Microplastic-Assisted Removal of Phosphorus and Ammonium Using Date Palm Waste Derived Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Biochar
2.2. Microplastics Preparation
2.3. Sorption Experiments
2.3.1. Effect of Solution pH
2.3.2. Kinetics Batch Experiments
2.3.3. Equilibrium Batch Studies Isotherm
3. Results and Discussion
3.1. Characterization of BC
3.2. Sorption Experiments
3.2.1. Effects of pH on Sorption of P and NH4+
3.2.2. Kinetic Sorption Trials
3.2.3. Equilibrium Batch Studies Isotherm
3.2.4. Mechanism for P and NH4+ sorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, H.; Zhang, Y.; Tan, W.; Zhang, Z. Microplastics as an emerging environmental pollutant in agricultural soils: Effects on ecosystems and human health. Front. Environ. Sci. 2022, 10, 217. [Google Scholar] [CrossRef]
- PlasticsEurope. Plastics—The Facts. An Analysis of European Plastics Production, Demand, and Waste Data. PlasticEurope. Available online: https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019 (accessed on 8 June 2023). PlasticEurope.
- Trevor, M.L. Chapter 1—Introduction to Plastic Waste and Recycling. In Plastic Waste and Recycling; Academic Press: New York, NY, USA, 2020; pp. 3–12. [Google Scholar]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Akdogan, Z.; Guven, B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environ. Pollut. 2019, 254, 113011. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Bakir, A.; Burton, G.A.; Janssen, C.R. Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environ. Sci. Technol. 2016, 50, 3315–3326. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, J. Sorption of antibiotics onto aged microplastics in freshwater and seawater. Mar. Pollut. Bull. 2019, 149, 110511. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. The phenomenological mass transfer kinetics model for Sr2+ sorption onto spheroids primary microplastics. Environ. Pollut. 2019, 250, 737–745. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, Y.; Li, J.; Wang, F.; Xia, S.; Zhao, J. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics. Chem. Eng. J. 2020, 392, 123808. [Google Scholar] [CrossRef]
- Muisa, N.; Nhapi, I.; Ruziwa, W.; Manyuchi, M.M. Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: A review. J. Water Process Eng. 2020, 35, 101187. [Google Scholar] [CrossRef]
- Covatti, G.; Grischek, T. Sources and behavior of ammonium during riverbank filtration. Water Res. 2021, 191, 116788. [Google Scholar] [CrossRef]
- Ngatia, L.; Grace, J.M., III; Moriasi, D.; Taylor, R. Nitrogen and phosphorus eutrophication in marine ecosystems. Monit. Mar. Pollut. 2019, 1, 1–17. [Google Scholar]
- Cai, G.; Ye, Z.L. Concentration-dependent adsorption behaviors and mechanisms for ammonium and phosphate removal by optimized Mg-impregnated biochar. J. Clean. Prod. 2022, 349, 131453. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Ai, D.; Wei, T.; Meng, Y.; Chen, X.; Wang, B. Ball milling sulfur-doped nano zero-valent iron@ biochar composite for the efficient removal of phosphorus from water: Performance and mechanisms. Bioresour. Technol. 2022, 357, 127316. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, R.; Zhao, Z. Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. J. Clean. Prod. 2018, 176, 230–240. [Google Scholar] [CrossRef]
- Pratiwi, E.P.A.; Hillary, A.K.; Fukuda, T.; Shinogi, Y. The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma 2016, 277, 61–68. [Google Scholar] [CrossRef]
- Yu, S.; Park, J.; Kim, M.; Ryu, C.; Park, J. Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Chem. Eng. J. 2019, 240, 574e578. [Google Scholar] [CrossRef]
- Zhu, Y.; Kolar, P.; Shah, S.B.; Cheng, J.J.; Lim, P.K. Avocado seed-derived activated carbon for mitigation of aqueous ammonium. Ind. Crops Prod. 2016, 92, 34–41. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Chang, S.W.; Tran, T.C.P.; Nguyen, T.T.N.; Hoang, T.Q.; Banu, J.R.; Ala’a, H.; La, D.D.; Guo, W.; Ngo, H.H.; et al. Comparative study about the performance of three types of modified natural treatment systems for rice noodle wastewater. Bioresour. Technol. 2019, 282, 163–170. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kirui, W.K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, M.; Yu, D.; Wang, W.; Song, Z.; Zhao, X.; Yue, Q. Improving the properties of an anion exchanger based on sugarcane bagasse by applying pretreatment methods. Desalination Water Treat. 2016, 57, 17944–17954. [Google Scholar] [CrossRef]
- Micháleková-Richveisová, B.; Frišták, V.; Pipíška, M.; Ďuriška, L.; Moreno-Jimenez, E.; Soja, G. Iron-impregnated biochars as effective phosphate sorption materials. Environ. Sci. Pollut. Res. 2017, 24, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.; Chhoden, K.; Ravindra, K. Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. J. Clean. Prod. 2016, 129, 673–680. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, L.; Yu, H.; Yan, T.; Li, X. Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: Fast removal and mechanistic studies. Bioresour. Technol. 2019, 284, 65–71. [Google Scholar] [CrossRef]
- Jiang, J.; Yuan, M.; Xu, R.; Bish, D.L. Mobilization of phosphate in variable-charge soils amended with biochars derived from crop straws. Soil Tillage Res. 2015, 146, 139–147. [Google Scholar] [CrossRef]
- Liu, X.; Shen, F.; Qi, X. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw. Sci. Total Environ. 2019, 666, 694–702. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.Y.; Yu, J.Q. Study on absorption of ammonia nitrogen by modified bamboo-carbon. J. Zhejiang Univ. 2007, 33, 584e590. [Google Scholar]
- Abuwatfa, W.H.; Al-Muqbel, D.; Al-Othman, A.; Halalsheh, N.; Tawalbeh, M. Insights into the removal of microplastics from water using biochar in the era of COVID-19: A mini review. Case Stud. Chem. Environ. Eng. 2021, 4, 100151. [Google Scholar] [CrossRef]
- Li, X.; Jiang, X.; Song, Y.; Chang, S.X. Coexistence of polyethylene microplastics and biochar increases ammonium sorption in an aqueous solution. J. Hazard. Mater. 2021, 405, 124260. [Google Scholar] [CrossRef]
- Richard, L.A. Diagnosis and Improvement of Saline and Alkali Soils. In U.S. Department of Agriculture Handbook; U.S. Department of Agriculture: Washington, DC, USA, 1954; Volume 60, p. 160. [Google Scholar]
- ASTM E872-82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. Annual Book of ASTM Standard. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- Ahmad, M.; Lubis, N.M.; Usama, M.; Ahmad, J.; Al-Wabel, M.I.; Al-Swadi, H.A.; Rafique, M.I.; Al-Farraj, A.S. Scavenging microplastics and heavy metals from water using jujube waste-derived biochar in fixed-bed column trials. Environ. Pollut. 2023, 335, 122319. [Google Scholar] [CrossRef]
- SEPA (State Environmental Protection Agency). Water and Waste Water Monitoring Analysis Method; China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Soltanpour, P.N.; Workman, S. Modification of the NH4- HCO3-DTPA soil test to omit carbon black. Commun. Soil Sci. Plant Anal. 1979, 10, 1411–1420. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Usman, A.R.; Abduljabbar, A.; Vithanage, M.; Ok, Y.S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Al-Wabel, M.I. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrolysis 2015, 115, 392–400. [Google Scholar] [CrossRef]
- Ahmad, M.; Moon, D.H.; Vithanage, M.; Koutsospyros, A.; Lee, S.S.; Yang, J.E.; Lee, S.E.; Jeon, C.; Ok, Y.S. Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. J. Chem. Technol. Biotechnol. 2014, 89, 150–157. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.R.; Rafique, M.I.; Al-Wabel, M.I. Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions. Environ. Sci. Pollut. Res. 2019, 26, 15136–15152. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.L.; Zhou, C.H.; Yang, H.M.; Ji, S.F.; Tong, D.S.; Zhong, Z.K.; Yu, W.H.; Chu, M.Q. Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. J. Clean. Prod. 2017, 156, 648–659. [Google Scholar] [CrossRef]
- Li, G.; Gao, S.; Zhang, G.; Zhang, X. Enhanced adsorption of phosphate from aqueous solution by nanostructured iron (III)–copper (II) binary oxides. Chem. Eng. J. 2014, 235, 124–131. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Ahmad, M.; Usman, A.R.; Al-Farraj, A.S. Designing chitosan based magnetic beads with conocarpus waste-derived biochar for efficient sulfathiazole removal from contaminated water. Saudi J. Biol. Sci. 2021, 28, 6218–6229. [Google Scholar] [CrossRef]
- Hale, S.E.; Alling, V.; Martinsen, V.; Mulder, J.; Breedveld, G.D.; Cornelissen, G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 2013, 91, 1612–1619. [Google Scholar] [CrossRef]
- Nobaharan, K.; Bagheri Novair, S.; Asgari Lajayer, B.; van Hullebusch, E.D. Phosphorus removal from wastewater: The potential use of biochar and the key controlling factors. Water 2021, 13, 517. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, M.; Usman, A.R.; Al-Faraj, A.S.; Abduljabbar, A.S.; Al-Wabel, M.I. Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions. Environ. Sci. Pollut. Res. 2018, 25, 25757–25771. [Google Scholar] [CrossRef] [PubMed]
- Munar-Florez, D.A.; Varón-Cardenas, D.A.; Ramírez-Contreras, N.E.; García-Núñez, J.A. Adsorption of ammonium and phosphates by biochar produced from oil palm shells: Effects of production conditions. Results Chem. 2021, 3, 100119. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, H.; Tu, Z.; Li, R.; Li, S.; Xu, Z.; Zhang, Z. Enhanced removal of phosphate and ammonium by MgO-biochar composites with NH3- H2O hydrolysis pretreatment. Environ. Sci. Pollut. Res. 2020, 27, 7493–7503. [Google Scholar] [CrossRef]
- Xie, F.; Wu, F.; Liu, G.; Mu, Y.; Feng, C.; Wang, H.; Giesy, J.P. Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite. Environ. Sci. Technol. 2014, 48, 582–590. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, S.; He, J.; Gan, F.; Ho, Y.S. Adsorption characteristic studies of phosphorus onto laterite. Desalination Water Treat. 2011, 25, 98–105. [Google Scholar] [CrossRef]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate an ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, A.R.; Cao, X.; Pullammanappallil, P.; Yang, L. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresour. Technol. 2011, 102, 6273–6278. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Li, T.; Zhao, F.; He, Z.; Zhao, H.; Yang, X.; Wang, H.; Zhao, J.; Rafiq, M.T. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J. Zhejiang Univ. Sci. B 2013, 14, 1152–1161. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Shen, F.; Yang, G.; Zhang, Y.; Zeng, Y.; Wang, L.; Xiao, H.; Deng, S. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−). Chemosphere 2015, 119, 646–653. [Google Scholar] [CrossRef]
- Bargmann, I.; Rillig, M.C.; Kruse, A.; Greef, J.M.; Kücke, M. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant Nutr. Soil Sci. 2014, 177, 48–58. [Google Scholar] [CrossRef]
- Spokas, K.A.; Novak, J.M.; Venterea, R.T. Biochar’s role as an alternative N-fertilizer: Ammonia capture. Plant Soil 2011, 350, 35–42. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.; Naidu, R.; Parikh, S.J.; Du, J.; Qi, F.; Willett, I.R. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci. Total Environ. 2020, 744, 140714. [Google Scholar] [CrossRef] [PubMed]
- Weldon, S.; van der Veen, B.; Farkas, E.; Kocatürk-Schumacher, N.P.; Dieguez-Alonso, A.; Budai, A.; Rasse, D. A re-analysis of NH4+ sorption on biochar: Have expectations been too high? Chemosphere 2022, 301, 134662. [Google Scholar] [CrossRef] [PubMed]
Property | Unit | BM | BC |
---|---|---|---|
Yield | % | – | 31.04 |
pH | – | 7.87 | 10.66 |
pH at point of zero charge (pHpzc) | – | 7.25 | 10.01 |
Electrical conductivity | dS m−1 | 0.80 | 1.51 |
Moisture | % | 6.83 | 2.52 |
Ash | % | 8.40 | 27.12 |
Volatiles | % | 82.11 | 24.28 |
Fixed carbon | % | 2.64 | 46.07 |
Surface area | m2 g−1 | 1.62 | 260.05 |
Pore volume | cm3 g−1 | 0.009 | 0.145 |
Pore size | Å | 226.38 | 22.43 |
C | % | 45.51 | 63.72 |
O | % | 48.40 | 34.92 |
H | % | 5.56 | 0.58 |
N | % | 0.53 | 0.78 |
O/C molar ratio | – | 0.79 | 0.41 |
H/C molar ratio | – | 1.45 | 0.10 |
Models | Parameters | P Sorption | NH4+ Sorption | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BC | PE | PA | BC-PE | BC-PA | BC | PE | PA | BC-PE | BC-PA | ||
First order | k1 | 1.7 × 10−3 | 1.3 × 10−3 | 1.7 × 10−3 | 1.6 × 10−3 | 1.8 × 10−3 | 1.9 × 10−3 | 1.9 × 10−3 | 1.6 × 10−3 | 1.8 × 10−3 | 1.9 × 10−3 |
R2 | 0.74 | 0.77 | 0.68 | 0.67 | 0.80 | 0.62 | 0.62 | 0.63 | 0.59 | 0.60 | |
Second order | k2 | −4.1 × 10−5 | −4.9 × 10−4 | −5.5 × 10−4 | −2.6 × 10−5 | −3.8 × 10−5 | −4.9 × 10−3 | −2.0 × 10−3 | −1.9 × 10−3 | −2.8 × 10−3 | −2.7 × 10−3 |
R2 | 0.53 | 0.50 | 0.42 | 0.47 | 0.56 | 0.41 | 0.35 | 0.43 | 0.31 | 0.32 | |
Pseudo-first order | k1′ | 2.6 × 10−3 | 1.2 × 10−3 | 1.7 × 10−3 | 2.5 × 10−3 | 2.6 × 10−3 | 2.9 × 10−5 | 5.3 × 10−5 | 5.4 × 10−5 | 2.7 × 10−5 | 4.5 × 10−5 |
qe | 3.92 | 1.58 | 2.11 | 3.94 | 4.33 | 4.08 | 2.52 | 1.75 | 4.46 | 4.33 | |
R2 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | |
Pseudo-second order | k2′ | 5.8 × 10−5 | 5.5 × 10−4 | 1.0 × 10−4 | 8.3 × 10−5 | 4.0 × 10−5 | 4.0 × 10−5 | 7.9 × 10−5 | 2.0 × 10−4 | 4.0 × 10−5 | 4.4 × 10−5 |
qe | 58.13 | 6.08 | 13.88 | 60.61 | 78.02 | 74.11 | 19.73 | 10.18 | 95.81 | 84.05 | |
h | 0.20 | 0.02 | 0.02 | 0.31 | 0.25 | 0.22 | 0.03 | 0.02 | 0.37 | 0.31 | |
R2 | 0.99 | 0.95 | 0.86 | 0.99 | 0.95 | 0.99 | 0.85 | 0.90 | 0.99 | 0.99 | |
Elovich | a | 7.34 | 0.72 | 1.31 | 8.07 | 9.09 | 9.51 | 1.98 | 1.12 | 12.34 | 10.43 |
β | −10.84 | −1.14 | −2.41 | −9.64 | −14.74 | −15.07 | −3.72 | −1.91 | −16.45 | −15.94 | |
R2 | 0.97 | 0.93 | 0.96 | 0.96 | 0.93 | 0.97 | 0.96 | 0.96 | 0.96 | 0.99 | |
Intraparticle diffusion | kid | 1.44 | 0.15 | 0.27 | 1.51 | 1.86 | 1.85 | 0.40 | 0.22 | 2.35 | 2.04 |
c | 0.56 | −0.10 | −0.56 | 4.20 | −1.79 | 0.08 | −0.91 | −0.20 | 3.95 | 0.48 | |
R2 | 0.98 | 0.99 | 0.98 | 0.96 | 0.99 | 0.92 | 0.96 | 0.93 | 0.96 | 0.97 | |
Power function | kf | 0.55 | 0.27 | 0.37 | 0.56 | 0.58 | 0.61 | 0.44 | 0.35 | 0.63 | 0.62 |
B | 0.07 | −0.65 | −0.84 | 0.25 | 0.06 | −0.05 | −0.90 | −0.79 | 0.22 | 0.01 | |
R2 | 0.99 | 0.99 | 0.97 | 0.97 | 0.99 | 0.95 | 0.95 | 0.95 | 0.91 | 0.93 |
Isotherms | Parameters | P Sorption | NH4+ Sorption | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BC | PE | PA | BC-PE | BC-PA | BC | PE | PA | BC-PE | BC-PA | ||
Langmuir | QL (mg g−1) | 56.08 | 8.44 | 18.91 | 86.81 | 93.23 | 79.64 | 19.30 | 10.15 | 103.76 | 85.83 |
KL (L g−1) | 0.12 | 0.03 | 0.01 | 0.06 | 0.07 | 0.12 | 0.02 | 0.04 | 0.30 | 0.36 | |
R2 | 0.99 | 0.98 | 0.98 | 0.96 | 0.99 | 0.99 | 0.95 | 0.98 | 0.98 | 0.99 | |
Freundlich | KF (L g−1) | 9.12 | 0.53 | 0.40 | 7.15 | 9.56 | 11.61 | 0.79 | 1.02 | 23.02 | 20.94 |
1/n | 0.43 | 0.55 | 0.72 | 0.59 | 0.55 | 0.51 | 0.62 | 0.47 | 0.50 | 0.40 | |
R2 | 0.93 | 0.95 | 0.96 | 0.92 | 0.98 | 0.97 | 0.90 | 0.93 | 0.95 | 0.95 | |
Temkin | b (J mol−1) | 215.67 | 1326.99 | 749.77 | 125.93 | 192.57 | 148.26 | 572.82 | 1061.61 | 116.10 | 161.91 |
A (L g−1) | 1.22 | 0.27 | 0.18 | 0.58 | 2.31 | 1.51 | 0.24 | 0.37 | 3.56 | 4.73 | |
R2 | 0.98 | 0.99 | 0.99 | 0.99 | 0.85 | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | |
Dubinin–Radushkevich | QD (mg g−1) | 45.39 | 5.22 | 9.52 | 55.60 | 58.04 | 58.48 | 11.68 | 7.03 | 73.24 | 61.29 |
E (kJ g−1) | 0.01 | 0.05 | 0.17 | 0.01 | 7.5 × 10−3 | 4.4 × 10−3 | 0.84 | 0.03 | 7.0 × 10−4 | 6.0 × 10−4 | |
R2 | 0.93 | 0.91 | 0.96 | 0.97 | 0.91 | 0.88 | 0.99 | 0.93 | 0.91 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Rafique, M.I.; Akanji, M.A.; Al-Swadi, H.A.; Usama, M.; Mousa, M.A.; Al-Wabel, M.I.; Al-Farraj, A.S.F. Microplastic-Assisted Removal of Phosphorus and Ammonium Using Date Palm Waste Derived Biochar. Toxics 2023, 11, 881. https://doi.org/10.3390/toxics11110881
Ahmad M, Rafique MI, Akanji MA, Al-Swadi HA, Usama M, Mousa MA, Al-Wabel MI, Al-Farraj ASF. Microplastic-Assisted Removal of Phosphorus and Ammonium Using Date Palm Waste Derived Biochar. Toxics. 2023; 11(11):881. https://doi.org/10.3390/toxics11110881
Chicago/Turabian StyleAhmad, Munir, Muhammad Imran Rafique, Mutair A. Akanji, Hamed Ahmed Al-Swadi, Muhammad Usama, Mohammed Awad Mousa, Mohammad I. Al-Wabel, and Abdullah S. F. Al-Farraj. 2023. "Microplastic-Assisted Removal of Phosphorus and Ammonium Using Date Palm Waste Derived Biochar" Toxics 11, no. 11: 881. https://doi.org/10.3390/toxics11110881