Comprehensive Assessment of Pollution Sources and Health Impacts in Suburban Area of Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Instruments and Measurements
2.3. Assessment of Health Risks of Heavy Metals
2.4. Source Apportionment Using the Tracer-Based Approach
3. Results and Discussion
3.1. Characteristics of Pollutants during the Sampling Period
3.2. Health-Risk Assessment
3.3. Source Apportionment
3.4. Contribution of Different Sources to Health Risks
4. Conclusions
5. Uncertainty of Health Risk Assessment
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Y.P.; Wang, Y.S. Atmospheric Wet and Dry Deposition of Trace Elements at 10 Sites in Northern China. Atmos. Chem. Phys. 2015, 15, 951–972. [Google Scholar] [CrossRef] [Green Version]
- Pöschl, U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed. Engl. 2005, 44, 7520–7540. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Hu, W.; Yue, S.; Wu, L.; Ren, L.; Pan, X.; Wang, Z.; Sun, Y.; Kawamura, K.; Fu, P. Tracer-Based Characterization of Fine Carbonaceous Aerosol in Beijing during a Strict Emission Control Period. Sci. Total Environ. 2022, 841, 156638. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gasser, T.; Ciais, P.; Piao, S.; Tao, S.; Balkanski, Y.; Hauglustaine, D.; Boisier, J.-P.; Chen, Z.; Huang, M.; et al. The Contribution of China’s Emissions to Global Climate Forcing. Nature 2016, 531, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, Y.; Peng, J.; Chen, L.; Sun, Y.; Duan, L.; Ge, X.; Li, Y.; Zhao, J.; Liu, C.; et al. An Unexpected Catalyst Dominates Formation and Radiative Forcing of Regional Haze. Proc. Natl. Acad. Sci. USA 2020, 117, 3960–3966. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Huang, R.-J.; Zhang, R.; Tie, X.; Li, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe Haze in Northern China: A Synergy of Anthropogenic Emissions and Atmospheric Processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [Green Version]
- China Power Team. Is Air Quality in China a Social Problem? Available online: https://chinapower.csis.org/air-quality/ (accessed on 22 June 2023).
- Liu, X.; Zou, B.; Feng, H.; Liu, N.; Zhang, H. Anthropogenic Factors of PM2.5 Distributions in China’s Major Urban Agglomerations: A Spatial-Temporal Analysis. J. Clean. Prod. 2020, 264, 121709. [Google Scholar] [CrossRef]
- Jia, H.; Huo, J.; Fu, Q.; Duan, Y.; Lin, Y.; Hu, X.; Fan, L.; Cheng, J. Atmospheric Characteristics and Population Exposure Assessment of Black Carbon at a Regional Representative Site in the Yangtze River Delta Region, China Based on the Five-Year Monitoring. Sci. Total Environ. 2021, 777, 145990. [Google Scholar] [CrossRef]
- Shen, J.; Zhao, Q.; Cheng, Z.; Huo, J.; Zhu, W.; Zhang, Y.; Duan, Y.; Wang, X.; Antony Chen, L.-W.; Fu, Q. Evolution of Source Contributions during Heavy Fine Particulate Matter (PM2.5) Pollution Episodes in Eastern China through Online Measurements. Atmos. Environ. 2020, 232, 117569. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, Y.Q.; Niu, T.; Zhang, X.C.; Gong, S.L.; Zhang, Y.M.; Sun, J.Y. Atmospheric Aerosol Compositions in China: Spatial/Temporal Variability, Chemical Signature, Regional Haze Distribution and Comparisons with Global Aerosols. Atmos. Chem. Phys. 2012, 12, 779–799. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Ding, A.; Wang, Z.; Ding, K.; Gao, J.; Chai, F.; Fu, C. Amplified Transboundary Transport of Haze by Aerosol–Boundary Layer Interaction in China. Nat. Geosci. 2020, 13, 428–434. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air Pollution in Mega Cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Ding, X.; He, Q.-F.; Shen, R.-Q.; Yu, Q.-Q.; Wang, X.-M. Spatial Distributions of Secondary Organic Aerosols from Isoprene, Monoterpenes, B-caryophyllene, and Aromatics over China during Summer. J. Geophys. Res. Atmos. 2014, 119, 11,877–11,891. [Google Scholar] [CrossRef]
- Yue, S.; Zhu, J.; Chen, S.; Xie, Q.; Li, W.; Li, L.; Ren, H.; Su, S.; Li, P.; Ma, H.; et al. Brown Carbon from Biomass Burning Imposes Strong Circum-Arctic Warming. One Earth 2022, 5, 293–304. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Li, N.; Dai, W.; Wu, Y.; Tian, J.; Zhou, Y.; Wang, M.; Ho, S.S.H.; Chen, Y.; et al. Impacts of Short-Term Mitigation Measures on PM2.5 and Radiative Effects: A Case Study at a Regional Background Site near Beijing, China. Atmos. Chem. Phys. 2019, 19, 1881–1899. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, Q.; Liu, S.; Zhou, B.; Qu, Y.; Tian, J.; Zhang, T.; Han, Y.; Cao, J. The Impact of Atmospheric Motions on Source-Specific Black Carbon and the Induced Direct Radiative Effects over a River-Valley Region. Atmos. Chem. Phys. 2022, 22, 11739–11757. [Google Scholar] [CrossRef]
- Emami, F.; Hopke, P.K. Effect of Adding Variables on Rotational Ambiguity in Positive Matrix Factorization Solutions. Chemom. Intell. Lab. Syst. 2017, 162, 198–202. [Google Scholar] [CrossRef]
- Paatero, P.; Hopke, P.K.; Song, X.-H.; Ramadan, Z. Understanding and Controlling Rotations in Factor Analytic Models. Chemom. Intell. Lab. Syst. 2002, 60, 253–264. [Google Scholar] [CrossRef]
- Paatero, P.; Hopke, P.K. Rotational Tools for Factor Analytic Models. J. Chemom. 2009, 23, 91–100. [Google Scholar] [CrossRef]
- Canonaco, F.; Crippa, M.; Slowik, J.G.; Baltensperger, U.; Prévôt, A.S.H. SoFi, an IGOR-Based Interface for the Efficient Use of the Generalized Multilinear Engine (ME-2) for the Source Apportionment: ME-2 Application to Aerosol Mass Spectrometer Data. Atmos. Meas. Tech. 2013, 6, 3649–3661. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; Canonaco, F.; Lanz, V.A.; Aijala, M.; Allan, J.D.; Carbone, S.; Capes, G.; Ceburnis, D.; Dall’Osto, M.; Day, D.A.; et al. Organic Aerosol Components Derived from 25 AMS Data Sets across Europe Using a Consistent ME-2 Based Source Apportionment Approach. Atmos. Chem. Phys. 2014, 14, 6159–6176. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C.A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J.G.; Aas, W.; Aijälä, M.; et al. ACTRIS ACSM Intercomparison—Part 2: Intercomparison of ME-2 Organic Source Apportionment Results from 15 Individual, Co-Located Aerosol Mass Spectrometers. Atmos. Meas. Tech. 2015, 8, 2555–2576. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, Q.; Ho, S.S.H.; Li, H.; Zhang, R.; Ran, W.; Qu, L.; Lee, S.; Cao, J. Chemical Characteristics and Sources of Nitrogen-Containing Organic Compounds at a Regional Site in the North China Plain during the Transition Period of Autumn and Winter. Sci. Total Environ. 2022, 812, 151451. [Google Scholar] [CrossRef] [PubMed]
- Nriagu, J.O. Global Inventory of Natural and Anthropogenic Emissions of Trace Metals to the Atmosphere. Nature 1979, 279, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Gao, B.; Zhou, H.; Ju, X.; Hao, H.; Yin, S. Health Risk Assessment of Heavy Metals in Road Dusts in Urban Parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Bi, C.; Chen, Y.; Zhao, Z.; Li, Q.; Zhou, Q.; Ye, Z.; Ge, X. Characteristics, Sources and Health Risks of Toxic Species (PCDD/Fs, PAHs and Heavy Metals) in PM2.5 during Fall and Winter in an Industrial Area. Chemosphere 2020, 238, 124620. [Google Scholar] [CrossRef]
- Lv, W.; Wang, Y.; Querol, X.; Zhuang, X.; Alastuey, A.; López, A.; Viana, M. Geochemical and Statistical Analysis of Trace Metals in Atmospheric Particulates in Wuhan, Central China. Environ. Geol. 2006, 51, 121–132. [Google Scholar] [CrossRef]
- Wang, M.; Duan, Y.; Xu, W.; Wang, Q.; Zhang, Z.; Yuan, Q.; Li, X.; Han, S.; Tong, H.; Huo, J.; et al. Measurement Report: Characterisation and Sources of the Secondary Organic Carbon in a Chinese Megacity over 5 Years from 2016 to 2020. Atmos. Chem. Phys. 2022, 22, 12789–12802. [Google Scholar] [CrossRef]
- Xu, H.; Ho, S.S.H.; Cao, J.; Guinot, B.; Kan, H.; Shen, Z.; Ho, K.F.; Liu, S.; Zhao, Z.; Li, J.; et al. A 10-Year Observation of PM2.5-Bound Nickel in Xi’an, China: Effects of Source Control on Its Trend and Associated Health Risks. Sci. Rep. 2017, 7, 41132. [Google Scholar]
- Guo, Z.-Q.; Dong, W.-Y.; Xu, J.; Hong, Z.-C.; Zhao, R.-W.; Deng, C.-R.; Zhuang, G.-S.; Zhang, R.-X. T-Helper Type 1-T-Helper Type 2 Shift and Nasal Remodeling after Fine Particulate Matter Exposure in a Rat Model of Allergic Rhinitis. Am. J. Rhinol. Allergy 2017, 31, 148–155. [Google Scholar] [CrossRef]
- Duan, S.; Zhang, M.; Sun, Y.; Fang, Z.; Wang, H.; Li, S.; Peng, Y.; Li, J.; Li, J.; Tian, J.; et al. Mechanism of PM2.5-Induced Human Bronchial Epithelial Cell Toxicity in Central China. J. Hazard. Mater. 2020, 396, 122747. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and Health Risk of Arsenic and Heavy Metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Zhang, W.; Lv, S.; Liu, D.; Liu, P.; Yonmochi, S.; Wang, X.; Wang, Q. Distribution Characteristics of Heavy Metals in the Street Dusts in Xuanwei and Their Health Risk Assessment. Environ. Sci. 2015, 36, 1810–1817. [Google Scholar] [CrossRef]
- Gianini, M.F.D.; Fischer, A.; Gehrig, R.; Ulrich, A.; Wichser, A.; Piot, C.; Besombes, J.-L.; Hueglin, C. Comparative Source Apportionment of PM10 in Switzerland for 2008/2009 and 1998/1999 by Positive Matrix Factorisation. Atmos. Environ. 2012, 54, 149–158. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Chen, L.-W.A.; Frank, N.H. Methods to Assess Carbonaceous Aerosol Sampling Artifacts for IMPROVE and Other Long-Term Networks. J. Air Waste Manag. Assoc. 2009, 59, 898–911. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for Estimating Uncertainty in PMF Solutions: Examples with Ambient Air and Water Quality Data and Guidance on Reporting PMF Results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; He, X.; Huang, X.H.H.; Griffith, S.M.; Feng, Y.; Zhang, T.; Zhang, Q.; Wu, D.; Yu, J.Z. Impact of Secondary Organic Aerosol Tracers on Tracer-Based Source Apportionment of Organic Carbon and PM2.5: A Case Study in the Pearl River Delta, China. ACS Earth Space Chem. 2017, 1, 562–571. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003422-8. [Google Scholar]
- Zhu, C.; Cao, J.; Zhou, J.; Liu, S.; Dai, W.; Zhang, T.; Zhao, Z.; Shen, Z.; Li, H.; Wang, P. A Case Study of Chemical Characteristics of Daytime and Nighttime Ambient Particles in Shanghai, China. Atmosphere 2015, 6, 1141–1153. [Google Scholar] [CrossRef]
- Yang, F.; He, K.; Ye, B.; Chen, X.; Cha, L.; Cadle, S.H.; Chan, T.; Mulawa, P.A. One-Year Record of Organic and Elemental Carbon in Fine Particles in Downtown Beijing and Shanghai. Atmos. Chem. Phys. 2005, 5, 1449–1457. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Ji, X.; Yang, H.; Yao, X.; Chan, C.K.; Cadle, S.H.; Chan, T.; Mulawa, P.A. Concentration and Chemical Composition of PM2.5 in Shanghai for a 1-Year Period. Atmos. Environ. 2003, 37, 499–510. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, J.; Wang, Q.; Qi, L.; Manousakas, M.I.; Han, Y.; Ran, W.; Sun, Y.; Liu, H.; Zhang, R.; et al. High-Time-Resolution Chemical Composition and Source Apportionment of PM2.5 in Northern Chinese Cities: Implications for Policy. EGUsphere 2023. preprint. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A) Interim Final; U.S. Environmental Protection Agency: Washington, DC, USA, 2010.
- Dai, Q.; Liu, B.; Bi, X.; Wu, J.; Liang, D.; Zhang, Y.; Feng, Y.; Hopke, P.K. Dispersion Normalized PMF Provides Insights into the Significant Changes in Source Contributions to PM2.5 after the COVID-19 Outbreak. Environ. Sci. Technol. 2020, 54, 9917–9927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.-C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical Characterization and Source Apportionment of PM2.5 in Beijing: Seasonal Perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-W.; Heo, J.; Bae, M.-S.; Kim, J.Y. PM2.5 Source Apportionment in Seoul, Korea: A Comparison of PMF and SMP Receptor Modeling Results. Int. J. Environ. Sci. Technol. 2023, 20, 2417–2426. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, H.; Luo, L.; Liu, H.; Wu, B.; Liu, S.; Bai, X.; Liu, W.; Liu, X.; Wu, Y.; et al. Temporal Variation Characteristics and Source Apportionment of Metal Elements in PM2.5 in Urban Beijing during 2018–2019. Environ. Pollut. 2021, 268, 115856. [Google Scholar] [CrossRef]
- Heo, J.-B.; Hopke, P.K.; Yi, S.-M. Source Apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. 2009, 9, 4957–4971. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.; Tian, J.; Wang, X.; Wang, Q.; Han, Y.; Cao, J.; Long, X.; Chen, L.-W.A.; Chow, J.C.; Watson, J.G.; et al. PM2.5 Emissions and Source Profiles from Open Burning of Crop Residues. Atmos. Environ. 2017, 169, 229–237. [Google Scholar] [CrossRef]
- Jiang, N.; Liu, X.; Wang, S.; Yu, X.; Yin, S.; Duan, S.; Wang, S.; Zhang, R.; Li, S. Pollution Characterization, Source Identification, and Health Risks of Atmospheric-Particle-Bound Heavy Metals in PM10 and PM2.5 at Multiple Sites in an Emerging Megacity in the Central Region of China. Aerosol Air Qual. Res. 2019, 19, 247–271. [Google Scholar] [CrossRef] [Green Version]
- Ålander, T.; Antikainen, E.; Raunemaa, T.; Elonen, E.; Rautiola, A.; Torkkell, K. Particle Emissions from a Small Two-Stroke Engine: Effects of Fuel, Lubricating Oil, and Exhaust Aftertreatment on Particle Characteristics. Aerosol Sci. Technol. 2005, 39, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, A.; Harrison, R.M. Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S.S.H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F. Characteristics and Sources of Carbonaceous Aerosols from Shanghai, China. Atmos. Chem. Phys. 2013, 13, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Wang, Q.; He, X.; Zhu, S.; Zhang, K.; Duan, Y.; Fu, Q.; Qiao, L.; Wang, Y.; Huang, L.; et al. Source Apportionment of PM2.5 in Shanghai Based on Hourly Organic Molecular Markers and Other Source Tracers. Atmos. Chem. Phys. 2020, 20, 12047–12061. [Google Scholar] [CrossRef]
- Salma, I.; Maenhaut, W.; Záray, G. Comparative Study of Elemental Mass Size Distributions in Urban Atmospheric Aerosol. J. Aerosol Sci. 2002, 33, 339–356. [Google Scholar] [CrossRef]
- Soleimani, M.; Amini, N.; Sadeghian, B.; Wang, D.; Fang, L. Heavy Metals and Their Source Identification in Particulate Matter (PM2.5) in Isfahan City, Iran. J. Environ. Sci. 2018, 72, 166–175. [Google Scholar] [CrossRef]
- Liu, P.; Ren, H.; Xu, H.; Lei, Y.; Shen, Z. Assessment of Heavy Metal Characteristics and Health Risks Associated with PM2.5 in Xi’an, the Largest City in Northwestern China. Air Qual. Atmos. Health 2018, 11, 1037–1047. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Y.; Tian, S.; Chen, X.; Wang, L.; Wang, Y. Size Distributions and Health Risks of Particulate Trace Elements in Rural Areas in Northeastern China. Atmos. Res. 2016, 168, 191–204. [Google Scholar] [CrossRef]
- Zeng, X.; Kong, S.; Zhang, Q.; Ren, H.; Liu, J.; Feng, Y.; Yan, Q.; Qin, S.; Zheng, S.; Yao, L.; et al. Source Profiles and Emission Factors of Organic and Inorganic Species in Fine Particles Emitted from the Ultra-Low Emission Power Plant and Typical Industries. Sci. Total Environ. 2021, 789, 147966. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.; Ma, W.; Fu, Q.; Yang, X.; Li, C.; Zhou, B.; Yu, Q.; Chen, L. Characteristics and Ship Traffic Source Identification of Air Pollutants in China’s Largest Port. Atmos. Environ. 2013, 64, 277–286. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, L.; Cao, J.; Zhong, L.; Chen, D.; Yang, Y.; Chen, D.; Chen, L.; Zhang, Z.; Wu, Y.; et al. Source Apportionment of PM2.5 at Urban and Suburban Areas of the Pearl River Delta Region, South China—With Emphasis on Ship Emissions. Sci. Total Environ. 2017, 574, 1559–1570. [Google Scholar] [CrossRef]
- Xie, J.; Jin, L.; Cui, J.; Luo, X.; Li, J.; Zhang, G.; Li, X. Health Risk-Oriented Source Apportionment of PM2.5-Associated Trace Metals. Environ. Pollut. 2020, 262, 114655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Wang, M.; Yuan, Q.; Zhang, Z.; Li, X.; Han, S.; Duan, Y.; Fu, Q.; Lee, S.-C. Comprehensive Assessment of Pollution Sources and Health Impacts in Suburban Area of Shanghai. Toxics 2023, 11, 552. https://doi.org/10.3390/toxics11070552
Wei W, Wang M, Yuan Q, Zhang Z, Li X, Han S, Duan Y, Fu Q, Lee S-C. Comprehensive Assessment of Pollution Sources and Health Impacts in Suburban Area of Shanghai. Toxics. 2023; 11(7):552. https://doi.org/10.3390/toxics11070552
Chicago/Turabian StyleWei, Wan, Meng Wang, Qi Yuan, Zhuozhi Zhang, Xinwei Li, Shuwen Han, Yusen Duan, Qingyan Fu, and Shun-Cheng Lee. 2023. "Comprehensive Assessment of Pollution Sources and Health Impacts in Suburban Area of Shanghai" Toxics 11, no. 7: 552. https://doi.org/10.3390/toxics11070552