Global Trends and Hotspots in Non-Targeted Screening of Water Pollution Research: Bibliometric and Visual Analysis
Abstract
1. Introduction
2. Methods
3. Results
3.1. Temporal Trends in Publication
3.2. National/Regional and Institutional Analysis
3.3. Author Analysis
3.4. Journal Source Analysis
3.5. Keyword Analysis
3.5.1. Keyword Frequency and Clustering
- (1)
- Advances in NTS and related analytical methods: This includes updates and iterations of gas chromatography-based methods [34], liquid chromatography-based methods [35], high-resolution mass spectrometry [36], and machine learning techniques [37]. These methods are used to assess the temporal and spatial distribution of compounds across various water-related environmental media (natural water, groundwater, urban industrial wastewater, agricultural irrigation channels, and tap water) and their exposure burden on organisms.
- (2)
- Comprehensive identification of water body compounds: NTS is employed to broadly characterize waterborne compounds, establish databases, and combine suspect and target screening methods for comparison. Research in this area focuses on single and polyalkyl substances, soluble organic compounds, plant estrogens, and their transformation products.
- (3)
- Health impacts of waterborne compounds: This research primarily evaluates pollutants through hazard characterization assessments and in vitro bioassays, focusing on the environmental persistence, bioaccumulation, in vivo toxicity, and in vitro toxicity of pollutants. Future environmental monitoring and regulation should take these pollutants into thorough consideration [38].
3.5.2. Keyword Trend Analysis
4. Discussion and Conclusions
- (1)
- Phases of Research Development: From 2007 to 2024, NTS water pollution research can be categorized into three phases. Since 2015, the research has entered a rapid development phase, with an annual increase of 12 publications. China leads in the number of publications, but its average citation per paper is relatively low, at only 12. Global collaboration in this field remains limited, as reflected by the MCP ratios across countries. The Swiss Federal Institute of Technology and the Chinese Academy of Sciences are leading institutions in this field. Based on a comprehensive evaluation, Hollender, J and Thomaidis, Nikolaos S emerge as the most influential researchers in this field.
- (2)
- Journal Contributions: Between 2007 and 2024, papers related to NTS water pollution research were published in 97 different academic journals. Most research in this field is published in high-impact journals, with the highest number of papers published in “Science of the Total Environment”. Based on various impact assessment metrics, “Environmental Science & Technology” is the most influential journal in this field. Cluster analysis indicates that future journal research on NTS water pollution will focus on interdisciplinary fields such as livestock, agriculture, chemical engineering, materials, and environmental ecology.
- (3)
- Shifts in Research Focus: Keyword analysis reveals that from 2007 to 2024, the research focus has gradually shifted from technical exploration of NTS to the broad identification of compounds in water environments and in-depth studies of their toxic effects. Current research is mainly centered on exposure risk assessment and health hazard mechanisms of emerging pollutants, microplastics, perfluorinated substances, and biotransformation compounds. Future research is expected to prioritize toxicity evaluation, population exposure assessment, metabolic pattern analysis, and safety evaluations of compounds and their impacts on public health.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and Health: A Progress Update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- Ruff, M.; Mueller, M.S.; Loos, M.; Singer, H.P. Quantitative Target and Systematic Non-Target Analysis of Polar Organic Micro-Pollutants Along the River Rhine Using High-Resolution Mass-Spectrometry—Identification of Unknown Sources and Compounds. Water Res. 2015, 87, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liu, Y.; Zheng, H.; Zhang, L.; Zhao, H.; Sang, X.; Lu, X. Evolutionary Patterns and Research Frontiers in Neoadjuvant Immunotherapy: A Bibliometric Analysis. Int. J. Surg. 2023, 109, 2774–2783. [Google Scholar] [CrossRef] [PubMed]
- Soler, C.; Picó, Y. Recent Trends in Liquid Chromatography-Tandem Mass Spectrometry to Determine Pesticides and Their Metabolites in Food. Trac-Trends Anal. Chem. 2007, 26, 103–115. [Google Scholar] [CrossRef]
- Müller, A.; Schulz, W.; Ruck, W.K.L.; Weber, W.H. A New Approach to Data Evaluation in the Non-Target Screening of Organic Trace Substances in Water Analysis. Chemosphere 2011, 85, 1211–1219. [Google Scholar] [CrossRef]
- Xia, B.; Liu, X.; Gu, Y.C.; Zhang, Z.H.; Wang, H.Y.; Ding, L.S.; Zhou, Y. Non-Target Screening of Veterinary Drugs Using Tandem Mass Spectrometry on Smartmass. J. Am. Soc. Mass Spectrom. 2013, 24, 789–793. [Google Scholar] [CrossRef]
- Nurmi, J.; Pellinen, J.; Rantalainen, A.L. Critical Evaluation of Screening Techniques for Emerging Environmental Contaminants Based on Accurate Mass Measurements with Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 2012, 47, 303–312. [Google Scholar] [CrossRef]
- Zedda, M.; Zwiener, C. Is Nontarget Screening of Emerging Contaminants by Lc-Hrms Successful? A Plea for Compound Libraries and Computer Tools. Anal. Bioanal. Chem. 2012, 403, 2493–2502. [Google Scholar] [CrossRef]
- Hug, C.; Ulrich, N.; Schulze, T.; Brack, W.; Krauss, M. Identification of Novel Micropollutants in Wastewater by a Combination of Suspect and Nontarget Screening. Environ. Pollut. 2014, 184, 25–32. [Google Scholar] [CrossRef]
- Hu, L.X.; Olaitan, O.J.; Li, Z.; Yang, Y.Y.; Chimezie, A.; Adepoju-Bello, A.A.; Ying, G.G.; Chen, C.E. What Is in Nigerian Waters? Target and Non-Target Screening Analysis for Organic Chemicals. Chemosphere 2021, 284, 131546. [Google Scholar] [CrossRef]
- Liu, Y.N.; D’Agostino, L.A.; Qu, G.B.; Jiang, G.B.; Martin, J.W. High-Resolution Mass Spectrometry (Hrms) Methods for Nontarget Discovery and Characterization of Poly- and Per-Fluoroalkyl Substances (Pfass) in Environmental and Human Samples. Trac-Trends Anal. Chem. 2019, 121, 115420. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; Vander Gheynst, J.; Fiehn, O.; Arita, M. Ms-Dial: Data-Independent Ms/Ms Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Bonnefille, B.; Karlsson, O.; Rian, M.B.; Raqib, R.; Parvez, F.; Papazian, S.; Islam, M.S.; Martin, J.W. Nontarget Analysis of Polluted Surface Waters in Bangladesh Using Open Science Workflows. Environ. Sci. Technol. 2023, 57, 6808–6824. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.T.; Yuan, B.X.; Wang, X.Q.; Dai, Y.S.; Wang, D.M.; Gong, Z.J.; Chen, J.M.; Shen, L.; Fan, M.K.; Li, Z.L. Industrial Wastewater Source Tracing: The Initiative of Sers Spectral Signature Aided by a One-Dimensional Convolutional Neural Network. Water Res. 2023, 232, 119662. [Google Scholar] [CrossRef] [PubMed]
- Nanusha, M.Y.; Frokjaer, E.E.; Sondergaard, J.; Larsen, M.M.; Glottrup, C.S.; Nicolaisen, J.B.; Hansen, M. Quantitative Non-Targeted Screening to Profile Micropollutants in Sewage Sludge Used for Agricultural Field Amendments. Environ. Sci. Technol. 2024, 58, 9850–9862. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, L.; Ge, Y.; Weber, R.; Huang, J. Target and Non-Target Analysis of Per- and Polyfluoroalkyl Substances in Representative Chrome Mist Suppressants on the Chinese Market. Chemosphere 2023, 337, 139419. [Google Scholar] [CrossRef]
- Zeng, N.; Sun, J.X.; Liu, C.Q.; Xu, J.Z.; An, Y.; Xu, M.Y.; Zhang, S.H.; Zhong, X.Y.; Ma, S.Y.; He, H.D.; et al. Knowledge Mapping of Application of Image-Guided Surgery in Prostate Cancer: A Bibliometric Analysis (2013–2023). Int. J. Surg. 2024, 110, 2992–3007. [Google Scholar] [CrossRef]
- Kushairi, N.; Ahmi, A. Flipped Classroom in the Second Decade of the Millenia: A Bibliometrics Analysis with Lotka’s Law. Educ. Inf. Technol. 2021, 26, 4401–4431. [Google Scholar] [CrossRef]
- Xu, D.; Yin, X.; Zhou, S.; Jiang, Y.; Xi, X.; Sun, H.; Wang, J. A Review on the Remediation of Microplastics Using Constructed Wetlands: Bibliometric, Co-Occurrence, Current Trends, and Future Directions. Chemosphere 2022, 303, 134990. [Google Scholar] [CrossRef]
- He, H.; Liu, C.; Chen, M.; Guo, X.; Li, X.; Xiang, Z.; Liao, F.; Dong, W. Effect of Dietary Patterns on Inflammatory Bowel Disease: A Machine Learning Bibliometric and Visualization Analysis. Nutrients 2023, 15, 3442. [Google Scholar] [CrossRef]
- Albergamo, V.; Schollée, J.E.; Schymanski, E.L.; Helmus, R.; Timmer, H.; Hollender, J.; de Voogt, P. Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System. Environ. Sci. Technol. 2019, 53, 7584–7594. [Google Scholar] [CrossRef] [PubMed]
- Lara-Martín, P.A.; Chiaia-Hernández, A.C.; Biel-Maeso, M.; Baena-Nogueras, R.M.; Hollender, J. Tracing Urban Wastewater Contaminants into the Atlantic Ocean by Nontarget Screening. Environ. Sci. Technol. 2020, 54, 3996–4005. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.G.; Meyer, C.; Patrick, M.; Kosfeld, V.; Ruedel, H.; Koschorreck, J.; Hollender, J. Comprehensive Screening of Polar Emerging Organic Contaminants Including Pfass and Evaluation of the Trophic Transfer Behavior in a Freshwater Food Web. Water Res. 2022, 218, 118514. [Google Scholar] [CrossRef] [PubMed]
- Creusot, N.; Huba, K.; Borel, C.; Ferrari, B.J.D.; Chèvre, N.C.; Hollender, J. Identification of Polar Organic Chemicals in the Aquatic Foodweb: Combining High-Resolution Mass Spectrometry and Trend Analysis. Environ. Int. 2024, 183, 108403. [Google Scholar] [CrossRef] [PubMed]
- Alygizakis, N.A.; Gago-Ferrero, P.; Hollender, J.; Thomaidis, N.S. Untargeted Time-Pattern Analysis of Lc-Hrms Data to Detect Spills and Compounds with High Fluctuation in Influent Wastewater. J. Hazard. Mater. 2019, 361, 19–29. [Google Scholar] [CrossRef]
- Aalizadeh, R.; Alygizakis, N.A.; Schymanski, E.L.; Krauss, M.; Schulze, T.; Ibáñez, M.; McEachran, A.D.; Chao, A.; Williams, A.J.; Gago-Ferrero, P.; et al. Development and Application of Liquid Chromatographic Retention Time Indices in Hrms-Based Suspect and Nontarget Screening. Anal. Chem. 2021, 93, 11601–11611. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Alygizakis, N.A.; Aalizadeh, R.; Thomaidis, N.S. Olive Oil Authenticity Studies by Target and Nontarget Lc-Qtof-Ms Combined with Advanced Chemometric Techniques. Anal. Bioanal. Chem. 2016, 408, 7955–7970. [Google Scholar] [CrossRef]
- Dulio, V.; Alygizakis, N.; Ng, K.; Schymanski, E.L.; Andres, S.; Vorkamp, K.; Hollender, J.; Finckh, S.; Aalizadeh, R.; Ahrens, L.; et al. Beyond Target Chemicals: Updating the Norman Prioritisation Scheme to Support the Eu Chemicals Strategy with Semi-Quantitative Suspect/Non-Target Screening Data. Environ. Sci. Eur. 2024, 36, 113. [Google Scholar] [CrossRef]
- Chen, C.M. Citespace Ii: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Huang, J.; Xiang, S.; Chen, S.; Wu, W.; Huang, T.; Pang, Y. Perfluoroalkyl Substance Pollution: Detecting and Visualizing Emerging Trends Based on Citespace. Environ. Sci. Pollut. Res. Int. 2022, 29, 82786–82798. [Google Scholar] [CrossRef]
- Chen, C. A Glimpse of the First Eight Months of the Covid-19 Literature on Microsoft Academic Graph: Themes, Citation Contexts, and Uncertainties. Front. Res. Metr. Anal. 2020, 5, 607286. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bai, J.; Zhang, L.; Liu, H.; Wang, W.; Liu, Z.; Zhang, G. Advances in Studies on the Plant Rhizosphere Microorganisms in Wetlands: A Visualization Analysis Based on Citespace. Chemosphere 2023, 317, 137860. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Song, M. Visualizing a Field of Research: A Methodology of Systematic Scientometric Reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, I.; Arrebola, F.J.; Vidal, J.L.M.; Frenich, A.G. Assessment of Wastewater Pollution by Gas Chromatography and High Resolution Orbitrap Mass Spectrometry. J. Chromatogr. A 2020, 1619, 460964. [Google Scholar] [CrossRef]
- Hu, M.; Krauss, M.; Brack, W.; Schulze, T. Optimization of Lc-Orbitrap-Hrms Acquisition and Mzmine 2 Data Processing for Nontarget Screening of Environmental Samples Using Design of Experiments. Anal. Bioanal. Chem. 2016, 408, 7905–7915. [Google Scholar] [CrossRef]
- Kiss, A.; Bergé, A.; Domenjoud, B.; Gonzalez-Ospina, A.; Vulliet, E. Chemometric and High-Resolution Mass Spectrometry Tools for the Characterization and Comparison of Raw and Treated Wastewater Samples of a Pilot Plant on the Sipibel Site. Environ. Sci. Pollut. Res. 2018, 25, 9230–9242. [Google Scholar] [CrossRef]
- Han, Y.; Hu, L.X.; Liu, T.; Dong, L.L.; Liu, Y.S.; Zhao, J.L.; Ying, G.G. Discovering Transformation Products of Pharmaceuticals in Domestic Wastewaters and Receiving Rivers by Using Non-Target Screening and Machine Learning Approaches. Sci. Total Environ. 2024, 948, 174715. [Google Scholar] [CrossRef]
- Zeng, Y.L.; Zhang, A.T.; Yang, X.; Xing, C.B.; Zhai, J.H.; Wang, Y.X.; Cai, B.H.; Shi, S.; Zhang, Y.J.; Shen, Z.X.; et al. Internal Exposure Potential of Water-Soluble Organic Molecules in Urban Pm2.5 Evaluated by Non-Covalent Adductome of Human Serum Albumin. Environ. Int. 2024, 184, 108492. [Google Scholar] [CrossRef]
- Pandey, A.; Kasuga, I.; Furumai, H.; Kurisu, F. Non-Target Liquid Chromatography High-Resolution Mass Spectrometry Screening to Prioritize Unregulated Micropollutants That Persist through Domestic Wastewater Treatment. Sci. Total Environ. 2024, 947, 174486. [Google Scholar] [CrossRef]
- Letzel, T.; Bayer, A.; Schulz, W.; Heermann, A.; Lucke, T.; Greco, G.; Grosse, S.; Schüssler, W.; Sengl, M.; Letzel, M. Lc-Ms Screening Techniques for Wastewater Analysis and Analytical Data Handling Strategies: Sartans and Their Transformation Products as an Example. Chemosphere 2015, 137, 198–206. [Google Scholar] [CrossRef]
- Jernberg, J.; Pellinen, J.; Rantalainen, A.L. Identification of Organic Xenobiotics in Urban Aquatic Environments Using Time-of-Flight Mass Spectrometry. Sci. Total Environ. 2013, 450, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Undeman, E.; Papa, E.; McLachlan, M.S. High-Throughput Evaluation of Organic Contaminant Removal Efficiency in a Wastewater Treatment Plant Using Direct Injection Uhplc-Orbitrap-Ms/Ms. Environ. Sci. Process. Impacts 2018, 20, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.Y.; Peter, K.T.; Gipe, A.D.; Zhao, H.Q.; Hou, F.; Wark, D.A.; Khangaonkar, T.; Kolodziej, E.P.; James, C.A. Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary. Environ. Sci. Technol. 2020, 54, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, T.; Jeon, J. Degradation of Micropollutants by Gamma Irradiation: Insight of Transformation Product Formation Explored by Suspect and Non-Target Screening Using Lc-Hrms. J. Environ. Chem. Eng. 2024, 12, 111659. [Google Scholar] [CrossRef]
- Costa, L.R.; Salvador, M.D.T.; Pintado-Herrera, M.G.; Albergaria-Barbosa, A.C.R.; Lourenço, R.A.; Combi, T. Legacy and Novel Contaminants in Surface Sediments of Admiralty Bay, Antarctica Peninsula. Sci. Total Environ. 2024, 951, 175551. [Google Scholar] [CrossRef]
- Simonnet-Laprade, C.; Bayen, S.; McGoldrick, D.; McDaniel, T.; Hutinet, S.; Marchand, P.; Vénisseau, A.; Cariou, R.; Le Bizec, B.; Dervilly, G. Evidence of Complementarity between Targeted and Non-Targeted Analysis Based on Liquid and Gas-Phase Chromatography Coupled to Mass Spectrometry for Screening Halogenated Persistent Organic Pollutants in Environmental Matrices. Chemosphere 2022, 293, 133615. [Google Scholar] [CrossRef]
- Christians, U.; Klawitter, J.; Hornberger, A.; Klawitter, J. How Unbiased Is Non-Targeted Metabolomics and Is Targeted Pathway Screening the Solution? Curr. Pharm. Biotechnol. 2011, 12, 1053–1066. [Google Scholar] [CrossRef]
- Hitchins, C.R.; Metzner, M.; Edworthy, J.; Ward, C. Non-Technical Skills and Gastrointestinal Endoscopy: A Review of the Literature. Frontline Gastroenterol. 2018, 9, 129–134. [Google Scholar] [CrossRef]
- Cao, M.; Fan, J.; Guo, C.; Chen, M.; Lv, J.; Sun, W.; Xi, B.; Xu, J. Comprehensive Investigation and Risk Assessment of Organic Contaminants in Yellow River Estuary Using Suspect and Nontarget Screening Strategies. Environ. Int. 2023, 173, 107843. [Google Scholar] [CrossRef]
- Gelao, V.; Fornasaro, S.; Briguglio, S.C.; Mattiussi, M.; De Martin, S.; Astel, A.M.; Barbieri, P.; Licen, S. Self-Organizing Maps: An Ai Tool for Identifying Unexpected Source Signatures in Non-Target Screening Analysis of Urban Wastewater by Hplc-Hrms. Toxics 2024, 12, 113. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, M.; Song, N.; Ge, F.; Yang, T.; Wang, Y.; Chen, G. Automated Pretreatment of Environmental Water Samples and Non-Targeted Intelligent Screening of Organic Compounds Based on Machine Experiments. Environ. Int. 2024, 193, 109072. [Google Scholar] [CrossRef] [PubMed]
Keywords | Strength | Begin | End | 2007–2023 |
---|---|---|---|---|
accurate mass | 4.08 | 2007 | 2015 | ▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
triple quadrupole | 4.04 | 2007 | 2016 | ▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
samples | 3.23 | 2007 | 2015 | ▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
confirmation | 3.19 | 2007 | 2011 | ▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
organic contaminants | 3.28 | 2008 | 2014 | ▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
quantification | 3.3 | 2010 | 2011 | ▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
organic pollutants | 2.52 | 2010 | 2014 | ▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
pollutants | 6.11 | 2009 | 2016 | ▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
Solid-phase extraction | 2.8 | 2011 | 2012 | ▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
chromatography mass spectrometry | 3.02 | 2012 | 2019 | ▂▂▂▂▂▃▃▃▃▃▃▃▃▂▂▂▂▂ |
Gc/tofms | 2.63 | 2012 | 2013 | ▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂ |
time-of-flight mass spectrometry | 2.63 | 2012 | 2013 | ▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂ |
identification | 4.71 | 2008 | 2017 | ▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂ |
waste water | 3.21 | 2008 | 2017 | ▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂ |
organic micropollutants | 4.36 | 2008 | 2021 | ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂ |
effect directed analysis | 4.16 | 2015 | 2020 | ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂ |
in vitro | 3.07 | 2018 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂ |
emerging pollutants | 2.63 | 2012 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂ |
river | 2.76 | 2019 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂ |
non-target screening | 4.94 | 2014 | 2024 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
perfluoroalkyl substances | 3.91 | 2019 | 2024 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
kinetics | 3.51 | 2014 | 2024 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
non-target analysis | 2.56 | 2013 | 2024 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
disinfection by-products | 2.47 | 2012 | 2024 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
biotransformation | 2.45 | 2022 | 2024 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Shi, Y.; Gu, T.; Du, X.; Du, Z.; Zhang, C.; Sun, K.; Zhang, Y.; Guo, X.; Wang, S.; et al. Global Trends and Hotspots in Non-Targeted Screening of Water Pollution Research: Bibliometric and Visual Analysis. Toxics 2024, 12, 844. https://doi.org/10.3390/toxics12120844
Wu Y, Shi Y, Gu T, Du X, Du Z, Zhang C, Sun K, Zhang Y, Guo X, Wang S, et al. Global Trends and Hotspots in Non-Targeted Screening of Water Pollution Research: Bibliometric and Visual Analysis. Toxics. 2024; 12(12):844. https://doi.org/10.3390/toxics12120844
Chicago/Turabian StyleWu, Yitian, Yewen Shi, Tianmin Gu, Xiushuai Du, Zhiyuan Du, Chi Zhang, Ke Sun, Yue Zhang, Xiaojing Guo, Shenghan Wang, and et al. 2024. "Global Trends and Hotspots in Non-Targeted Screening of Water Pollution Research: Bibliometric and Visual Analysis" Toxics 12, no. 12: 844. https://doi.org/10.3390/toxics12120844
APA StyleWu, Y., Shi, Y., Gu, T., Du, X., Du, Z., Zhang, C., Sun, K., Zhang, Y., Guo, X., Wang, S., Zheng, W., He, Y., & Liu, W. (2024). Global Trends and Hotspots in Non-Targeted Screening of Water Pollution Research: Bibliometric and Visual Analysis. Toxics, 12(12), 844. https://doi.org/10.3390/toxics12120844