Heavy Metal Distribution in Aquatic Products from Eastern Guangdong and Associated Health Risk Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Sample Analysis
2.3. Quality Assurance and Quality Control (QA/QC)
2.4. Questionnaire Design
2.5. Heavy Metal Pollution and Health Risk Assessment
2.6. Data Analysis and Statistics
3. Results and Discussion
3.1. Accumulation of Heavy Metals in the Edible Tissues of Aquatic Products
3.2. Analysis of Heavy Metal Content in Fish Tissues (Muscle, Gill, Liver)
3.3. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golden, C.D.; Koehn, J.Z.; Shepon, A.; Passarelli, S.; Free, C.M.; Viana, D.F.; Matthey, H.; Eurich, J.G.; Gephart, J.A.; Fluet-Chouinard, E.; et al. Aquatic foods to nourish nations. Nature 2021, 598, 315–320. [Google Scholar] [CrossRef]
- Wang, Q.; Chu, L.; Peng, F.; Li, J.-Y.; Chen, H.; Jin, L. Contribution of aquatic products consumption to total human exposure to PAHs in Eastern China: The source matters. Environ. Pollut. 2020, 266, 115339. [Google Scholar] [CrossRef]
- Li, J.; Lu, H.; Zhu, J.; Wang, Y.; Li, X. Aquatic products processing industry in China: Challenges and outlook. Trends Food Sci. Technol. 2009, 20, 73–77. [Google Scholar] [CrossRef]
- Solarin, S.A. Convergence of aquatic products consumption: A disaggregated analysis in European countries. Mar. Policy 2024, 165, 106192. [Google Scholar] [CrossRef]
- Baby, J.; Raj, J.; Biby, E.; Sankarganesh, P.; Jeevitha, M.; Ajisha, S.; Rajan, S. Toxic effect of heavy metals on aquatic environment. Int. J. Biol. Chem. Sci. 2011, 4. [Google Scholar] [CrossRef]
- Vajargah, M.F. A Review on the Effects of Heavy Metals on Aquatic Animals. J. Biomed. Res. Environ. Sci. 2021, 2, 865–869. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Yuan, Z.; Liu, H.; Lam, P.K. Heavy metals (As, Hg and V) and stable isotope ratios (δ13C and δ15N) in fish from Yellow River Estuary, China. Sci. Total Environ. 2018, 613, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, B.; Ebrahimpour, M.; Babaei, H. Bioaccumulation and elimination of nickel in the organs of black fish (Capoeta fusca). Toxicol. Ind. Health 2011, 28, 361–368. [Google Scholar] [CrossRef]
- Shafi, N.; Pandit, A.K.; Kamili, A.N.; Mushtaq, B. Heavy metal accumulation by azollapinnata of dal lake ecosystem, India. Development 2015, 1, 8–12. [Google Scholar]
- Tao, Y.; Yuan, Z.; Wei, M.; Xiaona, H. Characterization of heavy metals in water and sediments in Taihu Lake, China. Environ. Monit. Assess. 2011, 184, 4367–4382. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yanwen, Q.; Zheng, B.; Zhang, L. Heavy metal pollution in Tianjin Bohai bay, China. J. Environ. Sci. 2008, 20, 814–819. [Google Scholar]
- Liu, J.-L.; Xu, X.-R.; Ding, Z.-H.; Peng, J.-X.; Jin, M.-H.; Wang, Y.-S.; Hong, Y.-G.; Yue, W.-Z. Heavy metals in wild marine fish from South China Sea: Levels, tissue-and species-specific accumulation and potential risk to humans. Ecotoxicology 2015, 24, 1583–1592. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-G.; Lin, Q.; Wang, X.-H.; Du, F.-Y.; Yu, Z.-L.; Huang, H.-H. Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks. Mar. Pollut. Bull. 2015, 96, 508–512. [Google Scholar] [CrossRef]
- Kwok, C.; Liang, Y.; Wang, H.; Dong, Y.; Leung, S.; Wong, M. Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China. Ecotoxicol. Environ. Saf. 2014, 106, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Loaiza, I.; De Troch, M.; De Boeck, G. Potential health risks via consumption of six edible shellfish species collected from Piura–Peru. Ecotoxicol. Environ. Saf. 2018, 159, 249–260. [Google Scholar] [CrossRef]
- Rainbow, P.S.; Furness, R.W. Heavy Metals in the Marine Environment; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Das, K.; Debacker, V.; Pillet, S.; Bouquegneau, J.-M. Heavy Metals in Marine Mammals; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Shah, S.B. Heavy metals in the marine environment—An overview. In Heavy Metals in Scleractinian Corals; Springer: Cham, Switzerland, 2021; pp. 1–26. Available online: https://link.springer.com/chapter/10.1007/978-3-030-73613-2_1 (accessed on 13 November 2024).
- Ansari, T.; Marr, I.; Tariq, N. Heavy Metals in Marine Pollution Perspective—A Mini Review. J. Appl. Sci. 2003, 4, 1–20. [Google Scholar] [CrossRef]
- Furness, R.W.; Rainbow, P.S. Heavy Metals in the Marine Environment; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Basel, Swizerland, 2012; pp. 133–164. [Google Scholar]
- Mohammed, A.S.; Kapri, A.; Goel, R. Heavy metal pollution: Source, impact, and remedies. In Biomanagement of Metal-Contaminated Soils; Springer: Dordrecht, The Netherlands, 2011; pp. 1–28. Available online: https://link.springer.com/chapter/10.1007/978-94-007-1914-9_1 (accessed on 13 November 2024).
- Liu, M.; Xu, Y.; Nawab, J.; Rahman, Z.; Khan, S.; Idress, M.; Ali, A.; Ahmad, R.; Khan, S.A.; Khan, A. Contamination features, geo-accumulation, enrichments and human health risks of toxic heavy metal (loids) from fish consumption collected along Swat river, Pakistan. Environ. Technol. Innov. 2020, 17, 100554. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Liu, Y.; Zhang, X.; Ravikumar, B.; Bai, G.; Li, X. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 2018, 191, 626–638. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, X.; Zhou, Y.; Qi, Z.; Liu, K.; Fang, Y.; Ning, Y. Evolutionary pattern and influencing factors of the aquaculture development in the Guangdong-Hong Kong-Macao Greater Bay area during 1986–2020. Ecol. Indic. 2024, 161, 111952. [Google Scholar] [CrossRef]
- Li, P.; Feng, X.; Liang, P.; Chan, H.M.; Yan, H.; Chen, L. Mercury in the seafood and human exposure in coastal area of Guangdong province, South China. Environ. Toxicol. Chem. 2012, 32, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Leung, J.Y.; Su, C.; Liu, J.; Li, J.; Chen, Y.; Shi, J.; Wong, M.H. Improper toy waste handling can harm human health via seafood consumption: A comprehensive health risk assessment of heavy metals. Environ. Res. 2024, 262, 119804. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.-W. Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China. Estuar. Coast. Shelf Sci. 2015, 163, 7–14. [Google Scholar] [CrossRef]
- Liu, B.; Lv, L.; An, M.; Wang, T.; Li, M.; Yu, Y. Heavy metals in marine food web from Laizhou Bay, China: Levels, trophic magnification, and health risk assessment. Sci. Total Environ. 2022, 841, 156818. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, L.; Dou, S. Trophic transfer, biomagnification and risk assessments of four common heavy metals in the food web of Laizhou Bay, the Bohai Sea. Sci. Total Environ. 2019, 670, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Kim, J.-E.; Islam, A.R.M.T.; Bilal, M.; Rakib, R.J.; Nandi, R.; Rahman, M.M.; Islam, T. Heavy metals contamination and associated health risks in food webs—A review focuses on food safety and environmental sustainability in Bangladesh. Environ. Sci. Pollut. Res. 2021, 29, 3230–3245. [Google Scholar] [CrossRef]
- Djedjibegovic, J.; Marjanovic, A.; Tahirovic, D.; Caklovica, K.; Turalic, A.; Lugusic, A.; Omeragic, E.; Sober, M.; Caklovica, F. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Sci. Rep. 2020, 10, 13238. [Google Scholar] [CrossRef]
- EFSA Dietetic Products, N. and Allergies. Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury. EFSA J. 2014, 12, 3761. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Z.; Zhang, J.; Jiang, Z.; Wang, F.; Huang, X. Toxic heavy metals in sediments, seawater, and molluscs in the eastern and western coastal waters of Guangdong Province, South China. Environ. Monit. Assess. 2016, 188, 313. [Google Scholar] [CrossRef]
- Qing-Mei, Z.; Xing-Long, L.; Jiang-Shan, G.; Yan-Mei, Z.; Chun-Yan, H. Analysis of heavy metal concentrations in marine economic shellfish from eastern Guangdong Province and its health risk. J. Agric. Resour. Environ. 2019, 36, 105. [Google Scholar]
- Yu, X.; Sun, L.; Zhu, X.; Bian, G.; Zhou, W.; Cao, Q.; Hong, M. Distribution characteristics and risk assessment of heavy metals in seawater, sediment and shellfish in the inner and outer Daya Bay, Guangdong. Front. Mar. Sci. 2022, 9, 1064287. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Z.; Zhang, J.; Jiang, Z.; Wang, F.; Huang, X. Spatial and seasonal characteristics of dissolved heavy metals in the east and west Guangdong coastal waters, South China. Mar. Pollut. Bull. 2015, 95, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, T. Assessment on pollution of heavy metals in seafood of Tuolin Harbor in east of Guangdong Province. Mar. Environ. Sci. 2011, 30, 4. [Google Scholar]
- Yi, B.; Zhou, P.; Zhou, J.; Li, H.; Zhang, H.; Wu, L.; Li, D.; Lai, Z.; Fang, H.; Huang, C. Distribution and quality assessment of Hg, Pb, Cd and As in marine organisms from Daya Bay during 2007–2010. Mar. Environ. Sci. 2014, 33, 226–231. [Google Scholar]
- Hu, S.; Su, Z.; Jiang, J.; Huang, W.; Liang, X.; Hu, J.; Chen, M.; Cai, W.; Wang, J.; Zhang, X. Lead, cadmium pollution of seafood and human health risk assessment in the coastline of the southern China. Stoch. Environ. Res. Risk Assess. 2015, 30, 1379–1386. [Google Scholar] [CrossRef]
- GB2762-2022; National Food Safety Standard of Limits for Contaminants in Food. National Health Commission of the Peolple’s Republic of China: Beijing, China, 2022.
- Copat, C.; Vinceti, M.; D’Agati, M.G.; Arena, G.; Mauceri, V.; Grasso, A.; Fallico, R.; Sciacca, S.; Ferrante, M. Mercury and selenium intake by seafood from the Ionian Sea: A risk evaluation. Ecotoxicol. Environ. Saf. 2014, 100, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Özden, Ö.; Erkan, N. Evaluation of Risk Characterization for Mercury, Cadmium, Lead and Arsenic Associated with Seafood Consumption in Turkey. Expo. Health 2015, 8, 43–52. [Google Scholar] [CrossRef]
- Rumisha, C.; Leermakers, M.; Mdegela, R.H.; Kochzius, M.; Elskens, M. Bioaccumulation and public health implications of trace metals in edible tissues of the crustaceans Scylla serrata and Penaeus monodon from the Tanzanian coast. Environ. Monit. Assess. 2017, 189, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sloth, J.J.; Julshamn, K. Survey of Total and Inorganic Arsenic Content in Blue Mussels (Mytilus edulis L.) from Norwegian Fiords: Revelation of Unusual High Levels of Inorganic Arsenic. J. Agric. Food Chem. 2008, 56, 1269–1273. [Google Scholar] [CrossRef]
- Zenghuan, W.; Qin, L.; Xunuo, W.; Meilan, Y. Analysis of heavy metal contents in marine organisms from Daya Bay. South. China Fish. Sci. 2009, 5, 23–28. [Google Scholar]
- Zhang, X.; Shao, L.; Lian, B. Accumulation characteristics and safety evaluation of heavy metals in four kinds of aquatic products from Lake Taihu. Asian Agric. Res. 2018, 10, 36–43. [Google Scholar]
- Bustamante, P.; Cosson, R.; Gallien, I.; Caurant, F.; Miramand, P. Cadmium detoxification processes in the digestive gland of cephalopods in relation to accumulated cadmium concentrations. Mar. Environ. Res. 2002, 53, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, Z.; Li, G.; Yan, B. Potential risks of heavy metals (Hg, Cd and Pb) from seafood to health. Chin. J. Food Sci. 2010, 31, 390–393. [Google Scholar]
- Huang, H.; Li, Y.; Zheng, X.; Wang, Z.; Wang, Z.; Cheng, X. Nutritional value and bioaccumulation of heavy metals in nine commercial fish species from Dachen Fishing Ground, East China Sea. Sci. Rep. 2022, 12, 6927. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-X.; Lu, G. Heavy metals in bivalve mollusks. In Chemical Contaminants and Residues in Food; Elsevier: Amsterdam, The Netherlands, 2017; pp. 553–594. [Google Scholar]
- Pan, X.-D.; Han, J.-L. Heavy metals accumulation in bivalve mollusks collected from coastal areas of southeast China. Mar. Pollut. Bull. 2023, 189, 114808. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lu, J.; Wu, J. Heavy metals pollution and health risk assessment in farmed scallops: Low level of Cd in coastal water could lead to high risk of seafood. Ecotoxicol. Environ. Saf. 2021, 208, 111768. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Jiang, R.; Li, S.; Ma, X.; Sun, Y.; Zhang, T.; Feng, Z. Bioaccumulation characteristics of typical pollutants in seafood from coastal waters of Jiangsu, China. Cont. Shelf Res. 2023, 263, 105030. [Google Scholar] [CrossRef]
- Gomez-Delgado, A.I.; Tibon, J.; Silva, M.S.; Lundebye, A.-K.; Agüera, A.; Rasinger, J.D.; Strohmeier, T.; Sele, V. Seasonal variations in mercury, cadmium, lead and arsenic species in Norwegian blue mussels (Mytilus edulis L.)—Assessing the influence of biological and environmental factors. J. Trace Elem. Med. Biol. 2022, 76, 127110. [Google Scholar] [CrossRef] [PubMed]
- Ihunwo, O.C.; Dibofori-Orji, A.N.; Olowu, C.; Ibezim-Ezeani, M.U. Distribution and risk assessment of some heavy metals in surface water, sediment and grey mullet (Mugil cephalus) from contaminated creek in Woji, southern Nigeria. Mar. Pollut. Bull. 2020, 154, 111042. [Google Scholar] [CrossRef]
- Liu, S.; Chen, H.; Wang, J.; Su, L.; Wang, X.; Zhu, J.; Lan, W. The distribution of microplastics in water, sediment, and fish of the Dafeng River, a remote river in China. Ecotoxicol. Environ. Saf. 2021, 228, 113009. [Google Scholar] [CrossRef]
- Sevilla, N.P.M.; Villanueva-Fonseca, B.P.; Góngora-Gómez, A.M.; García-Ulloa, M.; Domínguez-Orozco, A.L.; Ortega-Izaguirre, R.; Villegas, L.E.C. Heavy metal concentrations in diploid and triploid oysters (Crassostrea gigas) from three farms on the north-central coast of Sinaloa, Mexico. Environ. Monit. Assess. 2017, 189, 536. [Google Scholar] [CrossRef]
- Mwakalapa, E.B.; Simukoko, C.K.; Mmochi, A.J.; Mdegela, R.H.; Berg, V.; Müller, M.H.B.; Lyche, J.L.; Polder, A. Heavy metals in farmed and wild milkfish (Chanos chanos) and wild mullet (Mugil cephalus) along the coasts of Tanzania and associated health risk for humans and fish. Chemosphere 2019, 224, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, M. Evaluating the accumulation and consumption hazard risk of heavy metals in the fish muscles of species living in the waters of the Persian Gulf, Iran. Pollution 2020, 6, 849–862. [Google Scholar]
- Razali, N.S.M.; Ikhwanuddin, M.; Maulidiani, M.; Gooderham, N.J.; Alam, M.; Kadir, N.H.A. Ecotoxicological impact of heavy metals on wild mud crabs (Scylla olivacea) in Malaysia: An integrative approach of omics, molecular docking and human risk assessment. Sci. Total. Environ. 2024, 946, 174210. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.K.; Cabral, H.; Chatterjee, M.; Cardoso, I.; Bhattacharya, A.K.; Satpathy, K.K.; Alam, M.A. Biomonitoring of Heavy Metals Using the Bivalve Molluscs in Sunderban Mangrove Wetland, Northeast Coast of Bay of Bengal (India): Possible Risks to Human Health. CLEAN–Soil Air Water 2008, 36, 187–194. [Google Scholar] [CrossRef]
- Soegianto, A.; Wahyuni, H.I.; Yulianto, B.; Manaf, L.A. Health risk assessment of metals in mud crab (Scylla serrata) from the East Java Estuaries of Indonesia. Environ. Toxicol. Pharmacol. 2022, 90, 103810. [Google Scholar] [CrossRef]
- Stancheva, M.; Makedonski, L.; Petrova, E. Determination of heavy metals (Pb, Cd, As and Hg) in Black Sea grey mullet (Mugil cephalus). Bulg. J. Agric. Sci. 2013, 19, 30–34. [Google Scholar]
- Wu, X.-Y.; Yang, Y.-F. Heavy metal (Pb, Co, Cd, Cr, Cu, Fe, Mn and Zn) concentrations in harvest-size white shrimp Litopenaeus vannamei tissues from aquaculture and wild source. J. Food Compos. Anal. 2010, 24, 62–65. [Google Scholar] [CrossRef]
- Yogeshwaran, A.; Gayathiri, K.; Muralisankar, T.; Gayathri, V.; Monica, J.I.; Rajaram, R.; Marimuthu, K.; Bhavan, P.S. Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab Scylla serrata from different regions of Tuticorin, Southeast Coast of India. Mar. Pollut. Bull. 2020, 158, 111443. [Google Scholar] [CrossRef]
- Lin, H.; Luo, X.; Yu, D.; He, C.; Cao, W.; He, L.; Liang, Z.; Zhou, J.; Fang, G. Risk assessment of As, Cd, Cr, and Pb via the consumption of seafood in Haikou. Sci. Rep. 2024, 14, 19549. [Google Scholar] [CrossRef]
- Shinn, C.; Dauba, F.; Grenouillet, G.; Guenard, G.; Lek, S. Temporal variation of heavy metal contamination in fish of the river lot in southern France. Ecotoxicol. Environ. Saf. 2009, 72, 1957–1965. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Latifi, A.M.; Eslami, S.; Ebrahimzadeh, M.A. Determination of Trace Elements Level of Pikeperch Collected from the Caspian Sea. Bull. Environ. Contam. Toxicol. 2012, 88, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Agbugui, M.; Abe, G. Heavy metals in fish: Bioaccumulation and health. Br. J. Earth Sci. Res. 2022, 10, 47–66. [Google Scholar]
- Hossain, S.; Miah, M.I.; Islam, M.S.; Shahjahan, M. Changes in hepatosomatic index and histoarchitecture of liver in common carp exposed to organophosphate insecticide sumithion. Asian J. Med. Biol. Res. 2016, 2, 164–170. [Google Scholar] [CrossRef]
- Shahjahan, M.; Taslima, K.; Rahman, M.S.; Al-Emran, M.; Alam, S.I.; Faggio, C. Effects of heavy metals on fish physiology—A review. Chemosphere 2022, 300, 134519. [Google Scholar] [CrossRef] [PubMed]
- Sinley, J.R.; Goettl, J.P.; Davies, P.H. The effects of zinc on rainbow trout (Salmo gairdneri) in hard and soft water. Bull. Environ. Contam. Toxicol. 1974, 12, 193–201. [Google Scholar] [CrossRef]
- Djikanović, V.; Skorić, S.; Spasić, S.; Naunovic, Z.; Lenhardt, M. Ecological risk assessment for different macrophytes and fish species in reservoirs using biota-sediment accumulation factors as a useful tool. Environ. Pollut. 2018, 241, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Wuana, R.; Ogbodo, C.; Itodo, A.U.; Eneji, I.S. Ecological and Human Health Risk Assessment of Toxic Metals in Water, Sediment and Fish from Lower Usuma Dam, Abuja, Nigeria. J. Geosci. Environ. Prot. 2020, 08, 82–106. [Google Scholar] [CrossRef]
- Authman, M.M.; Zaki, M.S.; Khallaf, E.A.; Abbas, H.H. Use of fish as bio-indicator of the effects of heavy metals pollution. J. Aquac. Res. Dev. 2015, 6, 1–13. [Google Scholar] [CrossRef]
- Garai, P.; Banerjee, P.; Mondal, P.; Saha, N. Effect of heavy metals on fishes: Toxicity and bioaccumulation. J. Clin. Toxicol. S. 2021, 18, 001. [Google Scholar]
- de Rosemond, S.; Xie, Q.; Liber, K. Arsenic concentration and speciation in five freshwater fish species from Back Bay near Yellowknife, NT, CANADA. Environ. Monit. Assess. 2008, 147, 199–210. [Google Scholar] [CrossRef]
- Falcó, G.; Llobet, J.M.; Bocio, A.; Domingo, J.L. Daily Intake of Arsenic, Cadmium, Mercury, and Lead by Consumption of Edible Marine Species. J. Agric. Food Chem. 2006, 54, 6106–6112. [Google Scholar] [CrossRef] [PubMed]
- Visnjic-Jeftic, Z.; Jaric, I.; Jovanovic, L.; Skoric, S.; Smederevac-Lalic, M.; Nikcevic, M.; Lenhardt, M. Heavy metal and trace element accumulation in muscle, liver and gills of the Pontic shad (Alosa immaculata Bennet 1835) from the Danube River (Serbia). Microchem. J. 2010, 95, 341–344. [Google Scholar] [CrossRef]
- Souza, I.d.C.; Morozesk, M.; Bonomo, M.M.; Azevedo, V.C.; Sakuragui, M.M.; Elliott, M.; Matsumoto, S.T.; Wunderlin, D.A.; Baroni, M.V.; Monferrán, M.V.; et al. Differential biochemical responses to metal/metalloid accumulation in organs of an edible fish (Centropomus parallelus) from Neotropical estuaries. Ecotoxicol. Environ. Saf. 2018, 161, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Tressou, J.; Crépet, A.; Bertail, P.; Feinberg, M.; Leblanc, J. Probabilistic exposure assessment to food chemicals based on extreme value theory. Application to heavy metals from fish and sea products. Food Chem. Toxicol. 2004, 42, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2019, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World-New Tricks for an Old Dog? IntechOpen: London, UK, 2019; pp. 77–100. [Google Scholar]
- Olmedo, P.; Pla, A.; Hernández, A.F.; Barbier, F.; Ayouni, L.; Gil, F. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ. Int. 2013, 59, 63–72. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, J.; Zhang, D.; Tu, T.; Luo, L. Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicol. Environ. Saf. 2014, 104, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, L.; Dou, S. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Mar. Pollut. Bull. 2017, 117, 98–110. [Google Scholar] [CrossRef]
Classification | Frequency of Feeding | ||||
---|---|---|---|---|---|
Multiple Times a Week | Once a Week | Once a Month | Six Times a Year | Rarely Consumed | |
Mugil cephalus | 12.99% | 10.82% | 15.58% | 19.48% | 41.13% |
Pampus argenteus | 8.66% | 16.45% | 22.94% | 21.65% | 30.30% |
Larimichthys crocea | 4.76% | 13.42% | 26.84% | 24.68% | 30.30% |
Acanthopagrus latus | 14.72% | 19.91% | 18.61% | 15.15% | 31.60% |
Siganus fuscescens | 14.72% | 14.72% | 13.85% | 17.75% | 38.96% |
Penaeus vannamei | 23.81% | 29.87% | 23.38% | 16.02% | 6.93% |
Scylla sp. | 7.36% | 9.52% | 27.27% | 34.63% | 21.21% |
Ostreidae sp. | 12.55% | 18.61% | 22.94% | 25.97% | 19.91% |
Sanguinolaria sp. | 6.49% | 9.96% | 17.32% | 24.24% | 41.99% |
Mytilus edulis | 7.79% | 7.36% | 22.51% | 27.27% | 35.06% |
Classification | Latin Name | Heavy Metal Pollution Index (Pi) | |||||
---|---|---|---|---|---|---|---|
iAs | Cd | Cr | Cu | Ni | Pb | ||
Fish | Mugil cephalus | 1.450 | 0.000 | 0.012 | 0.002 | 0.000 | 0.016 |
Pampus argenteus | 1.800 | 0.041 | 0.016 | 0.000 | 0.016 | 0.008 | |
Larimichthys crocea | 2.300 | 0.000 | 0.000 | 0.001 | 0.000 | 0.016 | |
Acanthopagrus latus | 2.100 | 0.000 | 0.001 | 0.001 | 0.000 | 0.005 | |
Siganus fuscescens | 0.320 | 0.000 | 0.033 | 0.004 | 0.009 | 0.018 | |
Crustaceans | Penaeus vannamei | 0.150 | 0.000 | 0.000 | 0.032 | 0.000 | 0.004 |
Scylla sp. | 0.768 | 0.001 | 0.143 | 0.163 | 0.252 | 0.009 | |
Bivalves | Ostreidae sp. | 1.600 | 0.353 | 0.077 | 0.344 | 0.031 | 0.131 |
Sanguinolaria sp. | 3.600 | 3.423 | 0.108 | 0.018 | 0.207 | 0.054 | |
Mytilus edulis | 1.640 | 0.180 | 0.095 | 0.042 | 0.249 | 0.041 |
Group | Aquatic Organism | Latin Name | iAs (1 × 10−2) | Cr (1 × 10−2) | Cu (1 × 10−2) | Cd (1 × 10−2) | Pb (1 × 10−2) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AWI/mg | AWI/UL (%) | AWI/mg | AWI/UL (%) | AWI/mg | AWI/UL (%) | AWI/mg | AWI/UL (%) | AWI/mg | AWI/UL (%) | |||
Teenagers | Pelagic fish | Mugil cephalus | 0.82 | 0.56 | 0.27 | 7.66 | 0.49 | 0.89 | 0.00 | 0.00 | 0.02 | 1.18 |
Midwater fish | Pampus argenteus | 0.95 | 0.65 | 0.23 | 6.57 | 0.10 | 0.18 | 10.20 | 16.20 | 0.01 | 0.59 | |
Larimichthys crocea | 1.26 | 0.86 | 0.00 | 0.00 | 0.20 | 0.36 | 0.00 | 0.00 | 0.01 | 0.59 | ||
Demersal fish | Acanthopagrus latus | 1.68 | 1.14 | 0.02 | 0.54 | 0.30 | 0.55 | 0.00 | 0.00 | 0.01 | 0.59 | |
Siganus fuscescens | 0.90 | 0.61 | 0.72 | 20.57 | 0.84 | 1.53 | 0.00 | 0.00 | 0.02 | 1.18 | ||
Crustaceans | Penaeus vannamei | 0.41 | 0.28 | 0.00 | 0.00 | 9.75 | 17.73 | 0.00 | 0.00 | 0.02 | 1.18 | |
Scylla | 2.03 | 1.38 | 0.65 | 18.69 | 27.54 | 50.07 | 18.37 | 36.29 | 0.02 | 1.18 | ||
Bivalves | Ostreidae | 4.50 | 3.06 | 0.49 | 14.06 | 59.34 | 107.89 | 100.00 | 177.51 | 1.26 | 74.12 | |
Sanguinolaria | 9.20 | 6.26 | 0.53 | 15.14 | 2.35 | 4.27 | 810.23 | 1417.24 | 0.37 | 21.76 | ||
Mytilus edulis | 5.30 | 3.61 | 0.41 | 11.71 | 4.64 | 8.44 | 46.94 | 69.39 | 0.27 | 15.88 | ||
Adults | Pelagic fish | Mugil cephalus | 1.45 | 0.99 | 0.41 | 11.59 | 0.82 | 1.47 | 0.00 | 0.00 | 0.02 | 1.09 |
Midwater fish | Pampus argenteus | 1.80 | 1.22 | 0.30 | 8.63 | 0.19 | 0.34 | 0.08 | 16.20 | 0.01 | 0.61 | |
Larimichthys crocea | 2.30 | 1.56 | 0.00 | 0.00 | 0.20 | 0.35 | 0.00 | 0.00 | 0.01 | 0.41 | ||
Demersal fish | Acanthopagrus latus | 2.10 | 1.43 | 0.03 | 0.89 | 0.49 | 0.88 | 0.00 | 0.00 | 0.01 | 0.65 | |
Siganus fuscescens | 1.60 | 1.09 | 1.26 | 35.88 | 1.59 | 2.85 | 0.00 | 0.00 | 0.02 | 1.25 | ||
Crustaceans | Penaeus vannamei | 0.75 | 0.51 | 0.00 | 0.00 | 18.39 | 32.84 | 0.00 | 0.00 | 0.02 | 0.94 | |
Scylla | 3.84 | 2.61 | 1.09 | 31.17 | 53.62 | 95.76 | 0.18 | 36.29 | 0.02 | 0.98 | ||
Bivalves | Ostreidae | 8.00 | 5.44 | 0.75 | 21.43 | 112.38 | 200.68 | 0.86 | 177.51 | 1.26 | 72.00 | |
Sanguinolaria | 18.00 | 12.24 | 0.90 | 25.69 | 3.67 | 6.55 | 6.94 | 1417.24 | 0.37 | 18.69 | ||
Mytilus edulis | 8.20 | 5.58 | 0.70 | 20.00 | 8.36 | 14.93 | 0.34 | 69.39 | 0.27 | 15.43 | ||
The elderly | Pelagic fish | Mugil cephalus | 0.71 | 0.48 | 0.20 | 11.82 | 0.10 | 0.18 | 0.00 | 0.00 | 0.01 | 0.59 |
Midwater fish | Pampus argenteus | 0.85 | 0.58 | 0.16 | 9.41 | 0.09 | 0.17 | 8.16 | 16.20 | 0.01 | 0.29 | |
Larimichthys crocea | 0.10 | 0.07 | 0.00 | 0.00 | 0.10 | 0.18 | 0.00 | 0.00 | 0.01 | 0.29 | ||
Demersal fish | Acanthopagrus latus | 1.03 | 0.70 | 0.18 | 10.59 | 0.24 | 0.44 | 0.00 | 0.00 | 0.01 | 0.29 | |
Siganus fuscescens | 0.75 | 0.51 | 0.59 | 34.71 | 0.78 | 1.42 | 0.00 | 0.00 | 0.01 | 0.59 | ||
Crustaceans | Penaeus vannamei | 0.33 | 0.22 | 0.00 | 0.00 | 9.19 | 16.70 | 0.00 | 0.00 | 0.01 | 0.59 | |
Scylla | 1.56 | 1.06 | 0.49 | 28.76 | 2.64 | 4.80 | 0.00 | 36.29 | 0.01 | 0.59 | ||
Bivalves | Ostreidae | 4.00 | 2.72 | 0.38 | 22.06 | 5.21 | 9.47 | 83.68 | 177.51 | 0.63 | 37.06 | |
Sanguinolaria | 8.00 | 5.44 | 0.43 | 25.29 | 1.81 | 3.29 | 697.98 | 1417.24 | 0.19 | 10.88 | ||
Mytilus edulis | 3.58 | 2.44 | 0.32 | 18.82 | 4.01 | 7.29 | 32.65 | 69.39 | 0.14 | 7.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Yu, Y.; Sun, Z.; Zhang, K.; Li, P.; Liu, W.; Bi, R. Heavy Metal Distribution in Aquatic Products from Eastern Guangdong and Associated Health Risk Assessment. Toxics 2024, 12, 881. https://doi.org/10.3390/toxics12120881
Liu J, Yu Y, Sun Z, Zhang K, Li P, Liu W, Bi R. Heavy Metal Distribution in Aquatic Products from Eastern Guangdong and Associated Health Risk Assessment. Toxics. 2024; 12(12):881. https://doi.org/10.3390/toxics12120881
Chicago/Turabian StyleLiu, Jinyan, You’an Yu, Zewei Sun, Keqin Zhang, Ping Li, Wenhua Liu, and Ran Bi. 2024. "Heavy Metal Distribution in Aquatic Products from Eastern Guangdong and Associated Health Risk Assessment" Toxics 12, no. 12: 881. https://doi.org/10.3390/toxics12120881
APA StyleLiu, J., Yu, Y., Sun, Z., Zhang, K., Li, P., Liu, W., & Bi, R. (2024). Heavy Metal Distribution in Aquatic Products from Eastern Guangdong and Associated Health Risk Assessment. Toxics, 12(12), 881. https://doi.org/10.3390/toxics12120881