Accumulation of Microplastics and Potentially Toxic Elements in Plant Leaves Along an Urbanization Gradient in Bangladesh
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Species
2.2. Quality Assurance and Quality Control (QA/QC)
2.3. Analysis of Microplastic Concentration
2.4. Analysis of Elemental Concentration
2.5. Pollution Index
2.6. Statistical Analysis
3. Results and Discussion
3.1. Deposition of Microplastics
3.2. Elemental Concentration of Leaves
3.3. Pollution Index
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karacocuk, T.; Sevik, H.; Isinkaralar, K.; Turkyilmaz, A.; Cetin, M. The Change of Cr and Mn Concentrations in Selected Plants in Samsun City Center Depending on Traffic Density. Landsc. Ecol. Eng. 2022, 18, 75–83. [Google Scholar] [CrossRef]
- Cetin, M.; Jawed, A.A. Variation of Ba Concentrations in Some Plants Grown in Pakistan Depending on Traffic Density. Biomass Convers. Biorefin. 2022, 14, 3785–3791. [Google Scholar] [CrossRef]
- Serbula, S.M.; Kalinovic, T.S.; Ilic, A.A.; Kalinovic, J.V.; Steharnik, M.M. Assessment of Airborne Heavy Metal Pollution Using Pinus spp. and Tilia spp. Aerosol Air Qual. Res. 2013, 13, 563–573. [Google Scholar] [CrossRef]
- Yadav, S.; Rajamani, V. Air Quality and Trace Metal Chemistry of Different Size Fractions of Aerosols in N–NW India—Implications for Source Diversity. Atmos. Environ. 2006, 40, 698–712. [Google Scholar] [CrossRef]
- Morawska, L. The Burden of Disease Due to Indoor Air Pollution and Why We Need to Know about It. Sci. Bull. 2024, 69, 1161–1164. [Google Scholar] [CrossRef]
- Yadav, S.; Rajamani, V. Geochemistry of Aerosols of Northwestern Part of India Adjoining the Thar Desert. Geochim. Cosmochim. Acta 2004, 68, 1975–1988. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in Air: Are We Breathing It In? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, R.; Rajput, A.; Gorka, R.; Gupta, A.; Bhasin, N.; Yadav, S.; Verma, A.; Ram, K.; Bhagat, M. Atmospheric Microplastics: Perspectives on Origin, Abundances, Ecological and Health Risks. Environ. Sci. Pollut. Res. 2023, 30, 107435–107464. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Meng, Y.; Liu, G.; Yang, M. Are We Ignoring the Role of Urban Forests in Intercepting Atmospheric Microplastics? J. Hazard. Mater. 2022, 436, 129096. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Verla, A.W.; Verla, E.N.; Ibe, F.C.; Amaobi, C.E. Airborne Microplastics: A Review Study on Method for Analysis, Occurrence, Movement and Risks. Environ. Monit. Assess. 2019, 191, 668. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Uddin, S.; Fowler, S.W.; Behbehani, M. Microplastics in the Atmosphere: A Review. J. Environ. Expo. Assess. 2022, 1, 6. [Google Scholar] [CrossRef]
- Parvez, M.S.; Ullah, H.; Faruk, O.; Simon, E.; Czédli, H. Role of Microplastics in Global Warming and Climate Change: A Review. Water Air Soil Pollut. 2024, 235, 201. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric Microplastics: A Review on Current Status and Perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- O’Brien, S.; Rauert, C.; Ribeiro, F.; Okoffo, E.D.; Burrows, S.D.; O’Brien, J.W.; Wang, X.; Wright, S.L.; Thomas, K.V. There’s Something in the Air: A Review of Sources, Prevalence and Behaviour of Microplastics in the Atmosphere. Sci. Total Environ. 2023, 874, 162193. [Google Scholar] [CrossRef]
- Koutnik, V.S. Microplastic Accumulation and Transport in the Subsurface under Weathering Cycles; University of California: Los Angeles, CA, USA, 2022. [Google Scholar]
- Fujiwara, F.G.; Gómez, D.R.; Dawidowski, L.; Perelman, P.; Faggi, A. Metals Associated with Airborne Particulate Matter in Road Dust and Tree Bark Collected in a Megacity (Buenos Aires, Argentina). Ecol. Indic. 2011, 11, 240–247. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Song, Z.; Wei, N.; Li, D. Terrestrial Plants as a Potential Temporary Sink of Atmospheric Microplastics during Transport. Sci. Total Environ. 2020, 742, 140523. [Google Scholar] [CrossRef]
- Bi, M.; He, Q.; Chen, Y. What Roles Are Terrestrial Plants Playing in Global Microplastic Cycling? Environ. Sci. Technol. 2020, 54, 5325–5327. [Google Scholar] [CrossRef]
- Leonard, J.; Borthakur, A.; Koutnik, V.S.; Brar, J.; Glasman, J.; Cowger, W.; Dittrich, T.M.; Mohanty, S.K. Challenges of Using Leaves as a Biomonitoring System to Assess Airborne Microplastic Deposition on Urban Tree Canopies. Atmos. Pollut. Res. 2023, 14, 101651. [Google Scholar] [CrossRef]
- Olajire, A.A.; Ayodele, E.T. Study of Atmospheric Pollution Levels by Trace Elements Analysis of Tree Bark and Leaves. Bull. Chem. Soc. Ethiop. 2003, 17, 11–17. [Google Scholar] [CrossRef]
- Varrica, D.; Lo Medico, F.; Alaimo, M.G. Air Quality Assessment by the Determination of Trace Elements in Lichens (Xanthoria Calcicola) in an Industrial Area (Sicily, Italy). Int. J. Environ. Res. Public Health 2022, 19, 9746. [Google Scholar] [CrossRef] [PubMed]
- Humairoh, G.P.; Syafei, A.D.; Santoso, M.; Boedisantoso, R.; Assomadi, A.F.; Hermana, J. Identification of Trace Element in Ambient Air Case Study: Industrial Estate in Waru, Sidoarjo, East Java. Aerosol Air Qual. Res. 2020, 20, 1910–1921. [Google Scholar] [CrossRef]
- Simon, E.; Baranyai, E.; Braun, M.; Cserháti, C.; Fábián, I.; Tóthmérész, B. Elemental Concentrations in Deposited Dust on Leaves along an Urbanization Gradient. Sci. Total Environ. 2014, 490, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lei, C.; Xu, J.; Li, R. Foliar Uptake and Leaf-to-Root Translocation of Nanoplastics with Different Coating Charge in Maize Plants. J. Hazard. Mater. 2021, 416, 125854. [Google Scholar] [CrossRef] [PubMed]
- Zha, Y.; Liu, X.; Tang, J.; Zhang, Y. PAHs in Foliage Dust of Typical Tree Species with Urbanization Gradient in Nanjing, China. Pol. J. Environ. Stud. 2018, 27, 1359–1370. [Google Scholar] [CrossRef]
- Simon, E.; Molnár, V.É.; Lajtos, D.; Bibi, D.; Tóthmérész, B.; Szabó, S. Usefulness of Tree Species as Urban Health Indicators. Plants 2021, 10, 2797. [Google Scholar] [CrossRef]
- Roblin, B.; Aherne, J. Moss as a Biomonitor for the Atmospheric Deposition of Anthropogenic Microfibres. Sci. Total Environ. 2020, 715, 136973. [Google Scholar] [CrossRef]
- Molnár, V.É.; Simon, E.; Ninsawat, S.; Tóthmérész, B.; Szabó, S. Pollution Assessment Based on Element Concentration of Tree Leaves and Topsoil in Ayutthaya Province, Thailand. Int. J. Environ. Res. Public Health 2020, 17, 5165. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, Y.; Lin, Q.; Wang, Y.; Wu, B.; Liu, X.; Wang, B.; Xia, D. Spatiotemporal Differences and Ecological Risk Assessment of Heavy Metal Pollution of Roadside Plant Leaves in Baoji City, China. Sustainability 2022, 14, 5809. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; He, S.; Tong, Y.; Liu, Z.; Li, W.; Xiayihazi, N. Evaluation of Microplastic Pollution in Shihezi City, China, Using Pine Needles as a Biological Passive Sampler. Sci. Total Environ. 2022, 821, 153181. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zou, R.; Yang, M.; Zhang, Z. Experimental Examination of Effectiveness of Vegetation as Bio-Filter of Particulate Matters in the Urban Environment. Environ. Pollut. 2016, 208, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Bangladesh Bureau of Statistics. BBS Population and Housing Census 2022, Preliminary Report; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2022. [Google Scholar]
- Turan, D.; Kocahakimoglu, C.; Kavcar, P.; Gaygisiz, H.; Atatanir, L.; Turgut, C.; Sofuoglu, S.C. The Use of Olive Tree (Olea europaea L.) Leaves as a Bioindicator for Environmental Pollution in the Province of Aydın, Turkey. Environ. Sci. Pollut. Res. 2011, 18, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.B.; Choudhury, T.R.; Alam, M.N.E.; Doza, M.B.; Rahmana, M.M. Soil, Dust, and Leaf-Based Novel Multi-Sample Approach for Urban Heavy Metal Contamination Appraisals in a Megacity, Dhaka, Bangladesh. Environ. Adv. 2022, 7, 100154. [Google Scholar] [CrossRef]
- Shahrukh, S.; Hossain, S.A.; Huda, M.N.; Moniruzzaman, M.; Islam, M.M.; Shaikh, M.A.A.; Hossain, M.E. Air Pollution Tolerance, Anticipated Performance, and Metal Accumulation Indices of Four Evergreen Tree Species in Dhaka, Bangladesh. Curr. Plant Biol. 2023, 35–36, 100296. [Google Scholar] [CrossRef]
- Patel, K.; Chaurasia, M.; Rao, K.S. Heavy Metal Accumulation in Leaves of Selected Plant Species in Urban Areas of Delhi. Environ. Sci. Pollut. Res. 2023, 30, 27622–27635. [Google Scholar] [CrossRef]
- Uka, U.N.; Belford, E.J.D.; Elebe, F.A. Effects of Road Traffic on Photosynthetic Pigments and Heavy Metal Accumulation in Tree Species of Kumasi Metropolis, Ghana. SN Appl. Sci. 2021, 3, 131. [Google Scholar] [CrossRef]
- Faiz, Y.; Tufail, M.; Javed, M.T.; Chaudhry, M.M.; Naila-Siddique. Road Dust Pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchem. J. 2009, 92, 186–192. [Google Scholar] [CrossRef]
- Steindor, K.A.; Franiel, I.J.; Bierza, W.M.; Pawlak, B.; Palowski, B.F. Assessment of Heavy Metal Pollution in Surface Soils and Plant Material in the Post-Industrial City of Katowice, Poland. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2016, 51, 371–379. [Google Scholar] [CrossRef]
- WHO. WHO Permissible Limits of Heavy Metals in Soil and Plants; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- Tajwar, M.; Hasan, M.; Shreya, S.S.; Rahman, M.; Sakib, N.; Gazi, M.Y. Risk Assessment of Microplastic Pollution in an Industrial Region of Bangladesh. Heliyon 2023, 9, e17949. [Google Scholar] [CrossRef]
- Rabin, M.H.; Wang, Q.; Enyoh, C.E.; Kai, X.; Sheuty, T.F. Distribution, Potential Sources, and Health Risk of Microplastics (MPs) in Street Dust during and after COVID-19 Lockdown in Bangladesh. Environments 2023, 10, 130. [Google Scholar] [CrossRef]
- Ortega, D.E.; Cortés-Arriagada, D. Atmospheric Microplastics and Nanoplastics as Vectors of Primary Air Pollutants—A Theoretical Study on the Polyethylene Terephthalate (PET) Case. Environ. Pollut. 2023, 318, 120860. [Google Scholar] [CrossRef]
- Perera, K.; Ziajahromi, S.; Nash, S.B.; Leusch, F.D.L. Evaluating the Retention of Airborne Microplastics on Plant Leaf: Influence of Leaf Morphology. Environ. Pollut. 2024, 346, 123673. [Google Scholar] [CrossRef] [PubMed]
- Jafarova, M.; Grifoni, L.; Renzi, M.; Bentivoglio, T.; Anselmi, S.; Winkler, A.; Di Lella, L.A.; Spagnuolo, L.; Aherne, J.; Loppi, S. Robinia pseudoacacia L. (Black Locust) Leaflets as Biomonitors of Airborne Microplastics. Biology 2023, 12, 1456. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zhang, X.; Li, M.; Lu, Y.; Liu, C.; Wang, L. Source Apportionment of Microplastics in Indoor Dust: Two Strategies Based on Shape and Composition. Environ. Pollut. 2023, 334, 122178. [Google Scholar] [CrossRef]
- Joseph, T.M.; Azat, S.; Ahmadi, Z.; Moini, O.; Thomas, S. Case Studies in Chemical and Environmental Engineering Polyethylene Terephthalate (PET) Recycling: A Review. Case Stud. Chem. Environ. Eng. 2024, 9, 100673. [Google Scholar] [CrossRef]
- Ungureanu, O.I.; Bulgariu, D.; Mocanu, A.M.; Bulgariu, L. Functionalized PET Waste Based Low-Cost Adsorbents for Adsorptive Removal of Cu(II) Ions from Aqueous Media. Water 2020, 12, 2624. [Google Scholar] [CrossRef]
- Tamoor, M.; Samak, N.A.; Yang, M.; Xing, J. The Cradle-to-Cradle Life Cycle Assessment of Polyethylene Terephthalate: Environmental Perspective. Molecules 2022, 27, 1599. [Google Scholar] [CrossRef]
- Welle, F. Safety Evaluation of Polyethylene Terephthalate Chemical Recycling Processes. Sustainability 2021, 13, 12854. [Google Scholar] [CrossRef]
- Dadkhah-Aghdash, H.; Zare-Maivan, H.; Heydari, M.; Sharifi, M.; Lucas-Borja, M.E.; Naidu, R. Air Pollution from Gas Refinery through Contamination with Various Elements Disrupts Semiarid Zagros Oak (Quercus brantii Lindl.) Forests, Iran. Sci. Rep. 2022, 12, 284. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, R. Leafy Vegetable Assimilation of Atmospheric Microplastics/Nanoplastics: An Overlooked Source in Human Food? Environ. Sci. Technol. Lett. 2024, 11, 51–53. [Google Scholar] [CrossRef]
- Liu, Y.; Ben, Y.; Che, R.; Peng, C.; Li, J.; Wang, F. Uptake, Transport and Accumulation of Micro- and Nano-Plastics in Terrestrial Plants and Health Risk Associated with Their Transfer to Food Chain—A Mini Review. Sci. Total Environ. 2023, 902, 166045. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Xu, Y.; Liu, Q.; Liu, Y.; Tian, S.; Schauer, J.J. Penetration of Submicron Amino-Functionalized Graphene Quantum Dots in Plant Stomata, Implication for the Depollution of Atmospheric Soot Particles. Environ. Chem. Lett. 2023, 21, 1281–1286. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, L.; Wang, F.; Wang, Z.; Bian, Y.; Gu, C.; Wen, X.; Kengara, F.O.; Schäffer, A.; Jiang, X.; et al. Positively Charged Microplastics Induce Strong Lettuce Stress Responses from Physiological, Transcriptomic, and Metabolomic Perspectives. Environ. Sci. Technol. 2022, 56, 16907–16918. [Google Scholar] [CrossRef]
- WHO. Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Doğanlar, Z.B.; Atmaca, M. Influence of Airborne Pollution on Cd, Zn, Pb, Cu, and Al Accumulation and Physiological Parameters of Plant Leaves in Antakya (Turkey). Water Air Soil Pollut. 2011, 214, 509–523. [Google Scholar] [CrossRef]
- Karar, K.; Gupta, A.K.; Kumar, A.; Biswas, A.K. Characterization and Identification of the Sources of Chromium, Zinc, Lead, Cadmium, Nickel, Manganese and Iron in PM10 Particulates at the Two Sites of Kolkata, India. Environ. Monit. Assess. 2006, 120, 347–360. [Google Scholar] [CrossRef]
- Voutsa, D.; Grimanis, A.; Samara, C. Trace Elements in Vegetables Grown in an Industrial Area in Relation to Soil and Air Particulate Matter. Environ. Pollut. 1996, 94, 325–335. [Google Scholar] [CrossRef]
- Kang, B.-W.; Kim, M.-J.; Baek, K.-M.; Seo, Y.-K.; Lee, H.S.; Kim, J.-H.; Han, J.-S. A Study on the Concentration Distribution of Airborne Heavy Metals in Major Industrial Complexes in Korea. J. Korean Soc. Atmos. Environ. 2018, 34, 269–280. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kumar, S.; Nasiruddin, M.; Saha, N. Deciphering the Origin of Cu, Pb and Zn Contamination in School Dust and Soil of Dhaka, a Megacity in Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 40808–40823. [Google Scholar] [CrossRef]
- Aissa, L.; Kéloufi, B. Determining the Heavy Metal Pollution in Mascara (Algeria) by Using Casuarina Equisetifolia. Ecol. Balk. 2012, 4, 1–7. [Google Scholar]
- Hassan, I.A.; Basahi, J.M. Assessing Roadside Conditions and Vehicular Emissions Using Roadside Lettuce Plants. Pol. J. Environ. Stud. 2013, 22, 387–393. [Google Scholar]
- Jalali, M.; Khanlari, Z.V. Environmental Contamination of Zn, Cd, Ni, Cu, and Pb from Industrial Areas in Hamadan Province, Western Iran. Environ. Geol. 2008, 55, 1537–1543. [Google Scholar] [CrossRef]
- Cetin, B.; Yatkin, S.; Bayram, A.; Odabasi, M. Ambient Concentrations and Source Apportionment of PCBs and Trace Elements around an Industrial Area in Izmir, Turkey. Chemosphere 2007, 69, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Woszczyk, M.; Spychalski, W.; Boluspaeva, L. Trace Metal (Cd, Cu, Pb, Zn) Fractionation in Urban-Industrial Soils of Ust-Kamenogorsk (Oskemen), Kazakhstan—Implications for the Assessment of Environmental Quality. Environ. Monit. Assess. 2018, 190, 362. [Google Scholar] [CrossRef] [PubMed]
- Ciarkowska, K.; Gambus, F.; Antonkiewicz, J.; Koliopoulos, T. Polycyclic Aromatic Hydrocarbon and Heavy Metal Contents in the Urban Soils in Southern Poland. Chemosphere 2019, 229, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Anny, F.A.; Kabir, M.M.; Bodrud-Doza, M. Assessment of Surface Water Pollution in Urban and Industrial Areas of Savar Upazila, Bangladesh. Pollution 2017, 3, 243–259. [Google Scholar] [CrossRef]
- Hossain, S.M.N.; Abedin, A.B.M.S.; Mahmud, M.M. Mapping Industrial Water Pollution in Savar Upazila: A Geospatial Approach to Ecological Sustainability. Jahangirnagar Rev. Part II Soc. Sci. 2024, 48, 195–221. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mallick, S. Industrialization and Its Impact on Agriculture: A Case Study on Savar Upozilla, Dhaka, Bangladesh. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Dhaka, Bangladesh, 9–10 January 2010. [Google Scholar]
- Odipe, O.E.; Olalekan, R.M.; Suleiman, F. Assessment of Heavy Metals in Effluent Water Discharges from Textile Industry and River Water at Close Proximity: A Comparison of Two Textile Industries from Funtua and Zaria, North Western Nigeria. Madridge J. Agric. Environ. Sci. 2019, 1, 1–6. [Google Scholar] [CrossRef]
- Manzoor, S.; Shah, M.H.; Shaheen, N.; Khalique, A.; Jaffar, M. Multivariate Analysis of Trace Metals in Textile Effluents in Relation to Soil and Groundwater. J. Hazard. Mater. 2006, 137, 31–37. [Google Scholar] [CrossRef]
- Islam, M.M.; Halim, M.A.; Safiullah, S.; Hoque, S.A.M.W.; Islam, M.S. Heavy Metal (Pb, Cd, Zn, Cu, Cr, Fe and Mn) Content in Textile Sludge in Gazipur, Bangladesh. Res. J. Environ. Sci. 2009, 3, 311–315. [Google Scholar]
- Liang, X.; Ning, X.-A.; Chen, G.; Lin, M.; Liu, J.; Wang, Y. Concentrations and Speciation of Heavy Metals in Sludge from Nine Textile Dyeing Plants. Ecotoxicol. Environ. Saf. 2013, 98, 128–134. [Google Scholar] [CrossRef]
- Bibi, M.; Rashid, J.; Iqbal, A.; Xu, M. Multivariate Analysis of Heavy Metals in Pharmaceutical Wastewaters of National Industrial Zone, Rawat, Pakistan. Phys. Chem. Earth 2023, 130, 103398. [Google Scholar] [CrossRef]
- Islam, S.; Alam, A.K.M.R.; Islam, S. Analysis of Metal in Wastewater Collected from Three Pharmaceutical Industries Located in Tongi Area of Gazipur District. Bangladesh J. Sci. Ind. Res. 2010, 45, 277–282. [Google Scholar] [CrossRef]
- Kirichenko, K.Y.; Vakhniuk, I.A.; Ivanov, V.V.; Tarasenko, I.A.; Kosyanov, D.Y.; Medvedev, S.A.; Soparev, V.P.; Drozd, V.A.; Kholodov, A.S.; Golokhvast, K.S. Complex Study of Air Pollution in Electroplating Workshop. Sci. Rep. 2020, 10, 11282. [Google Scholar] [CrossRef] [PubMed]
- Viard, B. Integrated Assessment of Heavy Metal (Pb, Zn, Cd) Highway Pollution. Chemosphere 2004, 55, 1349–1359. [Google Scholar] [CrossRef]
- Aksu, A. Sources of Metal Pollution in the Urban Atmosphere (A Case Study: Tuzla, Istanbul). J. Environ. Health Sci. Eng. 2015, 13, 79. [Google Scholar] [CrossRef]
- Hao, Y.; Meng, X.; Yu, X.; Lei, M.; Li, W.; Shi, F.; Yang, W.; Zhang, S.; Xie, S. Characteristics of Trace Elements in PM2.5 and PM10 of Chifeng, Northeast China: Insights into Spatiotemporal Variations and Sources. Atmos. Res. 2018, 213, 550–561. [Google Scholar] [CrossRef]
- Salam, A.; Hossain, T.; Siddique, M.N.A.; Shafiqul Alam, A.M. Characteristics of Atmospheric Trace Gases, Particulate Matter, and Heavy Metal Pollution in Dhaka, Bangladesh. Air Qual. Atmos. Health 2008, 1, 101–109. [Google Scholar] [CrossRef]
- Shallari, S.; Schwartz, C.; Hasko, A.; Morel, J.L. Heavy Metals in Soils and Plants of Serpentine and Industrial Sites of Albania. Sci. Total Environ. 1998, 209, 133–142. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Lion, N.; Unathi, T.; Oladeji, O.M. Concentrations of Pb and Other Associated Elements in Soil Dust 15 Years after the Introduction of Unleaded Fuel and the Human Health Implications in Pretoria, South Africa. Int. J. Environ. Res. Public Health 2022, 19, 10238. [Google Scholar] [CrossRef]
- Yaro, A.S.; Abdul-Khalik, K.R.; Khadom, A.A. Effect of CO2 Corrosion Behavior of Mild Steel in Oilfield Produced Water. J. Loss Prev. Process Ind. 2015, 38, 24–38. [Google Scholar] [CrossRef]
- Majumder, A.K.; Al Nayeem, A.; Islam, M.; Akter, M.M.; Carter, W.S. Critical Review of Lead Pollution in Bangladesh. J. Health Pollut. 2021, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M. Lead Poisoning: The Next Big Threat for Bangladesh. Available online: https://www.thedailystar.net/opinion/views/news/lead-poisoning-the-next-big-threat-bangladesh-3151011 (accessed on 25 June 2024).
- Khan, M.; Talukder, A.; Safiur Rahman, M. Spatial Distribution and Contamination Assessment of Heavy Metalsin Urban Road Dusts from Dhaka City, Bangladesh. IOSR J. Appl. Chem. 2018, 11, 90–99. [Google Scholar] [CrossRef]
- Begum, B.A.; Biswas, S.K.; Hopke, P.K.; Cohen, D.D. Multi-Element Analysis and Characterization of Atmospheric Particulate Pollution in Dhaka. Aerosol Air Qual. Res. 2006, 6, 334–359. [Google Scholar] [CrossRef]
- Begum, B.A.; Kim, E.; Biswas, S.K.; Hopke, P.K. Investigation of Sources of Atmospheric Aerosol at Urban and Semi-Urban Areas in Bangladesh. Atmos. Environ. 2004, 38, 3025–3038. [Google Scholar] [CrossRef]
- Munawer, M.E. Human Health and Environmental Impacts of Coal Combustion and Post-Combustion Wastes. J. Sustain. Min. 2018, 17, 87–96. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, X.; Chuanping, L.; Li, F.; Xu, X.; Lv, Y. Heavy Metal Contaminations in Soil-Rice System: Source Identification in Relation to a Sulfur-Rich Coal Burning Power Plant in Northern Guangdong Province, China. Environ. Monit. Assess. 2016, 188, 460. [Google Scholar] [CrossRef]
- Islam, M.F.; Majumder, S.S.; Al Mamun, A.; Khan, M.B.; Rahman, M.A.; Salam, A. Trace Metals Concentrations at the Atmosphere Particulate Matters in the Southeast Asian Mega City (Dhaka, Bangladesh). Open J. Air Pollut. 2015, 04, 86–98. [Google Scholar] [CrossRef]
- Salam, A.; Bauer, H.; Kassin, K.; Ullah, S.M.; Puxbaum, H. Aerosol Chemical Characteristics of a Mega-City in Southeast Asia (Dhaka-Bangladesh). Atmos. Environ. 2003, 37, 2517–2528. [Google Scholar] [CrossRef]
- Ahmed, F.; Fakhruddin, A.N.M.; Imam, M.D.T.; Khan, N.; Khan, T.A.; Rahman, M.M.; Abdullah, A.T.M. Spatial Distribution and Source Identification of Heavy Metal Pollution in Roadside Surface Soil: A Study of Dhaka Aricha Highway, Bangladesh. Ecol. Process. 2016, 5, 2. [Google Scholar] [CrossRef]
- Maitra, M.K.; Akhter, S.H. Neotectonics in Madhupur Tract and Its Surrounding Floodplains. Dhaka Univ. J. Earth Environ. Sci. 2011, 1, 83–89. [Google Scholar]
- Yu, E.; Liu, H.; Dinis, F.; Zhang, Q.; Jing, P.; Liu, F.; Ju, X. Contamination Evaluation and Source Analysis of Heavy Metals in Karst Soil Using UNMIX Model and Pb-Cd Isotopes. Int. J. Environ. Res. Public Health 2022, 19, 12478. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Vidic, A.; Braun, M. Trace Element Concentrations in Soils along Urbanization Gradients in the City of Wien, Austria. Environ. Sci. Pollut. Res. 2013, 20, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.H.; Rashid, M.H.; Wang, Q.; Wang, W.; Lu, S.; Yonemochi, S. Determination of Heavy Metal Contamination and Pollution Indices of Roadside Dust in Dhaka City, Bangladesh. Processes 2021, 9, 1732. [Google Scholar] [CrossRef]
- Aloud, S.S.; Alotaibi, K.D.; Almutairi, K.F.; Albarakah, F.N. Assessment of Heavy Metals Accumulation in Soil and Native Plants in an Industrial Environment, Saudi Arabia. Sustainability 2022, 14, 5993. [Google Scholar] [CrossRef]
- Gad, A.; Saleh, A.; Farhat, H.I.; Dawood, Y.H.; Abd El Bakey, S.M. Spatial Distribution, Contamination Levels, and Health Risk Assessment of Potentially Toxic Elements in Household Dust in Cairo City, Egypt. Toxics 2022, 10, 466. [Google Scholar] [CrossRef]
- Kavsar, N.; Eziz, M.; Sidikjan, N. Pollution and Health Risk Assessment of Hazardous Elements in Surface Dust along an Urbanization Gradient. Sustainability 2023, 15, 11842. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Su, W.; Cao, G.; Fu, G.; Du, W. Potential Sources, Pollution, and Ecological Risk Assessment of Potentially Toxic Elements in Surface Soils on the North-Eastern Margin of the Tibetan Plateau. Toxics 2022, 10, 368. [Google Scholar] [CrossRef]
- Eben, P.; Mohri, M.; Pauleit, S.; Duthweiler, S.; Helmreich, B. Phytoextraction Potential of Herbaceous Plant Species and the Influence of Environmental Factors—A Meta-Analytical Approach. Ecol. Eng. 2024, 199, 107169. [Google Scholar] [CrossRef]
- Shammi, S.A.; Salam, A.; Khan, M.A.H. Assessment of Heavy Metal Pollution in the Agricultural Soils, Plants, and in the Atmospheric Particulate Matter of a Suburban Industrial Region in Dhaka, Bangladesh. Environ. Monit. Assess. 2021, 193, 104. [Google Scholar] [CrossRef]
- Mowla, M.; Rahman, E.; Islam, N.; Aich, N. Assessment of Heavy Metal Contamination and Health Risk from Indoor Dust and Air of Informal E-Waste Recycling Shops in Dhaka, Bangladesh. J. Hazard. Mater. Adv. 2021, 4, 100025. [Google Scholar] [CrossRef]
- Rahman, M.S.; Saha, N.; Molla, A.H. Potential Ecological Risk Assessment of Heavy Metal Contamination in Sediment and Water Body around Dhaka Export Processing Zone, Bangladesh. Environ. Earth Sci. 2014, 71, 2293–2308. [Google Scholar] [CrossRef]
- Rahman, M.S.; Khan, M.D.H.; Jolly, Y.N.; Kabir, J.; Akter, S.; Salam, A. Assessing Risk to Human Health for Heavy Metal Contamination through Street Dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Jashim, Z.B.; Akhtar Hossain, S.; Enayet Hossain, M.; Islam, M.M.; E-Gulshan, J.; Nurul Huda, M. Effects of Air Borne Particulate Matter on the Plants Grown in Different Areas of Dhaka Mega City, Bangladesh: An Air Pollution Tolerance Study. Environ. Claims J. 2021, 33, 351–370. [Google Scholar] [CrossRef]
- Amadi, N.; Chuku, O.S. Phytoextraction Ability of Two Ornamental Plant Species. Int. J. Innov. R. Sci. Eng. Stud. 2023, 5, 28–36. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Turer, D.; Maynard, J.B.; Sansalone, J.J. Heavy metal contamination in soils of urban highways: Comparison between runoff and soil concentrations at Cincinnati, Ohio. Water Air Soil Poll. 2001, 132, 293–314. [Google Scholar] [CrossRef]
Element | Industrial | Residential | Rural | F | p |
---|---|---|---|---|---|
Ba | 10.4 ± 0.01 b | 20.1 ± 1.20 a | 18.2 ± 0.64 a | 84.75 | 0.002 |
Cd | 0.29 ± 0.08 a | 0.06 ± 0.01 b | 0.02 ± 0.00 b | 20.61 | 0.018 |
Co | 0.06 ± 0.01 b | 0.10 ± 0.01 a | 0.08 ± 0.01 ab | 13.76 | 0.031 |
Cr | 0.13 ± 0.01 b | 0.21 ± 0.02 a | 0.18 ± 0.01 ab | 22.91 | 0.015 |
Cu | 5.5 ± 0.15 b | 8.5 ± 0.73 a | 7.2 ± 0.46 ab | 17.56 | 0.022 |
Fe | 109.5 ± 6.4 b | 201.5 ± 28.9 a | 147.0 ± 2.8 ab | 14.44 | 0.029 |
Mn | 16.7 ± 3.6 b | 48.9 ± 8.8 a | 25.6 ± 1.9 b | 17.80 | 0.022 |
Ni | 0.10 ± 0.02 b | 0.34 ± 0.08 a | 0.15 ± 0.02 ab | 13.98 | 0.030 |
Pb | 5.2 ± 0.14 a | 2.5 ± 0.66 b | 1.7 ± 0.52 b | 27.21 | 0.012 |
Sr | 29.2 ± 0.6 b | 43.9 ± 4.6 a | 32.9 ± 2.8 ab | 11.83 | 0.038 |
Zn | 101.4 ± 7.9 a | 40.8 ± 10.4 b | 25.3 ± 6.9 b | 44.32 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvez, M.S.; Czédli, H.; Hoque, M.I.; Rahman, M.M.; Anwar, A.; Uddin, A.H.M.M.; Hasan, M.S.; Bibi, D.; Tóthmérész, B.; Magura, T.; et al. Accumulation of Microplastics and Potentially Toxic Elements in Plant Leaves Along an Urbanization Gradient in Bangladesh. Toxics 2024, 12, 848. https://doi.org/10.3390/toxics12120848
Parvez MS, Czédli H, Hoque MI, Rahman MM, Anwar A, Uddin AHMM, Hasan MS, Bibi D, Tóthmérész B, Magura T, et al. Accumulation of Microplastics and Potentially Toxic Elements in Plant Leaves Along an Urbanization Gradient in Bangladesh. Toxics. 2024; 12(12):848. https://doi.org/10.3390/toxics12120848
Chicago/Turabian StyleParvez, Md. Sohel, Herta Czédli, Md. Imdadul Hoque, Mohammad Mizanur Rahman, Armin Anwar, Abu Hena Mohammad Mezbah Uddin, Md. Siddiq Hasan, Dina Bibi, Béla Tóthmérész, Tibor Magura, and et al. 2024. "Accumulation of Microplastics and Potentially Toxic Elements in Plant Leaves Along an Urbanization Gradient in Bangladesh" Toxics 12, no. 12: 848. https://doi.org/10.3390/toxics12120848
APA StyleParvez, M. S., Czédli, H., Hoque, M. I., Rahman, M. M., Anwar, A., Uddin, A. H. M. M., Hasan, M. S., Bibi, D., Tóthmérész, B., Magura, T., & Simon, E. (2024). Accumulation of Microplastics and Potentially Toxic Elements in Plant Leaves Along an Urbanization Gradient in Bangladesh. Toxics, 12(12), 848. https://doi.org/10.3390/toxics12120848