Scholar] [CrossRef]
- Fröhlich, E.; Bonstingl, G.; Höfler, A.; Meindl, C.; Leitinger, G.; Pieber, T.R.; Roblegg, E. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol. In Vitro 2013, 27, 409–417. [Google Scholar] [CrossRef]
- Meziu, E.; Shehu, K.; Koch, M.; Schneider, M.; Kraegeloh, A. Impact of mucus modulation by N-acetylcysteine on nanoparticle toxicity. Int. J. Pharm. X 2023, 6, 100212. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. Toward a unified framework for investigating micro(nano)plastics in packaged beverages intended for human consumption. Environ. Pollut. 2021, 268, 115811. [Google Scholar] [CrossRef] [PubMed]
- Cella, C.; La Spina, R.; Mehn, D.; Fumagalli, F.; Ceccone, G.; Valsesia, A.; Gilliland, D. Detecting Micro- and Nanoplastics Released from Food Packaging: Challenges and Analytical Strategies. Polymers 2022, 14, 1238. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Raghavendra, A.J.; Patri, A.K. Comprehensive analysis of common polymers using hyphenated TGA-FTIR-GC/MS and Raman spectroscopy towards a database for micro- and nanoplastics identification, characterization, and quantitation. NanoImpact 2023, 30, 100467. [Google Scholar] [CrossRef]
Biological Effect | Cell Type | PS-NPs Size (nm) | Effect Observed | Source |
---|---|---|---|---|
Oxidative Stress | KGN | 25 | Increased ROS, decreased SOD and CAT activity, elevated MDA, mitochondrial dysfunction, activation of NRF2-KEAP1-HO-1 pathway, inhibition of SESTRIN2. | [25] |
RAW264.7 | 70, 90 | Induced oxidative stress, inflammation. | [26] | |
BEAS-2B | 20 | Increased ROS, elevated MDA, ROS-dependent ER stress. | [27] | |
GES-1 | 80 | Reduced antioxidant enzyme activity, increased MDA, 8-OhdG, γ-H2AX, redox-dependent activation of β-catenin/YAP. | [28] | |
Mitochondrial Damage | VSMCs | 100 | Overexpression of ROS, accumulation of mutated mtDNA, dysregulation of genes related to mitochondrial synthesis and division. | [31] |
HPAEpiC BEAS-2B | 50 | Disturbance of mitochondrial structure and function, oxidative stress-derived mitochondrial damage. | [34] | |
Caco-2 | 100 | Mitochondrial stress, activation of PINK1/Parkin-mediated mitophagy, blockade of mitophagic flux, and induction of necroptosis. | [38] | |
DNA Damage | BEAS-2B | 80 | Induction of oxidative stress due to mitochondrial dysfunction, leading to DNA damage and inflammation. | [21] |
GC-1 | 80 | ROS-induced oxidative stress, activation of senescence-related signaling pathways (p53-p21/Rb-p16), and subsequent DNA damage. | [30] | |
MEF | 50 | Physical interaction between pollutants enhances oxidative DNA damage, leading to cell phenotype transformation. | [40] | |
JEG-3 | 25, 50 | Increased ROS, DNA damage, cell cycle arrest (G1/G2). | [41] | |
HhNS1 | 30 | Induced oxidative stress and cellular stress, leading to DNA damage, alterations in the inflammatory response, and apoptosis. | [42] | |
Inflammation | HepG2 | 40 | Increased ROS, activation of NF-κB pathway, and release of pro-inflammatory cytokines (IL-6, TNF-α). | [44] |
GC-2spd | 70 | Generation of ROS, inhibition of NRF2, activation of NLRP3 inflammasome, increased IL-1β, caspase-1, and NF-κB activation. | [45] | |
RAW264.7 AML-12 | 75, 90 20 | Activated cGAS-STING pathway, upregulation of inflammation-related factors (NLRP3, ASC, Caspase1 p20, IL-1β). | [47] | |
Autophagy | HIEC-6 | 100 | Impaired autophagic flux, triggering of autophagy. | [24] |
hESCs | 20, 100 | Increased iROS, decreased MMP, accumulation of LC3-II and p62, indicating defective autophagy. | [51] | |
HepG2 | 100 | PS-NPs activate autophagosome formation via ERK/mTOR, but impaired lysosomal function blocks autophagic flux, contributing to lipid accumulation. | [53] | |
Endoplasmic Reticulum Stress | BEAS-2B | 20 | Induced ER stress, protein misfolding, activation of UPR, upregulation of ubiquitin ligases (HRD1, CHIP). | [56] |
RAW264.7 | 100 | Induced ER stress, protein misfolding, oxidative stress, calcium imbalance, activation of UPR. | [57] | |
Membrane Damage | HUVECs | 100 | Caused cell membrane damage through internalization and aggregation, leading to lactate dehydrogenase release. | [58] |
Cell Death Type | Signaling Pathway | Signaling Molecule | Observed Cell Type | Source |
---|---|---|---|---|
Apoptosis | PERK/ATF-4 /CHOP | ROS, Calcium overload, Bax/Bcl-2 ratio, Caspase-3 | Caco-2 | [63] |
TLR4 | ROS, Bax/Bcl-2, Caspase-3 | HepG2 | [64] | |
Caspase-3 | ROS, Caspase-3 | Sertoli cells | [65] | |
NRF2-Keap1-HO-1 | ROS, Caspase-3 | KGN cells | [25] | |
cGAS-STING | Inflammatory cytokines, Caspase-3 | RAW264.7 | [66] | |
Ferroptosis | IRE1α | ROS, GPX4, Ferritin (FTH1), Iron overload | BEAS-2b | [67] |
PERK | ROS, GPX4, Ferritin (FTH1) | HepG2 | [44] | |
Nrf2 | GPX4, TFRC, DMT1 | GC-2 cells | [69] | |
Transferrin receptor (TFRC) | ROS, GPX4, Ferritin (FTH1) | bEnd.3 | [68] | |
Lipid peroxidation, Ferritinophagy | Porcine oocytes | [70] | ||
ROS, Lipid peroxidation, Ferritinophagy | Hippocampal neurons, | [71] | ||
Necroptosis | RIPK1, RIPK3, MLKL | ROS, NF-κB, Phosphorylated RIPK3 | hCMEC/D3 | [9] |
PINK1/Parkin | ROS, Mitophagy | IEC | [38] | |
ROS, Phosphorylated RIPK3 | HepG2 | [72] | ||
Pyroptosis | NLRP3 inflammasome | Caspase-1, IL-1β, TNF-α, IL-18, GSDMD | MLE-12 cells | [73] |
Caspase-1, GSDMD, IL-18 | Mouse cardiomyocytes | [75] | ||
IL-1β, TNF-α, GSDMD | HepG2 | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, W.; Cui, Y.; Jin, Y.; Wang, X.; Jiang, M.; Huang, R.; Egbobe, J.O.; Zhao, X.; Tang, J. Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells. Toxics 2024, 12, 908. https://doi.org/10.3390/toxics12120908
Bu W, Cui Y, Jin Y, Wang X, Jiang M, Huang R, Egbobe JO, Zhao X, Tang J. Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells. Toxics. 2024; 12(12):908. https://doi.org/10.3390/toxics12120908
Chicago/Turabian StyleBu, Wenxia, Ye Cui, Yueyuan Jin, Xuehai Wang, Mengna Jiang, Ruiyao Huang, JohnPaul Otuomasiri Egbobe, Xinyuan Zhao, and Juan Tang. 2024. "Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells" Toxics 12, no. 12: 908. https://doi.org/10.3390/toxics12120908
APA StyleBu, W., Cui, Y., Jin, Y., Wang, X., Jiang, M., Huang, R., Egbobe, J. O., Zhao, X., & Tang, J. (2024). Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells. Toxics, 12(12), 908. https://doi.org/10.3390/toxics12120908