Identification and Assessment of Toxic Substances in Environmental Justice Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Procedure for the Sequential Extraction of Heavy Metal Species
2.3. Analysis and Quality Control of the Data
2.4. Content and Speciation Indices
3. Results and Discussion
3.1. Total Contents and Speciation of Heavy Metals in the Solid Waste Samples
3.2. Risk Assessment of Selected Heavy Metals in Solid Wastes
3.2.1. Risk Assessment of Each Individual Metal
3.2.2. Risk Assessment of Multiple Heavy Metals in Solid Wastes
3.3. Correlations Between the Total Content and the Speciation Index Approaches
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeo, R.J.; Sng, A.; Wang, C.; Tao, L.; Zhu, Q.; Bu, J. Strategies for Heavy Metals Immobilization in Municipal Solid Waste Incineration Bottom Ash: A Critical Review. Rev. Environ. Sci. Biotechnol. 2024, 23, 503–568. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, X.; Hong, W.; Khalid, Z.; Lv, G.; Jiang, X. Leaching Behavior and Comprehensive Toxicity Evaluation of Heavy Metals in MSWI Fly Ash from Grate and Fluidized Bed Incinerators Using Various Leaching Methods: A Comparative Study. Sci. Total Environ. 2024, 914, 169595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, Y.; Li, Y.; Zhou, R.; Yu, H.; Zhu, X.; Quan, H.; Li, Y. Risk Assessment for the Long-Term Stability of Fly Ash-Based Cementitious Material Containing Arsenic: Dynamic and Semidynamic Leaching. Environ. Pollut. 2024, 345, 123361. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yin, H.; Zhu, T.; Zhuang, W. Understanding the Role of Manganese Oxides in Retaining Harmful Metals: Insights into Oxidation and Adsorption Mechanisms at Microstructure Level. Eco-Environ. Health 2024, 3, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Kow, K.-W.; Wang, W.; Meredith, W.; Zhang, G.; Mao, Y.; Xu, M. Co-Treatment of Municipal Solid Waste Incineration Fly Ash and Alumina-/Silica-Containing Waste: A Critical Review. J. Hazard. Mater. 2024, 479, 135677. [Google Scholar] [CrossRef]
- Mulyono, A.; Setiawan, I.; Hidayat, E.; Noviardi, R. Distribution and Potential Contamination Assessment of Rare Earth Elements (REE) in Indonesian Volcanic Soil. Ecol. Front. 2024, 44, 33–41. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Yang, B.; Li, X.; Wang, P.; Yuan, B.; Wang, M.; Liang, T.; Shi, P.; Li, R.; et al. Major Influencing Factors Identification and Probabilistic Health Risk Assessment of Soil Potentially Toxic Elements Pollution in Coal and Metal Mines across China: A Systematic Review. Ecotoxicol. Environ. Saf. 2024, 274, 116231. [Google Scholar] [CrossRef]
- Bartkowiak, A.; Lemanowicz, J.; Rydlewska, M.; Sowiński, P. The Impact of Proximity to Road Traffic on Heavy Metal Accumulation and Enzyme Activity in Urban Soils and Dandelion. Sustainability 2024, 16, 812. [Google Scholar] [CrossRef]
- Ma, J.; Shen, Z.; Jiang, Y.; Liu, P.; Sun, J.; Li, M.; Feng, X. Potential Ecological Risk Assessment for Trace Metal(Loid)s in Soil Surrounding Coal Gangue Heaps Based on Source-Oriented. Sci. Total Environ. 2024, 954, 176465. [Google Scholar] [CrossRef]
- Wu, C.; Sun, B.; Tian, M.; Cheng, X.; Liu, D.; Zhou, Y. Enrichment Characteristics and Ecological Risk Assessment of Heavy Metals in a Farmland System with High Geochemical Background in the Black Shale Region of Zhejiang, China. Minerals 2024, 14, 375. [Google Scholar] [CrossRef]
- Chandra, G.V.; Golla, S.Y.; Ghosh, P.K. Review of Soil Environment Quality in India near Coal Mining Regions: Current and Future Predictions. Environ. Geochem. Health 2024, 46, 194. [Google Scholar] [CrossRef] [PubMed]
- Angon, P.B.; Islam, M.S.; KC, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, Effects and Present Perspectives of Heavy Metals Contamination: Soil, Plants and Human Food Chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef] [PubMed]
- Robledo Ardila, P.A.; Álvarez-Alonso, R.; Árcega-Cabrera, F.; Durán Valsero, J.J.; Morales García, R.; Lamas-Cosío, E.; Oceguera-Vargas, I.; DelValls, A. Assessment and Review of Heavy Metals Pollution in Sediments of the Mediterranean Sea. Appl. Sci. 2024, 14, 1435. [Google Scholar] [CrossRef]
- Ardila, P.A.R.; Alonso, R.Á.; Valsero, J.J.D.; García, R.M.; Cabrera, F.Á.; Cosío, E.L.; Laforet, S.D. Assessment of Heavy Metal Pollution in Marine Sediments from Southwest of Mallorca Island, Spain. Environ. Sci. Pollut. Res. 2023, 30, 16852–16866. [Google Scholar] [CrossRef]
- GB 36600-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land. Ministry of Ecology and Environment: Beijing, China, 2018.
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- HJ 702-2014; Solid WasteDetermination of Mercury, Arsenic, Selenium, Bismuth, Antimony-Microwave Dissolution Atomic Fluorescence Spectrometry. China Environmental Science Press: Beijing, China, 2014.
- HJ 781-2016; Solid Waste-Determination of 22 Metal Elements Inductively Coupled Plasma Optical Emission Spectrometry. China Environmental Science Press: Beijing, China, 2016.
- HJ 687-2014; Solid Waste-Determination of Hexavalent Chromium by Alkaline Digestion/Flame Atomic Absorption Spectrophotometic. China Environmental Science Press: Beijing, China, 2014.
- HJ/T 166-2004; The Technical Specification for Soil Environmental Monitoring. China Environmental Science Press: Beijing, China, 2004.
- Kwon, Y.-T.; Lee, C.-W. Application of Multiple Ecological Risk Indices for the Evaluation of Heavy Metal Contamination in a Coastal Dredging Area. Sci. Total Environ. 1998, 214, 203–210. [Google Scholar] [CrossRef]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xiao, D.; Li, H.; Wang, Y.; Wen, G.; Wang, C. Distribution Characteristics of Typical Heavy Metals in Sludge from Wastewater Plants in Jiangsu Province (China) and Their Potential Risks. Water 2023, 15, 313. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Karadendrou, K.; Ioannou, D.; Karadendrou, M.-A.; Detsi, A.; Kalderis, D.; Massas, I.; Gasparatos, D. Effects of Biochars Derived from Sewage Sludge and Olive Tree Prunings on Cu Fractionation and Mobility in Vineyard Soils over Time. Land 2023, 12, 416. [Google Scholar] [CrossRef]
- Lyubomirova, V.; Belovezhdova, I.; Djingova, R.; Petrov, P.; Todorova, E. Panoramic Semiquantitave Analysis for Multielement Characterization of Liquid and Solid Waste Samples. Processes 2023, 11, 3379. [Google Scholar] [CrossRef]
- Wu, W.; Ruan, X.; Gu, C.; Luo, G.; Ye, J.; Diao, F.; Wu, L.; Luo, M. Blood-Cerebrospinal Fluid Barrier Permeability of Metals/Metalloids and Its Determinants in Pediatric Patients. Ecotoxicol. Environ. Saf. 2023, 266, 115599. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Lou, Z.; Xiao, R.; Lv, X.; Christakos, G. Contamination and Health Risk Assessment of Heavy Metal Pollution in Soils Developed from Different Soil Parent Materials. Expo. Health 2023, 15, 395–408. [Google Scholar] [CrossRef]
Index | Equation | Category | Description and Abbreviations |
---|---|---|---|
Index of geoaccumulation (Igeo): Contamination of single-metal (total content index) | is the measured content of metal n, is the background value, constant 1.5 is used to analyze the natural fluctuations and very small anthropogenic influences. | Igeo ≤ 1 | Low (I) |
1 < Igeo ≤ 3 | Moderate (II) | ||
3 < Igeo ≤ 5 | Considerable (III) | ||
5 < Igeo | High (IV) | ||
Contamination factor (CF): Contamination of Single-metal (total content index) | is the measured content of metal n, is the background value. | CF ≤ 1 | Low (I) |
1 < CF ≤ 3 | Moderate (II) | ||
3 < CF ≤ 6 | Considerable (III) | ||
6 < CF | High (IV) | ||
Individual contamination factors (ICF): Contamination of Single-metal (speciation index) | ICF for the various samples are obtained by dividing the sum of the four fractions (exchangeable, carbonate, reducible oxides, organic matter) by the residual fraction. | ICF ≤ 1 | Low (I) |
1 < ICF ≤ 3 | Moderate (II) | ||
3 < ICF ≤ 6 | Considerable (III) | ||
6 < ICF | High (IV) | ||
Degree of contamination (DC): Contamination of Multi-metal (total content index) | CF is the contamination factor of metals. | DC ≤ 6 | Low (I) |
6 < DC ≤ 12 | Moderate (II) | ||
12 < DC ≤ 24 | Considerable (III) | ||
24 < DC | High (IV) | ||
Global contamination factor (GCF): Contamination of Multi-metal (speciation index) | ICF is the individual contamination factor of metals. | GCF ≤ 6 | Low (I) |
6 < GCF ≤ 12 | Moderate (II) | ||
12 < GCF ≤ 24 | Considerable (III) | ||
24 < GCF | High (IV) | ||
Potential ecological risk factor (ER): Ecological Risk of Single-metal (total content index) | is the toxic response factor of elements. is the contamination factor of elements. | ER ≤ 40 | Low (I) |
40 < ER ≤ 80 | Moderate (II) | ||
80 < ER ≤ 160 | Considerable (III) | ||
160 < ER | High (IV) | ||
Risk assessment code (RAC): Ecological Risk of Single-metal (speciation index) | EXC% and CARB% are percentages of metals in exchangeable and carbonate fractions. | RAC ≤ 10% | Low (I) |
10% < RAC ≤ 30% | Moderate (II) | ||
30% < RAC ≤ 50% | Considerable (III) | ||
50% < RAC | High (IV) | ||
Risk index (RI): Ecological Risk of Multi-metal (total content index) | ER is potential ecological risk factor of metals. | RI ≤ 150 | Low (I) |
150 < RI ≤ 300 | Moderate (II) | ||
300 < RI ≤ 600 | Considerable (III) | ||
600 < RI | High (IV) | ||
Global risk index (GRI): Ecological Risk of Multi-metal (speciation index) | ICF is individual contamination factor of elements. | GRI ≤ 150 | Low (I) |
150 < GRI ≤ 300 | Moderate (II) | ||
300 < GRI ≤ 600 | Considerable (III) | ||
600 < GRI | High (IV) |
Hg | Pb | Cr (VI) | Cu | Ni | Cd | As | ||
---|---|---|---|---|---|---|---|---|
S1 | Total | 0.016 | 1340 | 1.1 | 1260 | 2260 | 0.05 | 237 |
F1 | ND | 13.0 | ND | 4.10 | ND | ND | 4.40 | |
F2 | 0.010 | 15.0 | 0.5 | 3.30 | 18.1 | 0.02 | 8.20 | |
F3 | ND | 242 | ND | 335 | 684 | 0.02 | 44.0 | |
F4 | ND | 552 | ND | 537 | 522 | ND | 87.2 | |
F5 | 0.0020 | 337 | 0.8 | 460 | 673 | 0.01 | 112 | |
R, % | 0.75 | 0.83 | 1.2 | 1.06 | 0.84 | 1.00 | 1.08 | |
S2 | Total | 0.097 | 34.0 | 1.5 | 53.0 | 28.0 | 2.60 | 21.1 |
F1 | ND | ND | ND | ND | ND | ND | ND | |
F2 | 0.022 | ND | ND | ND | ND | ND | ND | |
F3 | ND | 6.10 | 0.5 | 8.10 | 4.00 | 0.40 | 5.30 | |
F4 | ND | 7.00 | ND | 17.0 | 8.00 | 0.60 | 9.29 | |
F5 | 0.016 | 15.2 | 0.8 | 36.0 | 13.0 | 1.20 | 8.42 | |
R, % | 0.39 | 0.82 | 0.87 | 1.15 | 0.89 | 0.85 | 1.05 | |
S3 | Total | 0.12 | 540 | 43 | 668 | 693 | 48.1 | 18.1 |
F1 | ND | 1.10 | 2.3 | 6.20 | 9.10 | ND | ND | |
F2 | 0.027 | 3.00 | 3.0 | 12.0 | 3.20 | 2.04 | ND | |
F3 | ND | 84.2 | 6.1 | 75.0 | 77.0 | 6.20 | 4.30 | |
F4 | ND | 45.0 | 11 | 114 | 127 | 8.12 | 4.21 | |
F5 | 0.050 | 327 | 22 | 359 | 384 | 28.5 | 9.39 | |
R, % | 0.64 | 0.85 | 1.0 | 0.85 | 0.87 | 0.92 | 0.94 | |
S4 | Total | 0.090 | 228 | 2.7 | 115 | 480 | 4.40 | 29.3 |
F1 | ND | 22.0 | 0.7 | 9.30 | 30.4 | 1.14 | 8.21 | |
F2 | 0.030 | 28.2 | 0.9 | 12.1 | 26.2 | 0.60 | 4.05 | |
F3 | ND | 104 | 0.7 | 44.0 | 169 | 1.40 | 3.07 | |
F4 | ND | 85.0 | 1.5 | 59.0 | 185 | 0.61 | 11.2 | |
F5 | 0.0060 | 56.2 | 0.5 | 38.0 | 94.4 | 0.93 | 6.44 | |
R, % | 0.40 | 1.29 | 1.59 | 1.41 | 1.05 | 1.05 | 1.10 | |
Background value | / | 0.057 | 31.0 | 0.5 | 22.1 | 23.0 | 0.18 | 5.25 |
Screening value | / | 38 | 800 | 5.7 | 18,000 | 900 | 65 | 60 |
Toxic response factors | / | 40 | 5 | 40 | 5 | 5 | 30 | 10 |
Contamination Degree | Ecological Risk | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Speciation Index | Total Content Index | Speciation Index | Total Content Index | ||||||||
ICF | Class | Igeo | Class | CF | Class | RAC | Class | ER | Class | ||
S1 | Hg | 5.00 | III | −2.42 | I | 0.28 | I | 0.83 | IV | 11.23 | I |
Pb | 2.44 | II | 4.91 | III | 45.10 | IV | 0.02 | I | 225.48 | IV | |
Cr (VI) | 0.63 | I | 0.55 | I | 2.20 | II | 0.38 | III | 88.00 | III | |
Cu | 1.91 | II | 5.25 | IV | 57.27 | IV | 0.01 | I | 286.36 | IV | |
Ni | 1.82 | II | 6.04 | IV | 98.48 | IV | 0.01 | I | 492.39 | IV | |
Cd | 4.00 | III | −2.43 | I | 0.28 | I | 0.40 | III | 8.33 | I | |
As | 1.28 | II | 4.91 | III | 45.14 | IV | 0.05 | I | 451.43 | IV | |
S2 | Hg | 1.38 | II | 0.18 | I | 1.70 | II | 0.58 | IV | 68.07 | II |
Pb | 0.87 | I | −0.45 | I | 1.10 | II | 0.00 | I | 5.48 | I | |
Cr (VI) | 0.63 | I | 1.00 | II | 3.00 | III | 0.00 | I | 120.00 | III | |
Cu | 0.69 | I | 0.68 | I | 2.41 | II | 0.00 | I | 12.05 | I | |
Ni | 0.92 | I | −0.30 | I | 1.22 | II | 0.00 | I | 6.09 | I | |
Cd | 0.83 | I | 3.27 | III | 14.44 | IV | 0.00 | I | 433.33 | IV | |
As | 1.75 | II | 1.42 | II | 4.00 | III | 0.00 | I | 40.00 | II | |
S3 | Hg | 0.54 | I | 0.49 | I | 2.11 | II | 0.35 | III | 84.21 | III |
Pb | 0.41 | I | 3.54 | III | 17.42 | IV | 0.01 | I | 87.10 | III | |
Cr (VI) | 1.00 | II | 5.84 | IV | 86.00 | IV | 0.11 | II | 3440.00 | IV | |
Cu | 0.58 | I | 4.34 | III | 30.36 | IV | 0.03 | I | 151.82 | III | |
Ni | 0.56 | I | 4.33 | III | 30.13 | IV | 0.02 | I | 150.65 | III | |
Cd | 0.57 | I | 7.47 | IV | 266.67 | IV | 0.05 | I | 8000.00 | IV | |
As | 0.89 | I | 1.19 | II | 3.43 | III | 0.00 | I | 34.29 | I | |
S4 | Hg | 5.00 | III | 0.07 | I | 1.58 | II | 0.83 | IV | 63.16 | II |
Pb | 4.27 | III | 2.29 | II | 7.35 | IV | 0.17 | II | 36.77 | I | |
Cr (VI) | 7.60 | IV | 1.85 | II | 5.40 | III | 0.37 | III | 216.00 | IV | |
Cu | 3.26 | III | 1.80 | II | 5.23 | III | 0.13 | II | 26.14 | I | |
Ni | 4.36 | III | 3.80 | III | 20.87 | IV | 0.11 | II | 104.35 | III | |
Cd | 4.11 | III | 4.03 | III | 24.44 | IV | 0.37 | III | 733.33 | IV | |
As | 4.33 | III | 1.88 | II | 5.52 | III | 0.38 | III | 55.24 | II |
Contamination | Ecological Risk | |||||||
---|---|---|---|---|---|---|---|---|
Speciation Index | Total Content Index | Speciation Index | Total Content Index | |||||
GCF | Degree | DC | Degree | GRI | Degree | RI | Degree | |
S1 | 17.07 | III | 248.75 | IV | 388.61 | III | 1563.23 | IV |
S2 | 7.07 | II | 27.87 | IV | 134.92 | I | 685.02 | IV |
S3 | 4.55 | I | 436.11 | IV | 95.36 | I | 11,948.06 | IV |
S4 | 32.94 | IV | 70.40 | IV | 730.13 | IV | 1234.99 | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, D.; Zhang, J.; Zhao, Z.; Hua, J.; Wang, Y.; Zhang, H.; Yu, Q. Identification and Assessment of Toxic Substances in Environmental Justice Cases. Toxics 2024, 12, 900. https://doi.org/10.3390/toxics12120900
Xu X, Zhang D, Zhang J, Zhao Z, Hua J, Wang Y, Zhang H, Yu Q. Identification and Assessment of Toxic Substances in Environmental Justice Cases. Toxics. 2024; 12(12):900. https://doi.org/10.3390/toxics12120900
Chicago/Turabian StyleXu, Xiaowei, Dapeng Zhang, Jun Zhang, Zehua Zhao, Jing Hua, Yi Wang, Houhu Zhang, and Qi Yu. 2024. "Identification and Assessment of Toxic Substances in Environmental Justice Cases" Toxics 12, no. 12: 900. https://doi.org/10.3390/toxics12120900
APA StyleXu, X., Zhang, D., Zhang, J., Zhao, Z., Hua, J., Wang, Y., Zhang, H., & Yu, Q. (2024). Identification and Assessment of Toxic Substances in Environmental Justice Cases. Toxics, 12(12), 900. https://doi.org/10.3390/toxics12120900