Enhancing Environmental and Human Health Management Through the Integration of Advanced Revitalization Technologies Utilizing Artificial Intelligence
Abstract
1. Introduction
2. Effects of Pollution on the Environment and Human Health
2.1. Modern Perspectives on Environmental Pollution
2.2. Air, Water, and Soil Pollution
2.3. The Impacts of Pollution on Human Health
3. Sustainable Development and Health Improvement
3.1. Environmentally Sustainable Technologies for Revitalization
3.2. Personalized Treatment Approach and Revitalization
4. A Comprehensive Model for Enhancing Environmental and Human Health Management Through the Integration of Modern Technologies with AI
Description of the Individual Phases
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schell, L.M.; Gallo, M.V.; Denham, M.; Ravenscroft, J. Effects of Pollution on Human Growth and Development: An Introduction. J. Physiol. Anthropol. 2006, 25, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Almetwally, A.A.; Bin-Jumah, M.; Allam, A.A. Ambient air pollution and its influence on human health and welfare: An overview. Environ. Sci. Pollut. Res. 2020, 27, 24815–24830. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- Dhamija, P.; Bag, S. Role of artificial intelligence in operations environment: A review and bibliometric analysis. TQM J. 2020, 32, 869–896. [Google Scholar] [CrossRef]
- Nti, E.K.; Cobbina, S.J.; Attafuah, E.E.; Senanu, L.D.; Amenyeku, G.; Gyan, M.A.; Forson, D.; Safo, A.-R. Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon 2023, 9, e18170. [Google Scholar] [CrossRef] [PubMed]
- Tagde, P.; Tagde, S.; Bhattacharya, T.; Tagde, P.; Chopra, H.; Akter, R.; Kaushik, D.; Rahman, H. Blockchain and artificial intelligence technology in e-Health. Environ. Sci. Pollut. Res. 2021, 28, 52810–52831. [Google Scholar] [CrossRef]
- Bostrom, A.; Demuth, J.L.; Wirz, C.; Cains, M.C.; Schumacher, A.; Madlambayan, D.; Bansal, A.S.; Bearth, A.; Chase, R.; Crosman, K.M.; et al. Trust and trustworthy artificial intelligence: A research agenda for AI in the environmental sciences. Risk Anal. 2024, 44, 1498–1513. [Google Scholar] [CrossRef]
- Banning, M. A review of clinical decision making: Models and current research. J. Clin. Nurs. 2008, 17, 187–195. [Google Scholar] [CrossRef]
- Anyanwu, E.C.; Okongwu, C.C.; Olorunsogo, T.O.; Ayo-Farai, O.; Osasona, F.; Daraojimba, O.D. Artificial intelligence in healthcare: A review of ethical dilemmas and practical applications. Int. Med. Sci. Res. J. 2024, 4, 126–140. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef]
- Choubey, S.K.; Naman, H. A Review on Use of Data Science for Visualization and Prediction of the COVID-19 Pandemic and Early Diagnosis of COVID-19 Using Machine Learning Models. In Internet of Medical Things for Smart Healthcare; Chakraborty, C., Banerjee, A., Garg, L., Rodrigues, J.J.P.C., Eds.; Studies in Big Data; Springer: Singapore, 2020; Volume 80, pp. 241–265. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson Education Limited: London, UK, 2022; pp. 19–53. [Google Scholar]
- Ukaogo, P.O.; Ewuzie, U.; Onwuka, C.V. Environmental pollution: Causes, effects, and the remedies. In Microorganisms for Sustainable Environment and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 419–429. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Albarico, F.P.J.B.; Pandey, A.; Chen, C.-W.; Dong, C.-D. Organic wastes bioremediation and its changing prospects. Sci. Total Environ. 2022, 824, 153889. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.-H.; Lee, D.; Bae, H.; Lee, T.; Na, S.G.; Yeh, S.-W.; Park, J.; Yeo, M. Back-trajectory analyses for evaluating the transboundary transport effect to the aerosol pollution in South Korea. Environ. Pollut. 2024, 351, 124031. [Google Scholar] [CrossRef] [PubMed]
- Boucekkine, R.; Fabbri, G.; Federico, S.; Gozzi, F. From firm to global-level pollution control: The case of transboundary pollution. Eur. J. Oper. Res. 2021, 290, 331–345. [Google Scholar] [CrossRef]
- Suzuki, T.; Hidaka, T.; Kumagai, Y.; Yamamoto, M. Environmental pollutants and the immune response. Nat. Immunol. 2020, 21, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R.; Warming, G.; Change, C. Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Omrani, G.A.; Karri, R.R. Solid Waste—Sources, Toxicity, and Their Consequences to Human Health. In Soft Computing Techniques in Solid Waste and Wastewater Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 205–213. [Google Scholar] [CrossRef]
- Chormare, R.; Kumar, M.A. Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. Chemosphere 2022, 302, 134836. [Google Scholar] [CrossRef]
- Amjad, F.; Abbas, W.; Zia-Ur-Rehman, M.; Baig, S.A.; Hashim, M.; Khan, A.; Rehman, H.-U. Effect of green human resource management practices on organizational sustainability: The mediating role of environmental and employee performance. Environ. Sci. Pollut. Res. 2021, 28, 28191–28206. [Google Scholar] [CrossRef]
- Dzikriansyah, M.A.; Masudin, I.; Zulfikarijah, F.; Jihadi, M.; Jatmiko, R.D. The role of green supply chain management practices on environmental performance: A case of Indonesian small and medium enterprises. Clean. Logist. Supply Chain 2023, 6, 100100. [Google Scholar] [CrossRef]
- Van Der Giesen, C.; Cucurachi, S.; Guinée, J.; Kramer, G.J.; Tukker, A. A critical view on the current application of LCA for new technologies and recommendations for improved practice. J. Clean. Prod. 2020, 259, 120904. [Google Scholar] [CrossRef]
- Nikolaou, I.E.; Tsagarakis, K.P. An introduction to circular economy and sustainability: Some existing lessons and future directions. Sustain. Prod. Consum. 2021, 28, 600–609. [Google Scholar] [CrossRef]
- Grigorieva, E.; Lukyanets, A. Combined Effect of Hot Weather and Outdoor Air Pollution on Respiratory Health: Literature Review. Atmosphere 2021, 12, 790. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Tainio, M.; Andersen, Z.J.; Nieuwenhuijsen, M.J.; Hu, L.; de Nazelle, A.; An, R.; Garcia, L.M.T.; Goenka, S.; Zapata-Diomedi, B.; Bull, F.; et al. Air pollution, physical activity and health: A mapping review of the evidence. Environ. Int. 2021, 147, 105954. [Google Scholar] [CrossRef]
- Kiliç, Z.; Pollution, W. Negative Effects and Prevention Methods. İstanbul Sabahattin Zaim Üniversitesi Fen Bilim. Enstitüsü Derg. 2021, 3, 129–132. [Google Scholar] [CrossRef]
- Al-Taai, S.H.H. Water pollution Its causes and effects. IOP Conf. Ser. Earth Environ. Sci. 2021, 790, 012026. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef]
- Raimi, M.O.; Iyingiala, A.-A.; Sawyerr, O.H.; Saliu, A.O.; Ebuete, A.W.; Emberru, R.E.; Sanchez, N.D.; Osungbemiro, W.B. Leaving No One Behind: Impact of Soil Pollution on Biodiversity in the Global South: A Global Call for Action. In Biodiversity in Africa: Potentials, Threats and Conservation; Chibueze Izah, S., Ed.; Sustainable Development and Biodiversity; Springer Nature: Singapore, 2022; Volume 29, pp. 205–237. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, H. Microbial Consortia Are Needed to Degrade Soil Pollutants. Microorganisms 2022, 10, 261. [Google Scholar] [CrossRef]
- Buta, M.; Hubeny, J.; Zieliński, W.; Harnisz, M.; Korzeniewska, E. Sewage sludge in agriculture—The effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops—A review. Ecotoxicol. Environ. Saf. 2021, 214, 112070. [Google Scholar] [CrossRef]
- Naidu, R.; Biswas, B.; Willett, I.R.; Cribb, J.; Singh, B.K.; Nathanail, P.; Coulon, F.; Semple, K.T.; Jones, K.; Barclay, A.; et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef]
- Rose, J.J.; Wang, L.; Xu, Q.; McTiernan, C.F.; Shiva, S.; Tejero, J.; Gladwin, M.T. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. Am. J. Respir. Crit. Care Med. 2017, 195, 596–606. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, L.; Van Dingenen, R.; Vieno, M.; Van Grinsven, H.J.; Zhang, X.; Zhang, S.; Chen, Y.; Wang, S.; Ren, C.; et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM 2.5 air pollution. Science 2021, 374, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; van Donkelaar, A.; Hammer, M.S.; McDuffie, E.E.; Burnett, R.T.; Spadaro, J.V.; Chatterjee, D.; Cohen, A.J.; Apte, J.S.; Southerland, V.A.; et al. Reversal of trends in global fine particulate matter air pollution. Nat. Commun. 2023, 14, 5349. [Google Scholar] [CrossRef] [PubMed]
- Talbi, A.; Kerchich, Y.; Kerbachi, R.; Boughedaoui, M. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environ. Pollut. 2018, 232, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Masoner, J.R.; Kolpin, D.W.; Furlong, E.T.; Cozzarelli, I.M.; Gray, J.L. Landfill leachate as a mirror of today’s disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States. Environ. Toxicol. Chem. 2016, 35, 906–918. [Google Scholar] [CrossRef]
- Eggen, T.; Moeder, M.; Arukwe, A. Municipal landfill leachates: A significant source for new and emerging pollutants. Sci. Total Environ. 2010, 408, 5147–5157. [Google Scholar] [CrossRef]
- Kormoker, T.; Ram, P.; Islam, S.; Ahmed, S.; Chandra, K.; Uddin, M.; Rahman, M. Toxic metals in agricultural soils near the industrial areas of Bangladesh: Ecological and human health risk assessment. Toxin Rev. 2021, 40, 1135–1154. [Google Scholar] [CrossRef]
- Kim, L.; Jeon, J.-W.; Son, J.-Y.; Park, M.-K.; Kim, C.-S.; Jeon, H.-J.; Nam, t.-H.; Kim, K.; Park, B.J.; Choi, S.-D.; et al. Monitoring and risk assessment of polychlorinated biphenyls (PCBs) in agricultural soil collected in the vicinity of an industrialized area. Appl. Biol. Chem. 2016, 59, 655–659. [Google Scholar] [CrossRef]
- Khudur, L.S.; Shahsavari, E.; Miranda, A.F.; Morrison, P.D.; Nugegoda, D.; Ball, A.S. Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices. Environ. Sci. Pollut. Res. 2015, 22, 14809–14819. [Google Scholar] [CrossRef]
- Maystrenko, T.; Rybak, A. Radium uptake by earthworms E. fetida after exposure to contaminated soil. J. Environ. Radioact. 2023, 257, 107085. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Novo, J.P.; Martins, B.; Raposo, R.S.; Pereira, F.C.; Oriá, R.B.; Malva, J.O.; Fontes-Ribeiro, C. Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation. Int. J. Mol. Sci. 2021, 22, 3101. [Google Scholar] [CrossRef]
- Park, J.-D.; Zheng, W. Human Exposure and Health Effects of Inorganic and Elemental Mercury. J. Prev. Med. Pub. Health 2012, 45, 344–352. [Google Scholar] [CrossRef]
- Sakamoto, M.; Tatsuta, N.; Izumo, K.; Phan, P.T.; Vu, L.D.; Yamamoto, M.; Nakamura, M.; Nakai, K.; Murata, K. Health Impacts and Biomarkers of Prenatal Exposure to Methylmercury: Lessons from Minamata, Japan. Toxics 2018, 6, 45. [Google Scholar] [CrossRef]
- Aaseth, J.; Wallace, D.R.; Vejrup, K.; Alexander, J. Methylmercury and developmental neurotoxicity: A global concern. Curr. Opin. Toxicol. 2020, 19, 80–87. [Google Scholar] [CrossRef]
- Fujimura, M.; Usuki, F. Methylmercury-Mediated Oxidative Stress and Activation of the Cellular Protective System. Antioxidants 2020, 9, 1004. [Google Scholar] [CrossRef]
- D’Souza, L.C.; Paithankar, J.G.; Stopper, H.; Pandey, A.; Sharma, A. Environmental Chemical-Induced Reactive Oxygen Species Generation and Immunotoxicity: A Comprehensive Review. Antioxid. Redox Signal. 2024, 40, 691–714. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.H.; Guo, W.; Boopathy, R. Editorial overview: Green technologies for environmental remediation. Curr. Opin. Environ. Sci. Health 2019, 12, A1–A3. [Google Scholar] [CrossRef]
- Qayyum, S.; Khan, I.; Meng, K.; Zhao, Y.; Peng, C. A review on remediation technologies for heavy metals contaminated soil. Cent. Asian J. Environ. Sci. Technol. Innov. 2020, 1, 21–29. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Negrete, J.; Marrugo-Madrid, S.; Pinedo-Hernández, J.; Durango-Hernández, J.; Díez, S. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci. Total Environ. 2016, 542, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Chandra, J.; Xalxo, R.; Sahu, K. Concept and Types of Phytoremediation. In Approaches to the Remediation of Inorganic Pollutants; Hasanuzzaman, M., Ed.; Springer: Singapore, 2021; pp. 281–302. [Google Scholar] [CrossRef]
- Teiri, H.; Hajizadeh, Y.; Azhdarpoor, A. A review of different phytoremediation methods and critical factors for purification of common indoor air pollutants: An approach with sensitive analysis. Air Qual. Atmos. Health 2022, 15, 373–391. [Google Scholar] [CrossRef]
- Kumar, L.; Chugh, M.; Kumar, S.; Kumar, K.; Sharma, J.; Bharadvaja, N. Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies. Process. Saf. Environ. Prot. 2022, 159, 362–375. [Google Scholar] [CrossRef]
- Alori, E.T.; Gabasawa, A.I.; Elenwo, C.E.; Agbeyegbe, O.O. Bioremediation techniques as affected by limiting factors in soil environment. Front. Soil Sci. 2022, 2, 937186. [Google Scholar] [CrossRef]
- Narayanan, M.; Ali, S.S.; El-Sheekh, M. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. J. Environ. Manag. 2023, 334, 117532. [Google Scholar] [CrossRef]
- Zumstein, M.T.; Helbling, D.E. Biotransformation of antibiotics: Exploring the activity of extracellular and intracellular enzymes derived from wastewater microbial communities. Water Res. 2019, 155, 115–123. [Google Scholar] [CrossRef]
- Qin, W.; Wang, C.-Y.; Ma, Y.-X.; Shen, M.-J.; Li, J.; Jiao, K.; Tay, F.R.; Niu, L.-N. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. Adv. Mater. 2020, 32, 1907833. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Bhandari, S.; Poudel, D.K.; Marahatha, R.; Dawadi, S.; Khadayat, K.; Phuyal, S.; Shrestha, S.; Gaire, S.; Basnet, K.; Khadka, U.; et al. Microbial Enzymes Used in Bioremediation. J. Chem. 2021, 2021, 8849512. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Moezzi, S.M.I.; Ravan, N.; Gholami, A.; Lai, C.W.; Chiang, W.-H.; Omidifar, N.; Yousefi, K.; Behbudi, G. Recent Advances in Enzymes for the Bioremediation of Pollutants. Biochem. Res. Int. 2021, 2021, 5599204. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of environmental wastes: The role of microorganisms. Front. Agron. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Wassie, M. The Role of Microorganisms in Bioremediation—A Review. Open J. Environ. Biol. 2017, 2, 38–46. [Google Scholar] [CrossRef]
- Rv, X.M.R. Microorganisms Metabolism during Bioremediation of Oil Contaminated Soils. J. Bioremediation Biodegrad. 2016, 7, 340. [Google Scholar] [CrossRef]
- Silva, A.; Delerue-Matos, C.; Figueiredo, S.; Freitas, O. The Use of Algae and Fungi for Removal of Pharmaceuticals by Bioremediation and Biosorption Processes: A Review. Water 2019, 11, 1555. [Google Scholar] [CrossRef]
- Rezania, S.; Park, J.; Rupani, P.F.; Darajeh, N.; Xu, X.; Shahrokhishahraki, R. Phytoremediation potential and control of Phragmites australis as a green phytomass: An overview. Environ. Sci. Pollut. Res. 2019, 26, 7428–7441. [Google Scholar] [CrossRef]
- Yang, C.; Ho, Y.-N.; Inoue, C.; Chien, M.-F. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Sci. Total Environ. 2020, 740, 140137. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Trejo, H.X.; Chen, G.; Li, S. Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): A review. Environ. Dev. Sustain. 2021, 23, 14405–14435. [Google Scholar] [CrossRef]
- Curiel-Alegre, S.; Velasco-Arroyo, B.; Rumbo, C.; Ali Khan, A.H.; Tamayo-Ramos, J.A.; Rad, C.; Gallego, J.L.R.; Barros, R. Evaluation of biostimulation, bioaugmentation, and organic amendments application on the bioremediation of recalcitrant hydrocarbons of soil. Chemosphere 2022, 307, 135638. [Google Scholar] [CrossRef]
- Adams, G.O.; Fufeyin, P.T.; Okoro, S.E.; Ehinomen, I. Bioremediation, Biostimulation and Bioaugmention: A Review. Int. J. Environ. Bioremediation Biodegrad. 2020, 3, 28–39. [Google Scholar] [CrossRef]
- Herrero, M.; Stuckey, D.C. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 2015, 140, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Dick, W.A.; Li, W.; Wang, X.; Yang, Q.; Wang, T.; Xu, L.; Zhang, M.; Chen, L. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int. Biodeterior. Biodegrad. 2016, 107, 158–164. [Google Scholar] [CrossRef]
- Nwankwegu, A.S.; Zhang, L.; Xie, D.; Onwosi, C.O.; Muhammad, W.; Odoh, C.K.; Sam, K.; Idenyi, J.N. Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. J. Environ. Manag. 2022, 304, 114313. [Google Scholar] [CrossRef]
- Mehrotra, T.; Dev, S.; Banerjee, A.; Chatterjee, A.; Singh, R.; Aggarwal, S. Use of immobilized bacteria for environmental bioremediation: A review. J. Environ. Chem. Eng. 2021, 9, 105920. [Google Scholar] [CrossRef]
- Partovinia, A.; Rasekh, B. Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Crit. Rev. Environ. Sci. Technol. 2018, 48, 1–38. [Google Scholar] [CrossRef]
- Valdivia-Rivera, S.; Ayora-Talavera, T.; Lizardi-Jiménez, M.A.; García-Cruz, U.; Cuevas-Bernardino, J.C.; Pacheco, N. Encapsulation of microorganisms for bioremediation: Techniques and carriers. Rev. Environ. Sci. Biotechnol. 2021, 20, 815–838. [Google Scholar] [CrossRef]
- Mutlu, B.R.; Yeom, S.; Wackett, L.P.; Aksan, A. Modelling and optimization of a bioremediation system utilizing silica gel encapsulated whole-cell biocatalyst. Chem. Eng. J. 2015, 259, 574–580. [Google Scholar] [CrossRef]
- Dzionek, A.; Wojcieszyńska, D.; Guzik, U. Natural carriers in bioremediation: A review. Electron. J. Biotechnol. 2016, 23, 28–36. [Google Scholar] [CrossRef]
- Tripathi, S.; Sanjeevi, R.; Anuradha, J.; Chauhan, D.S.; Rathoure, A.K. Nano-Bioremediation: Nanotechnology and Bioremediation. In Research Anthology on Emerging Techniques in Environmental Remediation; I.R. Management Association, Ed.; IGI Global: Hershey, PA, USA, 2022; pp. 135–149. [Google Scholar] [CrossRef]
- Singh, K.R.; Nagpure, G.; Singh, J.; Singh, R.P. Introduction. In Nanobiotechnology for Bioremediation; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–21. [Google Scholar] [CrossRef]
- Guo, Z.; Richardson, J.J.; Kong, B.; Liang, K. Nanobiohybrids: Materials approaches for bioaugmentation. Sci. Adv. 2020, 6, eaaz0330. [Google Scholar] [CrossRef]
- Ramezani, M.; Rad, F.A.; Ghahari, S.; Ghahari, S.; Ramezani, M. Nano-Bioremediation Application for Environment Contamination by Microorganism. In Microbial Rejuvenation of Polluted Environment; Panpatte, D.G., Jhala, Y.K., Eds.; Microorganisms for Sustainability; Springer: Singapore, 2021; Volume 26, pp. 349–378. [Google Scholar] [CrossRef]
- Knierim, C.; Enzeroth, M.; Kaiser, P.; Dams, C.; Nette, D.; Seubert, A.; Klingl, A.; Greenblatt, C.L.; Jérôme, V.; Agarwal, S.; et al. Living Composites of Bacteria and Polymers as Biomimetic Films for Metal Sequestration and Bioremediation: Living Composites of Bacteria and Polymers as Biomimetic Films. Macromol. Biosci. 2015, 15, 1052–1059. [Google Scholar] [CrossRef]
- Purnomo, A.S.; Putra, S.R.; Putro, H.S.; Hamzah, A.; Rohma, N.A.; Rohmah, A.A.; Rizqi, H.D.; Asranudin; Tangahu, B.V.; Warmadewanthi, I.D.A.A.; et al. The application of biosurfactant-producing bacteria immobilized in PVA/SA/bentonite bio-composite for hydrocarbon-contaminated soil bioremediation. RSC Adv. 2023, 13, 21163–21170. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.; Cavaleiro, A.J.; Soares, O.S.G.; Braga, C.S.; Salvador, A.F.; Pereira, M.F.R.; Alves, M.M.; Pereira, L. Detoxification of Ciprofloxacin in an Anaerobic Bioprocess Supplemented with Magnetic Carbon Nanotubes: Contribution of Adsorption and Biodegradation Mechanisms. Int. J. Mol. Sci. 2021, 22, 2932. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.S.; Prakash, P.; Thamaraiselvi, K. Nanobioremediation Technologies for Sustainable Environment. In Bioremediation and Sustainable Technologies for Cleaner Environment; Prashanthi, M., Sundaram, R., Jeyaseelan, A., Kaliannan, T., Eds.; Environmental Science and Engineering; Springer International Publishing: Cham, Switzerland, 2017; pp. 13–33. [Google Scholar] [CrossRef]
- Adejumo, A.L.; Azeez, L.; Kolawole, T.O.; Aremu, H.K.; Adedotun, I.S.; Oladeji, R.D.; Adeleke, A.E.; Abdullah, M. Silver nanoparticles strengthen Zea mays against toxic metal-related phytotoxicity via enhanced metal phytostabilization and improved antioxidant responses. Int. J. Phytoremediation 2023, 25, 1676–1686. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Pandey, S.C.; Joshi, S.; Chaudhary, P.; Pathak, V.M.; Huang, Y.; Wu, X.; Zhou, Z.; Chen, S. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. J. Hazard. Mater. 2022, 427, 128033. [Google Scholar] [CrossRef]
- Malik, G.; Arora, R.; Chaturvedi, R.; Paul, M.S. Implementation of Genetic Engineering and Novel Omics Approaches to Enhance Bioremediation: A Focused Review. Bull. Environ. Contam. Toxicol. 2022, 108, 443–450. [Google Scholar] [CrossRef]
- Sayler, G.S.; Ripp, S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol. 2000, 11, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Melnick, J.G.; Parkin, G. Cleaving Mercury-Alkyl Bonds: A Functional Model for Mercury Detoxification by MerB. Science 2007, 317, 225–227. [Google Scholar] [CrossRef]
- Krout, I.N.; Scrimale, T.; Vorojeikina, D.; Boyd, E.S.; Rand, M.D. Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA). Appl. Environ. Microbiol. 2022, 88, e00010-22. [Google Scholar] [CrossRef]
- Boyd, E.S.; Barkay, T. The Mercury Resistance Operon: From an Origin in a Geothermal Environment to an Efficient Detoxification Machine. Front. Microbiol. 2012, 3, 349. [Google Scholar] [CrossRef]
- Farina, M.; Aschner, M. Glutathione antioxidant system and methylmercury-induced neurotoxicity: An intriguing interplay. Biochim. Biophys. Acta BBA Gen. Subj. 2019, 1863, 129285. [Google Scholar] [CrossRef]
- Lima, L.A.D.O.; Bittencourt, L.O.; Puty, B.; Fernandes, R.M.; Nascimento, P.C.; Silva, M.C.F.; Alves-Junior, S.M.; Pinheiro, J.J.V.; Lima, R.R. Methylmercury Intoxication Promotes Metallothionein Response and Cell Damage in Salivary Glands of Rats. Biol. Trace Elem. Res. 2018, 185, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Lee, S.; Park, Y.; Min, T.; Bai, S.C. Evaluation of dietary selenium, vitamin C and E as the multi-antioxidants on the methylmercury intoxicated mice based on mercury bioaccumulation, antioxidant enzyme activity, lipid peroxidation and mitochondrial oxidative stress. Chemosphere 2021, 273, 129673. [Google Scholar] [CrossRef] [PubMed]
- Spiller, H.A.; Hays, H.L.; Casavant, M.J. Rethinking treatment of mercury poisoning: The roles of selenium, acetylcysteine, and thiol chelators in the treatment of mercury poisoning: A narrative review. Toxicol. Commun. 2021, 5, 19–59. [Google Scholar] [CrossRef]
- Muniroh, M. Methylmercury-induced pro-inflammatory cytokines activation and its preventive strategy using anti-inflammation N-acetyl-l-cysteine: A mini-review. Rev. Environ. Health 2020, 35, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Haemmerle, M.M.; Fendrych, J.; Matiasek, E.; Tschegg, C. Adsorption and Release Characteristics of Purified and Non-Purified Clinoptilolite Tuffs towards Health-Relevant Heavy Metals. Crystals 2021, 11, 1343. [Google Scholar] [CrossRef]
A Component of the Environment | Category of Polluting Substance | The Type of Polluting Substance | Source of Origin | Concentrations in the Environment | Reference |
---|---|---|---|---|---|
Air | carbon compounds | CO | industrial processes, combustion of fossil fuels, agricultural activities, oil refineries | >6 ppm | [35] |
nitrogen compounds | NOx | industrial processes, combustion of fossil fuels, agricultural activities | 0.1 ppm | [36] | |
oxygen compounds | ground ozone (O3) | photochemical reactions between precursors (SOx or NOx) and volatile organic compounds | 79 ppb | [37] | |
tiny micron particles | PM2.5 | combustion of fossil fuels, combustion of biomass, industrial processes, dust particles | 34.7 μg/m3 | [38] | |
tiny micron particles | PM10 | combustion of fossil fuels, combustion of biomass, industrial processes, household emissions, construction activities | 45.90–77.23 μg/m3 | [39] | |
Water | plasticizer for polymers and resins | diethyl phthalate | chemical industry, building materials, households | 2000 ng/L | [40] |
fixative and perfume for soaps | benzophenone | chemical industry, municipal wastewater | 400–16,000 ng/L | [40] | |
herbicide | atrazine | leachate from agricultural activities | 19–388 ng/L | [41] | |
antibiotic | erythromycin | municipal wastewater, leachate from waste disposal sites | 53–1060 ng/L | [41] | |
phytoestrogen | beta-sitosterol | cosmetic, food and pharmaceutical industry | 24,000 ng/L | [41] | |
Soil | heavy metals | lead | chemical industry, mining industry, waste disposal site | 19.2 mg/kg | [42] |
organochlorine compounds | PCB (polychlorinated biphenyl) | industrial processes, e-waste, construction materials, landfills | 166.15 pg/g | [43] | |
oil derivative | diesel | accidents from oil pipelines or processing plants | 20 g/kg | [44] | |
radionuclide | Ra | medical waste, radioactive waste from nuclear plants | 89,000 ± 9000 Bq/kg | [45] |
Organism | Genus/Species | Affinity for Pollutants in the Environment |
---|---|---|
Bacteria | Arthrobacter sp. | nitrophenol |
Exiguobacterium aurantiacum | phenols, heterocyclic compounds, PAH | |
Ralstonia eutropha | dichlorophenoxyacetic acid | |
Pseudomonas aeruginosa | atrazine, phenol, Cd, Pb, Cu, Ni, Ra, Zn, crude oil, aromatic hydrocarbons | |
Pseudomonas putida | monocyclic aromatic hydrocarbons (benzene, xylene, toluene), diesel, petrol | |
Escherichia coli | Zn, V, Cr | |
Micrococcus sp. | Th, U, some hydrocarbons | |
Bacillus sp. | endosulfan | |
Algae | Spirulina sp. | Pb, Cd, Ni, pesticides, phenol, textile dyes |
Chlorella vulgaris | Cd, Th, Zn, Pb, Ni, Cs, tetracycline, levofloxacin | |
Monoraphidium braunii | bisphenol A | |
Chlorococcum humicola | Fe | |
Chlorella pyrenoidosa | Cd, Pb, Hg, PCB, phenol, triclosan | |
Fungi | Penicillium sp. | benzo(a)pyrene, aliphatic hydrocarbons |
Phanerochaete chrysosporium | phenanthrene, anthracene, pyrene, fluoranthene, 2,4-dichlorophenol, DDT, ibuprofen | |
Lentinus sp. | phenanthrene, pyrene | |
Aspergillus niger | petroleum derivatives, diesel, Pb, Cr, Cd, Cu, dichlorfenac | |
Saccharomyces cerevisiae | heavy metals; Ni, Hg, Pb | |
Trametes versicolor | ibuprofen, salicylic acid, erythromycin, estriol | |
Ganoderma lucidum | pyrene | |
Plants | Phragmites australis (common reed) | adsorption of organic pollutants, denitrification, phytostabilization of heavy metals (Al, Mn, Pb, Ni, Cr, Hg) |
Pteris vittata (fern) | phytoremediation of As (V), rhizofiltration of As (III) | |
Cannabis sativa (indian hemp) | hyperaccumulation of organic contaminants (PAH, benzo(a) pyrene, naphthalene, chrysene) and heavy metals (Se, Co, Pb, Cu) | |
Eichhornia crassipes (water hyacinth) | methyl blue and orange, removal of Pb, Cu, Zn, Hg, Cd, Cr and nutrients |
Transport Carrier Type | Operation Principle of the Transport Carrier | Immobilized Biological System | Reference |
---|---|---|---|
synthetic polymer matrix (poly-vinyl alcohol, PVA) coating with a shell (hydrophobic poly (p-xylylene), PPX | biomimetic extracellular films (“living composites”) for nitrite bioremediation | Nitrobacter winogradskyi | [89] |
plant fiber sponge derived from Luffa cylindrica or Luffa aegyptiaca | the polymer sponge matrix prevents the spread of biomass into the environment; design is used for the biodegradation of aromatic hydrocarbons in in situ conditions | Bacillus cereus | [84] |
PVA, poly-vinyl alcohol/ SA, sodium alginate/bentonite bio-composite matrix | immobilization of a mixed bacterial strain in the pores of the matrix for biodegradation of Total Petroleum Hydrocarbon (TPH); large adsorption surface and stabilizing effect on microorganisms | biosurfactant-producing bacteria Pseudomonas aeruginosa, Bacillus subtilis, Ralstonia pickettii | [90] |
carbon nanotubes (CNTs) | biodegradation of ciprofloxacin; combined effect of sorption and biological removal in anaerobic conditions using CNT and L. portucalensis | aerobic bacteria Labrys portucalensis | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volf, M.; Vučemilović, A.; Dobrović, Ž. Enhancing Environmental and Human Health Management Through the Integration of Advanced Revitalization Technologies Utilizing Artificial Intelligence. Toxics 2024, 12, 847. https://doi.org/10.3390/toxics12120847
Volf M, Vučemilović A, Dobrović Ž. Enhancing Environmental and Human Health Management Through the Integration of Advanced Revitalization Technologies Utilizing Artificial Intelligence. Toxics. 2024; 12(12):847. https://doi.org/10.3390/toxics12120847
Chicago/Turabian StyleVolf, Mirela, Ante Vučemilović, and Željko Dobrović. 2024. "Enhancing Environmental and Human Health Management Through the Integration of Advanced Revitalization Technologies Utilizing Artificial Intelligence" Toxics 12, no. 12: 847. https://doi.org/10.3390/toxics12120847
APA StyleVolf, M., Vučemilović, A., & Dobrović, Ž. (2024). Enhancing Environmental and Human Health Management Through the Integration of Advanced Revitalization Technologies Utilizing Artificial Intelligence. Toxics, 12(12), 847. https://doi.org/10.3390/toxics12120847