Monitoring Resistance and Biochemical Studies of Three Egyptian Field Strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to Six Insecticides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Insecticides and Reagents Used
2.3. Bioassay
2.4. Biochemical Analysis
2.4.1. Sample Preparation
2.4.2. Detoxification Enzyme Assays
Carboxylesterase (CarE)
Mixed Function Oxidase (MFO)
Glutathione S-Transferase (GST)
2.4.3. Acetylcholine Esterase (AChE)
2.5. Statistical Analysis
3. Results
3.1. Susceptibility of Laboratory Strain of S. littoralis to the Tested Insecticides
3.2. Susceptibility of Field Strains of S. littoralis to Conventional Insecticides
3.3. Susceptibility of Field Strains of S. littoralis to Bioinsecticides
3.4. Activity of Detoxification Enzymes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abo-Elghar, G.E.; Elbermawy, Z.; Yousef, A.; Abd-Elhady, H. Monitoring and characterization of insecticide resistance in the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol. 2005, 8, 397–410. [Google Scholar] [CrossRef]
- Carter, D. Pest Lepidoptera of Europe with Special Reference to the British Isles; Junk Publishers: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification—A tool for resistance management. Pestic. Biochem. Physiol. 2020, 167, 104587. [Google Scholar] [CrossRef] [PubMed]
- Abo-Elghar, G.C.; Rashwan, M.H.; El-Bermawy, Z.A.; Radwan, H.S.; Hussien, A.H. Monitoring for resistance in the cotton leafworm, Spodoptera littoralis (Boisd.) against mixtures with benzoylphenyl ureas. Bull. Entomol. Soc. Egypt Eco. Ser. 1992, 19, 249–259. [Google Scholar]
- Arthropod Pesticide Resistance Database. 2021. Available online: https://www.pesticideresistance.org/search.php (accessed on 19 August 2021).
- Hafez, S.S.M.; EL-Malla, A.; Ali, R.E.; El-Hadek, M.K. Resistance monitoring in cotton leafworm Spodoptera littoralis to certain bioinsecticides during ten cotton seasons in eight governorates on Egypt. J. Biol. Chemi. 2018, 35, 590–594. [Google Scholar]
- Fouad, E.A.; Ahmed, F.S.; Moustafa, M.A.M. Monitoring and biochemical impact of insecticides resistance on field populations of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt. Pol. J. Entomol. 2022, 91, 109–118. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Temerak, S.A.; Abdel-Galil, F.K.; Manna, S.H. Susceptibility of field and laboratory strains of Cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) to spinosad pesticide under laboratory conditions. Plant Prot. Sci. 2016, 52, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Kulye, M.; Mehlhorn, S.; Boaventura, D.; Godley, N.; Venkatesh, S.K.; Rudrappa, T.; Charan, T.; Rathi, D.; Nauen, R. Baseline susceptibility of Spodoptera frugiperda populations collected in India towards different chemical classes of insecticides. Insects. 2021, 12, 758. [Google Scholar] [CrossRef]
- Ahmad, M.; Sayyed, A.H.; Saleem, M.A.; Ahmad, M. Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot. 2008, 27, 1367–1372. [Google Scholar] [CrossRef]
- Saleem, M.A.; Hussain, D.; Ghouse, G.; Abbas, M.; Fisher, S.W. Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides. Crop Prot. 2016, 79, 177–184. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, B.; Qu, C.; Gong, J.; Li, W.; Luo, C.; Wang, R. Resistance Monitoring for Six Insecticides in Vegetable Field-Collected Populations of Spodoptera litura from China. Horticulture 2022, 8, 255. [Google Scholar] [CrossRef]
- Garlet, C.G.; Gubiani, P.S.; Palharini, R.B.; Moreira, R.P.; Godoy, D.N.; Farias, J.R.; Bernardi, O. Field-evolved resistance to chlorpyrifos by Spodoptera frugiperda (Lepidoptera: Noctuidae): Inheritance mode, cross-resistance patterns, and synergism. Pest Manag. Sci. 2021, 77, 5367–5374. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Razaq, M.; Saleem, M.A.; Anjum, F.; ul Ane, M.N.; Raza, A.M.; Wright, D.J. Stability, croos-resistance and fitnesss costs of resistance to emamectin benzoate in a re-selected field population of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Crop Prot. 2014, 65, 227–231. [Google Scholar] [CrossRef]
- Kim, Y.; Cho, J.R.; Lee, J.I.; Kang, S.Y.; Han, S.C.; Hong, K.J.; Kim, H.S.; Yoo, J.K.; Lee, J.O. Insecticide resistance in the tobacco cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol. 1998, 1, 115–122. [Google Scholar]
- Kranthi, K.R.; Jadhav, D.R.; Kranthi, S.; Wanjari, R.R.; Ali, S.S.; Russell, D.A. Insecticide resistance in five major insect pests of cotton in India. Crop Prot. 2002, 21, 449–460. [Google Scholar] [CrossRef]
- Yu, S.J.; Nguyen, S.N.; Abo-Elghar, G.E. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera. frugiperda (J.E. Smith). Pestic. Biochem. Physiol. 2003, 77, 1–11. [Google Scholar] [CrossRef]
- Mohan, M.; Gujar, G.T. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Prot. 2003, 22, 495–504. [Google Scholar] [CrossRef]
- Wang, X.; Lou, L.L.; Su, J.Y. Prevalence and stability of insecticide resistances in field population of Spodoptera litura (Lepidoptera: Noctuidae) from Huizhou, Guangdong Province, China. J. Asia Pac. Entomol. 2019, 22, 728–732. [Google Scholar] [CrossRef]
- Scott, J.G.; Wen, Z.M. Cytochromes P450 of insects: The tip of the iceberg. Pest Manag. Sci. 2001, 57, 958–967. [Google Scholar] [CrossRef]
- Enayati, A.A.; Ranson, H.; Hemingway, J. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 2005, 14, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.P.; Terra, W.R.; De Sa, M.F.G.; Samuels, R.I.; Isejima, E.M.; Bifano, T.D.; Almeida, J.S. Induction of digestive alphaamylases in larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) in response to ingestion of common bean alpha-amylase inhibitor 1. J. Insect Physiol. 2001, 47, 1283–1290. [Google Scholar] [CrossRef]
- Heckel, D.G. Insecticide resistance after silent spring. Science 2012, 337, 1612–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.J.; Shen, H.M. Resistance selection with fenpropathrin and the change of detoxification enzyme activities in Tetranychus urticae Koch (Acari: Tetranychidae). Acta Entomol. Sin. 2011, 54, 64–69. [Google Scholar]
- Su, J.Y.; Lai, T.C.; Li, J. Susceptibility of field populations of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Prot. 2012, 42, 217–222. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Fouad, E.A.; Yasmin, A.M.; Hamow, K.Á.A.; Mikó, Z.; Molnár, B.P.; Fónagy, A. Toxicity and sublethal effects of chlorantraniliprole and indoxacarb on Spodoptera littoralis (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 2021, 56, 115–124. [Google Scholar] [CrossRef]
- Kandil, M.A.; Abdel-Kerim, R.N.; Moustafa, M.A.M. Lethal and sub-lethal effects of bio-and chemical insecticides on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest Control 2020, 30, 76. [Google Scholar] [CrossRef]
- IRAC. Insecticide Resistance Action Committee. 2021. Available online: https://www.irac-online.org/modes-of-action/ (accessed on 25 October 2019).
- Moustafa, M.A.M.; Awad, M.; Amer, A.; Hassan, N.N.; Ibrahim, E.S.; Ali, H.M.; Akrami, M.; Salem, M.Z.M. Insecticidal activity of lemongrass essential oil as an ecofriendly agent against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects 2021, 12, 737. [Google Scholar] [CrossRef]
- Awad, M.; Ibrahim, E.S.; Osman, E.I.; Elmenofy, W.H.; Mahmoud, A.M.; Atia, M.A.M.; Moustafa, M.A.M. Nano-insecticides against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): Toxicity, development, enzyme activity, and DNA mutagenicity. PLoS ONE 2022, 17, e0254285. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Elmenofy, W.H.; Osman, E.A.; El-Said, N.A.; Awad, M. Biological impact, oxidative stress and adipokinetic hormone activities of Agrotis ipsilon in response to bioinsecticides. Plant Prot. Sci. 2022, 58, 326–337. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein, utilizing the principle of proteinedye binding. Anal. Biochem. 1976, 72, 248e254. [Google Scholar] [CrossRef]
- Van Asperen, K. A study of housefly esterase by means of a sensitive colorimetric method. J. Insect Physiol. 1962, 8, 401–416. [Google Scholar] [CrossRef]
- Hansen, L.G.; Hodgson, E. Biochemical characteristics of insect microsomes and O-demethylation. Biochem. Pharmcol. 1971, 20, 1569e1578. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Simpson, D.R.; Bulland, D.L.; Linquist, D.A. A semimicrotechnique for estimation of cholinesterase activity in boll weevils. Ann. Ent. Soc. Amer. 1964, 57, 367–371. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- Nehare, S.; Moharil, M.P.; Ghodki, B.S.; Lande, G.K.; Bisane, K.D.; Thakare, A.S.; Barkhade, U.P. Biochemical analysis and synergistic suppression of indoxacarb resistance in Plutella xylostella L. J. Asia-Paci. Entomol. 2010, 13, 91–95. [Google Scholar] [CrossRef]
- Santos, V.C.; De Siqueira, H.A.; Da Silva, J.E.; De Farias, M.J.D.C. Insecticide resistance in populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), from the state of Pernambuco, Brazil. Neotropi. Entomol. 2011, 40, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Khakame, S.K.; Ye, C.; Yang, Y.H.; Wu, Y.D. Characterisation of fieldevolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Manag. Sci. 2013, 69, 661–665. [Google Scholar] [CrossRef]
- Ahmed, M.Q.; Mehmood, R. Monitoring of Resistance to New Chemistry Insecticides in Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. J. Econ. Entomol. 2015, 108, 1279–1288. [Google Scholar] [CrossRef]
- Smagghe, G.; Degheele, D. Comparative toxicity and tolerance for the ecdysteroid mimic tebufenozide in a laboratory and field strain of cotton leafworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 1997, 90, 278–282. [Google Scholar] [CrossRef]
- Aydin, M.H.; Gürkan, M.O. The efficacy of spinosad on differentstrains of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Turk. J. Biol. 2006, 30, 5–9. [Google Scholar]
- Prabhaker, N.; Toscano, N.C.; Hennebrry, T.J.; Castle, S.L.; Weddle, D. Assessment of two bioassay techniques for resistance monitoring of silverleaf whitefly (Homoptera: Aleyrodidae) in California. J. Econ. Entomol. 1996, 89, 805–815. [Google Scholar] [CrossRef]
- Bull, D.L.; Menn, J.J. Strategies for managing resistance to insecticides in Heliothis pests of cotton. ACS Symposium series. Amer. Chem. Soc. 1990, 421, 118–133. [Google Scholar]
- Tamilselvan, R.; Kennedy, J.S.; Suganthi, A. Monitoring the resistance and baseline susceptibility of Plutella xylostella (L.) (Lepidoptera: Plutellidae) against spinetoram in Tamil Nadu, India. Crop Prot. 2021, 142, 105491. [Google Scholar] [CrossRef]
- Carvalho, I.F.; Erdmann, L.L.; Machado, L.L.; Rosa, A.P.S.A.; Zotti, M.J.; Neitzke, C.G. Metabolic resistance in the fall armyworm. An Overview. J. Agri. Sci. 2018, 10, 426–436. [Google Scholar] [CrossRef]
- Wheelock, C.E.; Shan, G.; Ottea, J. Overview of Carboxylesterases and their role in the metabolism of insecticides. J. Pestic. Sci. 2005, 30, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef]
- Hilliou, F.; Chertemps, T.; Maïbèche, M.; Le Goff, G. Resistance in the genus spodoptera: Key insect detoxification genes. Insects 2021, 12, 544. [Google Scholar] [CrossRef]
- Hu, Z.D.; Feng, X.; Lin, Q.S.; Chen, H.Y.; Li, Z.Y.; Yin, F.; Liang, P.; Gao, X.W. Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. J. Integr. Agri. 2014, 13, 2452–2459. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, X.; Shen, J.; Mao, K.; You, H.; Li, J. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pestic. Biochem. Physiol. 2016, 132, 38–46. [Google Scholar] [CrossRef]
- Gong, Y.J.; Wang, Z.H.; Shi, B.C.; Kang, Z.J.; Zhu, L.; Jin, G.H.; Wei, S.J. Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. J. Insect Sci. 2013, 13, 135. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Mu, W.; Wang, W.; Zhou, C.; Li, X. Resistance mechanisms and risk assessment regarding indoxacarb in the beet armyworm, Spodoptera exigua. Phytopara 2014, 42, 585–594. [Google Scholar] [CrossRef]
- Rinkevich, F.D.; Scott, J.G. Reduction of dADAR activity affects the sensitivity of Drosophila melanogaster to spinosad and imidacloprid. Pestic. Biochem. Physiol. 2012, 104, 163–169. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Saleh, M.A.; Ateya, I.R.; Kandil, M.A. Influence of some environmental conditions on stability and activity of Bacillus thuringiensis formulations against the cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Cont. 2018, 28, 61. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Li, Q.; Qiu, H.; Tang, L.; Zeng, D.; Liu, K.; Gao, Y. Resistance development, stability, cross-resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in Thrips hawaiiensis (Thysanoptera: Thripidae). Pest Manag. Sci. 2018, 74, 1564–1574. [Google Scholar] [CrossRef]
- Von Stein, R.T.K.; Silver, S.; Soderlund, D.M. Indoxacarb, metaflumizone, and other sodium channel inhibitor insecticides: Mechanism and site of action on mammalian voltage-gated sodium channels. Pestic. Biochem. Physiol. 2013, 106, 101–112. [Google Scholar] [CrossRef] [Green Version]
Common Name | Trade Name | (a.i. %) Formulation | Mode of Action * |
---|---|---|---|
Chlorpyrifos | Dursban | 48% EC | Acetylcholinesterase (AChE) inhibitors |
Methomyl | Methomyl | 90% WP | |
Alpha-cypermethrin | Alpha-cypermethrin | 10% EC | Sodium channel modulators |
Hexaflumeron | Demeron | 10% EC | Inhibitors of chitin biosynthesis |
Bacillus thuringiensis | Dipel-2X | 6.4% WP | Microbial disruptors of insect midgut membranes |
Spinosad | Spinotor | 24% SC | Nicotinic acetylcholine receptor (nAChR) allosteric modulators—Site I |
Insecticide | a LC50 (mg/L) (95% Confidence Limits) | b LC90 (mg/L) (95% Confidence Limits) | Slope ± SE | χ2 |
---|---|---|---|---|
Chlorpyrifos | 86.04 (54.44–124.08) | 760.34 (408.06–2807.41) | 1.35 ± 0.26 | 0.12 |
Methomyl | 132.24 (53.41–208.59) | 1243.29 (739.91–3809.46) | 1.31 ± 0.29 | 1.10 |
Alpha-cypermethrin | 48.78 (25.53–72.79) | 502.78 (270.51–1989.44) | 1.26 ± 0.27 | 1.92 |
Hexaflumeron | 14.57 (7.51–22.38) | 196.49 (91.78–1275.15) | 1.13 ± 0.26 | 0.71 |
B. thuringiensis | 6.11 (0.91–11.90) | 113.62 (57.63–802.94) | 1.00 ± 0.28 | 0.49 |
Spinosad | 0.0089 (0.007–0.011) | 0.035 (0.02–0.08) | 2.14 ± 0.39 | 2.61 |
Insecticides | Season | a LC50 (mg/L) (95% Confidence Limit) | b LC90 (mg/L) (95% Confidence Limit) | Slope ± SE | χ2 | c RR |
---|---|---|---|---|---|---|
Chlorpyrifos | 2018 | 204.31 (150.29–275.72) | 965.09 (610.59–2245.77) | 1.90 ± 0.32 | 6.40 | 2.37 |
2019 | 102.69 (74.77–137.92) | 543.90 (344.54–1223.02) | 1.77 ± 0.28 | 4.04 | 1.19 | |
2020 | 168.30 (120.04–224.41) | 869.28 (566.75–1841.26) | 1.79 ± 0.29 | 2.70 | 1.95 | |
Methomyl | 2018 | 193.17 (122.05–264.07) | 1019.42 (686.81–2057.66) | 1.77 ± 0.31 | 0.20 | 1.46 |
2019 | 147.13 (104.34–195.59) | 741.26 (490.02–1524.05) | 1.82 ± 0.29 | 0.88 | 1.11 | |
2020 | 411.12 (276.36–753.85) | 4371.65 (1763.31–36986.34) | 1.24 ± 0.26 | 0.58 | 3.11 | |
Alpha-cypermethrin | 2018 | 98.74 (79.94–121.31) | 293.46 (223.13–438.38) | 2.70 ± 0.33 | 0.64 | 2.02 |
2019 | 87.95 (65.07–116.97) | 432.67 (280.17–920.30) | 1.85 ± 0.29 | 5.68 | 1.80 | |
2020 | 24.34 (13.37–35.65) | 220.31 (124.36–738.47) | 1.33 ± 0.27 | 0.19 | 0.50 | |
Hexaflumeron | 2018 | 3.19 (0.65–7.93) | 742.90 (154.31–43013.25) | 0.54 ± 0.13 | 0.79 | 0.22 |
2019 | 1.06 (0.11–2.89) | 156.31 (44.11–3986.73) | 0.59 ± 0.14 | 1.85 | 0.07 | |
2020 | 2.08 (0.61–4.38) | 117.30 (43.44–872.58) | 0.73 ± 0.14 | 0.62 | 0.14 | |
B. thuringiensis | 2018 | 6.58 (2.37–13.27) | 377.19 (133.40–2969.85) | 0.72 ± 0.14 | 0.71 | 1.08 |
2019 | 6.009 (2.22–11.88) | 289.44 (109.52–1885.72) | 0.76 ± 0.14 | 0.23 | 0.98 | |
2020 | 4.79 (1.65–9.61) | 221.02 (85.80 -1385.08) | 0.77 ± 0.14 | 0.32 | 0.78 | |
Spinosad | 2018 | 0.015 (0.0051–0.032) | 0.75 (0.30–4.40) | 0.76 ± 0.14 | 0.57 | 1.69 |
2019 | 0.036 (0.015–0.071) | 1.80 (0.64–13.23) | 0.75 ± 0.13 | 0.20 | 4.04 | |
2020 | 0.026 (0.009–0.054) | 1.77 (0.59–16.45) | 0.70 ± 0.13 | 1.22 | 2.92 |
Insecticide | Season | a LC50 (mg/L) (95% Confidence Limit) | b LC90 (mg/L) (95% Confidence Limit) | Slope ± SE | χ2 | c RR |
---|---|---|---|---|---|---|
Chlorpyrifos | 2018 | 72.55 (48.41–99.68) | 431.41 (266.53–1085.73) | 1.65 ± 0.30 | 1.93 | 0.84 |
2019 | 119.06 (93.80–151.03) | 409.99 (293.39–696.98) | 2.38 ± 0.33 | 1.04 | 1.38 | |
2020 | 94.78 (44.95–144.06) | 948.82 (532.63–3380.33) | 1.281 ± 0.27 | 0.21 | 1.10 | |
Methomyl | 2018 | 350.19 (242.53–573.08) | 3134.30 (1435.68–17256.54) | 1.34 ± 0.26 | 1.27 | 2.65 |
2019 | 275.24 (209.89–369.16) | 1246.54 (799.69–2682.82) | 1.95 ± 0.29 | 4.56 | 2.08 | |
2020 | 75.85 (26.33–124.87) | 1102.79 (554.11–6393.61) | 1.10 ± 0.27 | 0.31 | 0.57 | |
Alpha-cypermethrin | 2018 | 112.54 (83.95–153.34) | 582.37 (359.57–1377.15) | 1.79 ± 0.28 | 1.96 | 2.31 |
2019 | 47.36 (33.46–66.34) | 315.67 (181.29–914.35) | 1.55 ± 0.27 | 1.35 | 0.97 | |
2020 | 20.78 (10.50–30.97) | 183.69 (103.24–669.79) | 1.35 ± 0.29 | 2.53 | 0.43 | |
Hexaflumeron | 2018 | 4.47 (1.13–10.88) | 1000.84 (197.07–64021.65) | 0.54 ± 0.13 | 0.35 | 0.31 |
2019 | 2.27 (0.35–5.90) | 579.16 (123.98–33838.96) | 0.53 ± 0.13 | 0.41 | 0.16 | |
2020 | 4.45 (1.55–9.40) | 381.00 (112.35–5137.51) | 0.66 ± 0.13 | 0.84 | 0.31 | |
B. thuringiensis | 2018 | 5.02 (1.54–10.61) | 317.07 (105.57–3351.50) | 0.71 ± 0.14 | 1.92 | 0.82 |
2019 | 9.38 (3.45–19.56) | 748.66 (223.46–9533.92) | 0.67 ± 0.13 | 0.52 | 1.54 | |
2020 | 5.83 (2.03–11.81) | 325.57 (117.90–2424.64) | 0.73 ± 0.14 | 0.11 | 0.95 | |
Spinosad | 2018 | 0.034 (0.011–0.076) | 4.14 (1.06–90.99) | 0.61 ± 0.13 | 1.06 | 3.82 |
2019 | 0.022 (0.007–0.045) | 1.34 (0.47–10.77) | 0.72 ± 0.14 | 0.75 | 2.47 | |
2020 | 0.030 (0.008–0.070) | 4.83 (1.12–156.15) | 0.58 ± 0.13 | 0.88 | 3.37 |
Insecticide | Season | a LC50 (mg/L) (95% Confidence limit) | b LC90 (mg/L) (95% Confidence limit) | Slope ± SE | χ2 | c RR |
---|---|---|---|---|---|---|
Chlorpyrifos | 2018 | 179.75 (131.97–236.47) | 841.11 (561.89–1673.56) | 1.91 ± 0.29 | 1.48 | 2.08 |
2019 | 102.02 (53.50–150.47) | 886.51 (516.95–2733.01) | 1.36 ± 0.28 | 1.67 | 1.18 | |
2020 | 56.77 (7.58–107.13) | 1207.35 (513.66–28677.79) | 0.96 ± 0.30 | 5.94 | 0.65 | |
Methomyl | 2018 | 141.32 (97.87–189.88) | 764.40 (496.42–1647.43) | 1.74 ± 0.29 | 1.42 | 1.07 |
2019 | 369.00 (251.16–635.40) | 3699.14 (1581.64–25705.64) | 1.28 ± 0.26 | 1.71 | 2.279 | |
2020 | 155.66 (106.59–212.75) | 956.87 (590.38–2341.14) | 1.62 ± 0.28 | 3.65 | 1.18 | |
Alpha-cypermethrin | 2018 | 85.57 (62.31–114.94) | 453.29 (287.13–1019.37) | 1.77 ± 0.28 | 4.04 | 1.75 |
2019 | 80.56 (59.92–105.68) | 366.74 (245.51–723.72) | 1.94 ± 0.29 | 0.64 | 1.65 | |
2020 | 24.37 (13.72–35.46) | 197.58 (111.07–701.52) | 1.41 ± 0.30 | 3.96 | 0.50 | |
Hexaflumeron | 2018 | 1.39 (0.41–2.99) | 110.87 (35.99–1183.87) | 0.67 ± 0.13 | 0.05 | 0.10 |
2019 | 2.44 (0.62–5.49) | 242.83 (74.26–3266.44) | 0.64 ± 0.13 | 0.20 | 0.17 | |
2020 | 3.08 (0.57–7.88) | 861.27 (166.27–70842.59) | 0.52 ± 0.13 | 0.66 | 0.21 | |
B. thuringiensis | 2018 | 6.62 (1.38–16.50) | 1643.06 (326.38–112702.92) | 0.53 ± 0.13 | 0.05 | 1.08 |
2019 | 8.59 (2.17–20.90) | 1921.61 (378.38–122921.23) | 0.54 ± 0.13 | 0.35 | 1.41 | |
2020 | 13.37 (4.77- 30.32) | 1782.62 (403.77–55643.17) | 0.60 ± 0.13 | 0.31 | 2.19 | |
Spinosad | 2018 | 0.030 (0.01–0.06) | 2.12 (0.68–21.92) | 0.69 ± 0.13 | 1.87 | 3.37 |
2019 | 0.031 (0.01–0.07) | 4.26 (1.05–108.98) | 0.60 ± 0.13 | 0.32 | 3.48 | |
2020 | 0.025 (0.01–0.05) | 1.51 (0.52–12.23) | 0.72 ± 0.13 | 0.68 | 2.81 |
Strain | Mean ± SE | ||||||||
---|---|---|---|---|---|---|---|---|---|
Carboxylesterases | AChE (µg AchBr/min/mg of Protein) | ||||||||
α-Esterases (µg α-Naphthol/min/mg of Protein) | β-Esterases (µg β-Naphthol/min/mg of Protein) | ||||||||
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |
Susceptible | 25.36 ± 0.55 | 18.06 ± 0.39 | 9.63 ± 0.21 | ||||||
Fayoum | 24.56 ± 0.32 | 23.41 ± 0.73 | 20.25 ± 0.59 *** | 17.49 ± 0.23 | 16.67 ± 0.52 | 14.42 ± 0.42 *** | 9.33 ± 0.12 | 8.89 ± 0.27 | 7.69 ± 0.22 *** |
Beheira | 22.80 ± 0.18 ** | 21.80 ± 0.11 ** | 22.49 ± 0.18 * | 16.23 ± 0.13 ** | 15.52 ± 0.08 ** | 16.01 ± 0.13 * | 8.66 ± 0.06 ** | 8.28 ± 0.04 ** | 8.54 ± 0.07 * |
Kafr El-Sheikh | 20.65 ± 0.39 *** | 23.48 ± 0.22 | 23.73 ± 0.61 | 14.70 ± 0.28 *** | 16.72 ± 0.16 | 16.89 ± 0.43 | 7.84 ± 0.15 *** | 8.92 ± 0.08 | 9.01 ± 0.23 |
F | 28.85 | 9.28 | 17.32 | 28.85 | 9.28 | 17.32 | 28.85 | 9.28 | 17.32 |
p-value | 0.0001 | 0.0055 | 0.0007 | 0.0001 | 0.0055 | 0.0007 | 0.0001 | 0.0055 | 0.0007 |
Strain | Mean ± SE | |||||
---|---|---|---|---|---|---|
MFO (mg/mg of Protein) | GST (mmol/min/mg of Protein) | |||||
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |
Susceptible | 1.47 ± 0.03 | 2.23 ± 0.04 | ||||
Fayoum | 1.42 ± 0.01 | 1.35 ± 0.04 | 1.17 ± 0.03 *** | 2.16 ± 0.02 | 2.06 ± 0.06 | 1.78 ± 0.05 *** |
Beheira | 1.32 ± 0.01 ** | 1.26 ± 0.006 ** | 1.30 ± 0.01 * | 2.01 ± 0.01 ** | 1.92 ± 0.01 ** | 1.98 ± 0.01 * |
Kafr El-Sheikh | 1.19 ± 0.02 *** | 1.36 ± 0.01 | 1.37 ± 0.03 | 1.82 ± 0.03 *** | 2.07 ± 0.02 | 2.09 ± 0.05 |
F | 28.85 | 9.28 | 17.32 | 28.85 | 9.28 | 17.32 |
p-value | 0.0001 | 0.0055 | 0.0007 | 0.0001 | 0.0055 | 0.0007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustafa, M.A.M.; Moteleb, R.I.A.; Ghoneim, Y.F.; Hafez, S.S.; Ali, R.E.; Eweis, E.E.A.; Hassan, N.N. Monitoring Resistance and Biochemical Studies of Three Egyptian Field Strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to Six Insecticides. Toxics 2023, 11, 211. https://doi.org/10.3390/toxics11030211
Moustafa MAM, Moteleb RIA, Ghoneim YF, Hafez SS, Ali RE, Eweis EEA, Hassan NN. Monitoring Resistance and Biochemical Studies of Three Egyptian Field Strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to Six Insecticides. Toxics. 2023; 11(3):211. https://doi.org/10.3390/toxics11030211
Chicago/Turabian StyleMoustafa, Moataz A. M., Rasha I. A. Moteleb, Yehia F. Ghoneim, Sameh Sh. Hafez, Reham E. Ali, Essam E. A. Eweis, and Nancy N. Hassan. 2023. "Monitoring Resistance and Biochemical Studies of Three Egyptian Field Strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to Six Insecticides" Toxics 11, no. 3: 211. https://doi.org/10.3390/toxics11030211
APA StyleMoustafa, M. A. M., Moteleb, R. I. A., Ghoneim, Y. F., Hafez, S. S., Ali, R. E., Eweis, E. E. A., & Hassan, N. N. (2023). Monitoring Resistance and Biochemical Studies of Three Egyptian Field Strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to Six Insecticides. Toxics, 11(3), 211. https://doi.org/10.3390/toxics11030211