First Report on Microplastics Quantification in Poultry Chicken and Potential Human Health Risks in Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Chicken Dissection
2.2. Sample Analysis
2.2.1. Digestion
2.2.2. Density Separation
2.2.3. Filtration
2.2.4. Microplastics Observation, Identification and Quantification
2.3. Laboratory Contamination Control
2.4. Data Analysis
3. Results and Discussion
3.1. Abundance of Extracted MPs
3.2. Size
3.3. Shapes
3.4. Colour
3.5. Detected Polymer Types
3.6. Potential Human Health Risk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kavya, A.N.L.; Sundarrajan, S.; Ramakrishna, S. Identification and Characterization of Micro-Plastics in the Marine Environment: A Mini Review. Mar. Pollut. Bull. 2020, 160, 111704. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe. Plastics—The Facts An Analysis of European Plastics Production, Demand and Waste Data; Plastics Europe 2020: Frankfurt, Germany, 2020. [Google Scholar]
- Susanti, N.K.Y.; Mardiastuti, A.; Wardiatno, Y. Microplastics and the impact of plastic on wildlife: A literature review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 528, p. 012013. [Google Scholar]
- Bilal, M.; Qadir, A.; Yaqub, A.; Hassan, H.U.; Irfan, M.; Aslam, M. Microplastics in water, sediments, and fish at Alpine River, originating from the Hindu Kush Mountain, Pakistan: Implications for conservation. Environ. Sci. Pollut. Res. 2022, 30, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Koehler, A.; Alison, A.; Anthony, A.; Courtney, A.; Joel, B.; Hindrik, B.; Sarah, G.; Valeria, H.; Angela, K.; Kara, L. Source, Fate and Effect of Microplastics in the Marine Environment: A Global Assessment, 1st ed.; International Maritime Organization: London, UK, 2015; Available online: https://ec.europa.eu/environment/marine/good-environmental-status/descriptor-10/pdf/GESAMP_microplastics%20full%20study.pdf (accessed on 18 January 2023).
- Napper, I.E.; Bakir, A.; Rowland, S.J.; Thompson, R.C. Characterization quantity and sorptive properties of microplastics extracted from cosmetics. Mar. Pollut. Bull. 2015, 99, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Van Wijnen, J.; Ragas, A.M.; Kroeze, C. Modelling global river export of microplastics to the marine environment: Sources and future trends. Sci. Total Environ. 2019, 673, 392–401. [Google Scholar] [CrossRef]
- Peng, G.; Bellerby, R.; Zhang, F.; Sun, X.; Li, D. The ocean’s ultimate trashcan: Hadal trenches as major depositories for plastic pollution. Water Res. 2020, 168, 115121. [Google Scholar] [CrossRef]
- Hanslik, L. Microplastics in Limnic Ecosystems-Investigation of Biological Fate and Effects of Microplastic Particles and Associated Contaminants in Zebrafish (Danio rerio). Ph.D. Thesis, Heidelberg University, Heidelberg, Germany, 2020. [Google Scholar]
- Ross, P.S.; Chastain, S.; Vassilenko, E.; Etemadifar, A.; Zimmermann, S.; Quesnel, S.-A.; Eert, J.; Solomon, E.; Patankar, S.; Posacka, A.M.; et al. Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nat. Commun. 2021, 12, 106. [Google Scholar] [CrossRef]
- Yong, C.Q.Y.; Valiyaveettil, S.; Tang, B.L. Toxicity of microplastics and nanoplastics in mammalian systems. Int. J. Environ. Res. Public Health 2020, 17, 1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, P.S.; Chastain, S.; Vassilenko, E.; Etemadifar, A.; Zimmermann, S.; Quesnel, S.-A.; Eert, J.; Solomon, E.; Patankar, S.; Posacka, A.M.; et al. Polystyrene microplastics induce blood–testis barrier disruption regulated by the MAPK-Nrf2 signaling pathway in rats. Environ. Sci. Pollut. Res. 2021, 28, 47921–47931. [Google Scholar]
- Crump, A.; Mullens, C.; Bethell, E.J.; Cunningham, E.M.; Arnott, G. Microplastics disrupt hermit crab shell selection. Biol. Lett. 2020, 16, 20200030. [Google Scholar] [CrossRef]
- Prüst, M.; Meijer, J.; Westerink, R.H. The plastic brain: Neurotoxicity of micro-and nanoplastics. Part. Fibre Toxicol. 2020, 17, 1–16. [Google Scholar] [CrossRef]
- Solleiro-Villavicencio, H.; Gomez-De León, C.T.; Del Río-Araiza, V.H.; Morales-Montor, J. The detrimental effect of microplastics on critical periods of development in the neuroendocrine system. Birth Defects Res. 2020, 112, 1326–1340. [Google Scholar] [CrossRef]
- Lear, G.; Kingsbury, J.M.; Franchini, S.; Gambarini, V.; Maday, S.D.M.; Wallbank, J.A.; Weaver, L.; Pantos, O. Plastics and the microbiome: Impacts and solutions. Environ. Microbiome 2021, 16, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Tagorti, G.; Kaya, B. Genotoxic effect of microplastics and COVID-19: The hidden threat. Chemosphere 2022, 286, 131898. [Google Scholar] [CrossRef]
- Carlin, J.; Craig, C.; Little, S.; Donnelly, M.; Fox, D.; Zhai, L.; Walters, L. Microplastic accumulation in the gastrointestinal tracts in birds of prey in central Florida, USA. Environ. Pollut. 2020, 264, 114633. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhu, L.; Li, D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci. Total Environ. 2016, 550, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Ballejo, F.; Plaza, P.; Speziale, K.L.; Lambertucci, A.P.; Lambertucci, S.A. Plastic ingestion and dispersion by vultures may produce plastic islands in natural areas. Sci. Total Environ. 2021, 755, 142421. [Google Scholar] [CrossRef]
- Barbieri, E.; Passos, E.D.A.; Filippini, A.; dos Santos, I.S.; Garcia, C.A.B. Assessment of trace metal concentration in feathers of seabird (Larus dominicanus) sampled in the Florianópolis, SC, Brazilian coast. Environ. Monit. Assess. 2010, 169, 631–638. [Google Scholar] [CrossRef]
- Wilcox, C.; Van Sebille, E.; Hardesty, B.D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Nat. Acad. Sci. USA 2015, 112, 11899–11904. [Google Scholar] [CrossRef]
- Basto, M.N.; Nicastro, K.R.; Tavares, A.I.; McQuaid, C.D.; Casero, M.; Azevedo, F.; Zardi, G.I. Plastic ingestion in aquatic birds in Portugal. Mar. Pollu. Bull. 2019, 138, 19–24. [Google Scholar] [CrossRef]
- de Souza, S.S.; Freitas, N.; Gonçalves, S.D.O.; da Luz, T.M.; Araújo, A.P.D.C.; Rajagopal, R.; Balasubramani, G.; Rahman, M.; Malafaia, G. Toxicity induced via ingestion of naturally-aged polystyrene microplastics by a small-sized terrestrial bird and its potential role as vectors for the dispersion of these pollutants. J. Hazard. Mater. 2022, 434, 128814. [Google Scholar] [CrossRef]
- Roman, L.; Lowenstine, L.; Parsley, L.M.; Wilcox, C.; Hardesty, B.D.; Gilardi, K.; Hindell, M. Is plastic ingestion in birds as toxic as we think? Insights from a plastic feeding experiment. Sci. Total Environ. 2019, 665, 660–667. [Google Scholar] [CrossRef]
- Carey, M.J. Intergenerational transfer of plastic debris by Short-tailed Shearwaters (Ardenna tenuirostris). Emu-Austral Ornithol. 2011, 111, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Lusher, A.L.; Hernandez-Milian, G. Microplastic Extraction from Marine Vertebrate Digestive Tracts, Regurgitates and Scats: A Protocol for Researchers from AllExperience Levels. Bio-Protocol 2018, 8, e3087. [Google Scholar] [CrossRef]
- Provencher, J.F.; Borrelle, S.B.; Bond, A.L.; Lavers, J.L.; van Franeker, J.A.; Kühn, S.; Hammer, S.; Avery-Gomm, S.; Mallory, M.L. Recommended best practices for plastic and litter ingestion studies in marine birds: Collection, processing, and reporting. Facets 2019, 4, 111–130. [Google Scholar] [CrossRef] [Green Version]
- Pellini, G.; Gomiero, A.; Fortibuoni, T.; Ferrà, C.; Grati, F.; Tassetti, A.; Polidori, P.; Fabi, G.; Scarcella, G. Characterization of microplastic litter in the gastrointestinal tract of Solea solea from the Adriatic Sea. Environ. Pollut. 2018, 234, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the generalpopulation. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Vega, J.M.; Quej, V.K.; Chi, J.D.L.A.; del Cid, L.S.; Chi, C.; Segura, G.E.; Gertsen, H.; Salánki, T.; van der Ploeg, M.; et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 2017, 7, 14071. [Google Scholar] [CrossRef] [Green Version]
- Huerta, E.; Mendoza Vega, J.; Quej, V.K.; Chi, J.D.L.A.; Sanchez del Cid, L.; Quijano, C.; Geissen, V. Bioaccumulation of microplastics in the terrestrial food chain: An example from home gardens in SE Mexico. In EGU General Assembly Conference Abstracts; Geophysical Research Abstract: Munich, Germany, 2017; p. 15847. [Google Scholar]
- Bustamante, T. Assessing the Presence and Concentration of Microplastics in the Gizzards of Virginia Waterfowl. Docterate Thesis, University of Mary Washington, Washington, VA, USA, 2021. [Google Scholar]
- Jonathan, J.; Clark. Microplastic Quantifiation of the Proventriculus and Gizzard of Florida Seabirds. Capstone 2021. Nova Southeastern University. Retrieved from NSUWorks. Available online: https://nsuworks.nova.edu/hcas_etd_all/37 (accessed on 18 January 2023).
- Deoniziak, K.; Cichowska, A.; Niedźwiecki, S.; Pol, W. Thrushes (Aves: Passeriformes) as indicators of microplastic pollution in terrestrial environments. Sci. Total Environ. 2022, 853, 158621. [Google Scholar] [CrossRef] [PubMed]
- Collard, F.; Bangjord, G.; Herzke, D.; Gabrielsen, G.W. Plastic burdens in northern fulmars from Svalbard: Looking back 25 years. Mar. Pollut. Bull. 2022, 185, 114333. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Okochi, H.; Tani, Y.; Niida, Y.; Tachibana, T.; Saigawa, K.; Katayama, K.; Moriguchi, S.; Kato, T.; Hayama, S.-I. Airborne Microplastics Detected in the Lungs of Wild Birds in Japan. Chemosphere 2022, 321, 4276259. [Google Scholar]
- Susanti, N.K.Y.; Mardiastuti, A.; Hariyadi, S. Microplastics in Digestive System of Little-black cormorant (Phalacrocorax sulcirostris) in Pulau Rambut Sanctuary. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 950, p. 012003. [Google Scholar]
- Bessa, F.; Ratcliffe, N.; Otero, V.; Sobral, P.; Marques, J.C.; Waluda, C.M.; Trathan, P.N.; Xavier, J.C. Microplastics in gentoo penguins from the Antarctic region. Sci. Rep. 2019, 9, 14191. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.L.; Jian, M.F.; Zhou, L.Y.; Li, W.H.; Wu, X.E.; Rao, D. Pollution characteristics of microplastics in migratory bird habitats located within Poyang Lake wetlands. Huan Jing Ke Xue = Huanjing Kexue 2019, 40, 2639–2646. [Google Scholar] [PubMed]
- Zhu, C.; Li, D.; Sun, Y.; Zheng, X.; Peng, X.; Zheng, K.; Hu, B.; Luo, X.; Mai, B. Plastic debris in marine birds from an island located in the South China Sea. Mar. Pollut. Bull. 2019, 149, 110566. [Google Scholar] [CrossRef] [PubMed]
- Collard, F.; Husum, K.; Eppe, G.; Malherbe, C.; Hallanger, I.G.; Divine, D.V.; Gabrielsen, G.W. Anthropogenic particles in sediment from an Arctic fjord. Sci. Total Environ. 2021, 772, 145575. [Google Scholar] [CrossRef] [PubMed]
- Weitzel, S.L.; Feura, J.M.; Rush, S.A.; Iglay, R.B.; Woodrey, M.S. Availability and assessment of microplastic ingestion by marsh birds in Mississippi Gulf Coast tidal marshes. Mar. Pollut. Bull. 2021, 166, 112187. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, T.; Zhu, L.; Xu, P.; Wang, X.; Gao, L.; Li, D. Analysis of suspended microplastics in the Changjiang Estuary:Implications for riverine plastic load to the ocean. Water Res. 2019, 161, 560–569. [Google Scholar] [CrossRef]
- Irfan, M.; Qadir, A.; Mumtaz, M.; Ahmad, S.R. An unintended challenge of microplastic pollution in the urban surface water system of Lahore, Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 16718–16730. [Google Scholar] [CrossRef]
- Allahvaisi, S. Polypropylene in the Industry of Food Packaging; Dogan, F., Ed.; IntechOpen: London, UK, 2012; pp. 3–22. [Google Scholar]
- Leslie, H.A.; Van Velzen, M.J.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Braun, T.; Ehrlich, L.; Henrich, W.; Koeppel, S.; Lomako, I.; Schwabl, P.; Liebmann, B. Detection of microplastic in human placenta and meconium in a clinical setting. Pharmaceutics 2021, 13, 921. [Google Scholar] [CrossRef]
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Giorgini, E. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ndungu, A.W.; Li, Z.; Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 2017, 575, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Ul Hassan, H.; Siddique, M.A.M.; Khan, W.; Gabol, K.; Ullah, I.; Arai, T. Microplastics in the Surface Water and Gastrointestinal Tract of Salmo trutta from the Mahodand Lake, Kalam Swat in Pakistan. Toxics 2023, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Galloway, T.S. Micro- and Nano-Plastics and Human Health. Mar. Anthropog. Litter 2015, 1, 343–366. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.U.; Mawa, Z.; Ahmad, N.; Zulfiqar, T.; Sohail, M.; Ahmad, H.; Yaqoob, H.; Bilal, M.; Rahman, A.; Ullah, N.; et al. Size at sexual maturity estimation for 36 species captured by bottom and mid-water trawls from the marine habitat of Balochistan and Sindh in the Arabian Sea, Pakistan, using maximum length (Lmax) and logistic (L50) models. Braz. J. Biol. 2022, 84, e262603. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wu, M.; Tian, D.; Qiu, L.; Li, T. Effects of Polystyrene Microbeads on Cytotoxicity and Transcriptomic Profiles in Human Caco-2 Cells. Environ. Toxicol. 2020, 35, 495–506. [Google Scholar] [CrossRef]
- Kirstein, I.V.; Kirmizi, S.; Wichels, A.; Garin-Fernandez, A.; Erler, R.; Löder, M. Dangerous Hitchhikers? Evidence for Potentially Pathogenic Vibrio Spp. On Microplastic Particles. Mar. Environ. Res. 2016, 120, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Hassan, H.U.; Gabol, K.; Khan, S.; Gul, Y.; Ahmed, A.E.; Swelum, A.A.; Khooharo, A.; Ahmad, J.; Shafeeq, P.; et al. Biodiversity, distributions and isolation of microplastics pollution in finfish species in the Panjkora River at Lower and Upper Dir districts of Khyber Pakhtunkhwa province of Pakistan. Braz. J. Biol. 2022, 84, e256817. [Google Scholar] [CrossRef]
- Hassan, H.U.; Razzaq, W.; Masood, Z. Elemental composition of three-spot swimming crab Portunus sanguinolentus (Herbst, 1783) shell from the coasts of Sindh and Balochistan Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 25679–25684. [Google Scholar] [CrossRef]
- Hassan, H.U.; Ali, Q.M.; Khan, W.; Masood, Z.; Abdel-Aziz, M.F.A.; Shah, M.I.A.; Gabo, K.; Wattoo, I.; Chatta, A.M.; Kamal, M.; et al. Effect of Feeding Frequency as a rearing system on Biological Performance, Survival, Body Chemical Composition and Economic Efficiency of Asian Seabass Lates calcarifer (Bloch, 1790) Reared under Controlled Environmental Conditions. Saudi J. Biol. Sci. 2021, 28, 7360–7366. [Google Scholar] [CrossRef]
Particles | Region | Mean Number of MPs | Reference |
---|---|---|---|
Pakistan | 33.25 ± 17.8 MPs/gizzard, 17.8 ± 12.1 MPs/crop | Present Study | |
Mexico | 57 ± 41.1 MPs/gizzard, 32.4 ± 15.1 MPs/crop | [31] | |
Mexico | 45.82 ± 42.6 MPs/gizzard, 11 ± 15.3 MPs/crop | [32] | |
Virginia, USA | 1.03 MPs/gizzard | [33] | |
Florida, USA | 29.9 ± 20.1 MPs/gizzard | [34] | |
Poland | 31.56 ± 32.5 MPs/GIT | [35] | |
Norway | 4.60 MPs/gizzard | [36] | |
Shanghai, China | 22.7 MPs/GIT | [19] | |
Indonesia | 320 MPs/GIT | [38] | |
Florida, USA | 11.9 ± 2.8 MPs/GIT | [18] | |
Region | Dominant size range detected | Reference | |
Size | Pakistan | 300–500 µm | Present Study |
Antarctic region | >500 µm | [39] | |
China | 500–1000 µm | [40] | |
South China | <5 mm | [41] | |
Shanghai, China | >5 mm | [19] | |
Poland | 1000 µm | [35] | |
Indonesia | 100–1000 μm | [38] | |
Region | Dominant shape type detected | Reference | |
Shape | Pakistan | Fragments (64%) in the gizzard Fragments (53%) in crop | Present Study |
Japan. | Fragments | [37] | |
Norway | Fragments (72.9%) | [42] | |
Shanghai, China | Fragments (54.9%) | [19] | |
Poland | Fibres (84%) | [35] | |
Mississippi Gulf | Fibres (98%) | [43] | |
Indonesia | Film (75.0%) | [38] | |
Florida, USA | Fibres (86%) | [18] | |
Region | Dominant colour detected | Reference | |
Colour | Pakistan | Red (crop), yellow (gizzard) | Present study |
Indonesia | Transparent (56.2%) | [38] | |
Florida, USA | Clear or royal blue | [18] | |
Poland | Transparent (74%) | [35] | |
Virginia, USA | Blue (41.4%) | [33] | |
Norway | Yellow | [42] | |
Region | Polymer types detected | Reference | |
Polymer | Pakistan | (PVC) with 51.2%, low-density polyethylene (LDPE) (30.7%), polystyrene (PS) (13.6%) and polypropylene homopolymer (PPH) (4.5%) | Present study |
Norway | Polypropylene, polystyrene and polyethylene | [42] | |
Florida, USA | Polyethylene terephthalate (16%), ethylene-co-polypropylene (11%) and cellulose (37%) | [18] | |
Antarctic region | Polyacrylonitrile, polypropylene, polyethylene and polyacrylate | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, M.; Taj, M.; Ul Hassan, H.; Yaqub, A.; Shah, M.I.A.; Sohail, M.; Rafiq, N.; Atique, U.; Abbas, M.; Sultana, S.; et al. First Report on Microplastics Quantification in Poultry Chicken and Potential Human Health Risks in Pakistan. Toxics 2023, 11, 612. https://doi.org/10.3390/toxics11070612
Bilal M, Taj M, Ul Hassan H, Yaqub A, Shah MIA, Sohail M, Rafiq N, Atique U, Abbas M, Sultana S, et al. First Report on Microplastics Quantification in Poultry Chicken and Potential Human Health Risks in Pakistan. Toxics. 2023; 11(7):612. https://doi.org/10.3390/toxics11070612
Chicago/Turabian StyleBilal, Muhammad, Madiha Taj, Habib Ul Hassan, Atif Yaqub, Muhammad Ishaq Ali Shah, Muhammad Sohail, Naseem Rafiq, Usman Atique, Mohammad Abbas, Saira Sultana, and et al. 2023. "First Report on Microplastics Quantification in Poultry Chicken and Potential Human Health Risks in Pakistan" Toxics 11, no. 7: 612. https://doi.org/10.3390/toxics11070612