Impacts of Cigarette Smoke (CS) on Muscle Derangement in Rodents—A Systematic Review
Abstract
:1. Background
2. Methodology
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Risk of Bias of Included Studies
2.4. Data Extraction
3. Results
3.1. Included Studies
3.2. Characteristics of the Rodents
3.3. CS Exposure Protocol
3.3.1. CS Exposure System
3.3.2. Experiment Duration
3.3.3. Frequency and Duration of CS Exposure
3.3.4. Concentration of CS Exposure
3.4. Risk of Bias in the Included Studies
3.4.1. Selection Bias
3.4.2. Performance Bias
3.4.3. Detection Bias
3.4.4. Attrition Bias (Drop-Out)
3.4.5. Reporting Bias
3.5. Primary Outcomes
3.5.1. The Proportion of Muscle Fiber Types
Respiratory Muscle—Diaphragm
Lower Limb Muscle—Rectus Femoris
Lower Limb Muscle—Soleus
Lower Limb Muscle—Gastrocnemius
Lower Limb Muscle—Other Muscles
3.5.2. Muscle CSA
Respiratory Muscle—Diaphragm
Lower Limb Muscle—Quadriceps
Lower Limb Muscle—Soleus
Lower Limb Muscle—Gastrocnemius
Lower Limb Muscle—EDL
3.6. Secondary Outcomes
3.6.1. Nutritional Status
3.6.2. Inflammatory Markers
3.6.3. Functional Outcomes
4. Discussion
4.1. Effects of Exposure to CS on the Percentage of Muscle Fiber Types in Skeletal Muscles
4.2. Effects of Exposure to CS on the CSA of Muscle Fiber Types in Skeletal Muscles
4.3. Effects of Exposure to CS on Body Mass
5. Limitation and Recommendation
5.1. Limitations of the Studies Involved
5.2. Recommendation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumeister, R. Addiction, cigarette smoking, and voluntary control of action: Do cigarette smokers lose their free will? Addict. Behav. Rep. 2017, 5, 67–84. [Google Scholar] [CrossRef]
- Decramer, M.; De Benedetto, F.; Del Ponte, A.; Marinari, S. Systemic effects of COPD. Respir. Med. 2005, 99, S3–S10. [Google Scholar] [CrossRef]
- Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- Kozma, R.D.L.H.; Alves, E.M.; Barbosa-De-Oliveira, V.A.; Lopes, F.D.T.Q.D.S.; Guardia, R.C.; Buzo, H.V.; De Faria, C.A.; Yamashita, C.; Cavazzana, M.; Frei, F.; et al. A new experimental model of cigarette smoke-induced emphysema in Wistar rats. J. Bras. Pneumol. 2014, 40, 46–54. [Google Scholar] [CrossRef]
- Barnes, P.J.; Celli, B.R. Systemic manifestations and comorbidities of COPD. Eur. Respir. J. 2009, 33, 1165–1185. [Google Scholar] [CrossRef]
- Barreiro, E.; Peinado, V.I.; Galdiz, J.B.; Ferrer, E.; Marin-Corral, J.; Sanchez, F.; Barberà, J.A. Cigarette smoke–induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am. J. Respir. Crit. Care Med. 2010, 182, 477–488. [Google Scholar] [CrossRef]
- Barreiro, E.; Gea, J. Respiratory and Limb Muscle Dysfunction in COPD. COPD J. Chronic Obstr. Pulm. Dis. 2015, 12, 413–426. [Google Scholar] [CrossRef]
- Barreiro, E.; Bustamante, V.; Cejudo, P.; Gáldiz, J.B.; Gea, J.; de Lucas, P.; Martínez-Llorens, J.; Ortega, F.; Puente-Maestu, L.; Roca, J.; et al. Guidelines for the Evaluation and Treatment of Muscle Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Arch. Bronconeumol. 2015, 51, 384–395. [Google Scholar] [CrossRef]
- Maltais, F.; Decramer, M.; Casaburi, R.; Barreiro, E.; Burelle, Y.; Debigaré, R.; Dekhuijzen, P.N.R.; Franssen, F.; Gayan-Ramirez, G.; Gea, J.; et al. An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2014, 189, e15–e62. [Google Scholar] [CrossRef]
- Jaitovich, A.; Barreiro, E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am. J. Respir. Crit. Care Med. 2018, 198, 175–186, Correction in Am. J. Respir. Crit. Care Med. 2018, 198, 824–825. [Google Scholar] [CrossRef]
- Bui, K.L.; Nyberg, A.; Rabinovich, R.; Saey, D.; Maltais, F. The Relevance of Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease: A Review for Clinicians. Clin. Chest Med. 2019, 40, 367–383. [Google Scholar] [CrossRef]
- Swallow, E.B.; Reyes, D.; Hopkinson, N.S.; Man, W.D.; Porcher, R.; Cetti, E.J.; Moore, A.J.; Moxham, J.; Polkey, M.I. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax 2007, 62, 115–120. [Google Scholar] [CrossRef]
- Marquis, K.; Debigare, R.; Lacasse, Y.; LeBlanc, P.; Jobin, J.; Carrier, G.; Maltais, F. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2002, 166, 809–813. [Google Scholar] [CrossRef]
- Mador, M.J.; Bozkanat, E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir. Res. 2001, 2, 216–224. [Google Scholar] [CrossRef]
- Jakobsson, P.; Jorfeldt, L.; Brundin, A. Skeletal muscle metabolites and fibre types in patients with advanced chronic obstructive pulmonary disease (COPD), with and without chronic respiratory failure. Eur. Respir. J. 1990, 3, 192–196. [Google Scholar]
- Jobin, J.; Maltais, F.; Doyon, J.F.; LeBlanc, P.; Simard, P.M.; Simard, A.A.; Simard, C. Chronic Obstructive Pulmonary Disease: Capillarity and Fiber-Type Characteristics of Skeletal Muscle. J. Cardiopulm. Rehabil. Prev. 1998, 18, 432–437. [Google Scholar] [CrossRef]
- Maltais, F.; Sullivan, M.; Leblanc, P.; Duscha, B.D.; Schachat, F.H.; Simard, C.; Blank, J.M.; Jobin, J. Altered expression of myosin heavy chain in the vastus lateralis muscle in patients with COPD. Eur. Respir. J. 1999, 13, 850–854. [Google Scholar] [CrossRef]
- Satta, A.; Migliori, G.; Spanevello, A.; Neri, M.; Bottinelli, R.; Canepari, M.; Pellegrino, M.; Reggiani, C. Fibre types in skeletal muscles of chronic obstructive pulmonary disease patients related to respiratory function and exercise tolerance. Eur. Respir. J. 1997, 10, 2853–2860. [Google Scholar] [CrossRef] [PubMed]
- Whittom, F.; Jobin, J.; Simard, P.M.; Leblanc, P.; Simard, C.; Bernard, S.; Belleau, R.; Maltais, F. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med. Sci. Sports Exerc. 1998, 30, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Krüger, K.; Dischereit, G.; Seimetz, M.; Wilhelm, J.; Weissmann, N.; Mooren, F.C. Time course of cigarette smoke-induced changes of systemic inflammation and muscle structure. Am. J. Physiol. Cell. Mol. Physiol. 2015, 309, L119–L128. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Gong, X.; Jiang, H.; Lin, C.; Chen, Y.; Xu, X.; Zhang, C.; Wang, J.; Lu, W.; Zhong, N. Erratum: Reduced nuclear translocation of serum response factor is associated with skeletal muscle atrophy in a cigarette smoke-induced mouse model of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2018, 12, 581. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, B.; Brusselle, G.G.; Maes, T.; Creus, K.K.; D’hose, S.; D’Haese, N.; Joos, G.F.; De Bleecker, J.L. TNFα receptor genotype influences smoking-induced muscle-fibre-type shift and atrophy in mice. Acta Neuropathol. 2008, 115, 675–681. [Google Scholar] [CrossRef]
- Gosker, H.R.; Langen, R.C.J.; Bracke, K.; Joos, G.F.; Brusselle, G.; Steele, C.; Ward, K.A.; Wouters, E.F.M.; Schols, A.M.W.J. Extrapulmonary Manifestations of Chronic Obstructive Pulmonary Disease in a Mouse Model of Chronic Cigarette Smoke Exposure. Am. J. Respir. Cell Mol. Biol. 2009, 40, 710–716. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clin. Res. Ed) 2011, 343, d5928. [Google Scholar] [CrossRef]
- Basic, V.T.; Tadele, E.; Elmabsout, A.A.; Yao, H.; Rahman, I.; Sirsjö, A.; Abdel-Halim, S.M. Exposure to cigarette smoke induces overexpression of von Hippel-Lindau tumor suppressor in mouse skeletal muscle. Am. J. Physiol. Cell. Mol. Physiol. 2012, 303, L519–L527. [Google Scholar] [CrossRef]
- Rinaldi, M.; Maes, K.; De Vleeschauwer, S.; Thomas, D.; Verbeken, E.K.; Decramer, M.; Janssens, W.; Gayan-Ramirez, G.N. Long-term nose-only cigarette smoke exposure induces emphysema and mild skeletal muscle dysfunction in mice. Dis. Model. Mech. 2012, 5, 333–341. [Google Scholar] [CrossRef]
- Tang, K.; Wagner, P.; Breen, E. TNF-α-mediated reduction in PGC-1α may impair skeletal muscle function after cigarette smoke exposure. J. Cell. Physiol. 2010, 222, 320–327. [Google Scholar] [CrossRef]
- Nakatani, T.; Nakashima, T.; Kita, T.; Ishihara, A. Effects of exposure to cigarette smoke at different dose levels on extensor digitorum longus muscle fibres in Wistar-Kyoto and spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 2003, 30, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, T.; Nakashima, T.; Kita, T.; Ishihara, A. Exposure to Cigarette Smoke at Three Dosage Levels on Soleus Muscle Fibers in Wistar-Kyoto and Spontaneously Hypertensive Rats. Jpn. J. Pharmacol. 2002, 90, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Reggiani, C. Fiber Types in Mammalian Skeletal Muscles. Physiol. Rev. 2011, 91, 1447–1531. [Google Scholar] [CrossRef] [PubMed]
- Bloemberg, D.; Quadrilatero, J. Rapid Determination of Myosin Heavy Chain Expression in Rat, Mouse, and Human Skeletal Muscle Using Multicolor Immunofluorescence Analysis. PLoS ONE 2012, 7, e35273. [Google Scholar] [CrossRef]
- Bär, A.; Pette, D. Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Lett. 1988, 235, 153–155. [Google Scholar] [CrossRef]
- Cheung, K.-K.; Fung, T.K.-H.; Mak, J.C.W.; Cheung, S.-Y.; He, W.; Leung, J.W.; Lau, B.W.M.; Ngai, S.P.C. The acute effects of cigarette smoke exposure on muscle fiber type dynamics in rats. PLoS ONE 2020, 15, e0233523. [Google Scholar] [CrossRef]
- Humphry, E.; Armstrong, C.E. Physiology of red and white blood cells. Anaesth. Intensiv. Care Med. 2022, 23, 118–122. [Google Scholar] [CrossRef]
- Oakes, J.M.; Xu, J.; Morris, T.M.; Fried, N.D.; Pearson, C.S.; Lobell, T.D.; Gilpin, N.W.; Lazartigues, E.; Gardner, J.D.; Yue, X. Effects of Chronic Nicotine Inhalation on Systemic and Pulmonary Blood Pressure and Right Ventricular Remodeling in Mice. Hypertension 2020, 75, 1305–1314. [Google Scholar] [CrossRef]
- Cloonan, S.; Glass, K.; Laucho-Contreras, M.E.; Bhashyam, A.R.; Cervo, M.; Pabón, M.A.; Konrad, C.; Polverino, F.; Siempos, I.I.; Perez, E.; et al. Mitochondrial iron chelation ameliorates cigarette smoke–induced bronchitis and emphysema in mice. Nat. Med. 2016, 22, 163–174. [Google Scholar] [CrossRef]
- Bodine, S.C.; Baehr, L.M. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E469–E484. [Google Scholar] [CrossRef]
- Jackman, R.W.; Kandarian, S.C. The molecular basis of skeletal muscle atrophy. Am. J. Physiol.-Cell Physiol. 2004, 287, C834–C843. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Langley, B.; Berry, C.; Sharma, M.; Kirk, S.; Bass, J.; Kambadur, R. Myostatin, a Negative Regulator of Muscle Growth, Functions by Inhibiting Myoblast Proliferation. J. Biol. Chem. 2000, 275, 40235–40243. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Langley, B.; Bass, J.; Kambadur, R. Myostatin in Muscle Growth and Repair. Exerc. Sport Sci. Rev. 2001, 29, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xu, W.-G.; Luo, Y.; Han, F.-F.; Yao, X.-H.; Yang, T.-Y.; Zhang, Y.; Pi, W.-F.; Guo, X.-J. Cigarette smoke-induced skeletal muscle atrophy is associated with up-regulation of USP-19 via p38 and ERK MAPKs. J. Cell. Biochem. 2011, 112, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.M.W.; Magkos, F.; Atherton, P.; Selby, A.; Smith, K.; Rennie, M.J.; Pedersen, B.K.; Mittendorfer, B. Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle. Am. J. Physiol. Metab. 2007, 293, E843–E848. [Google Scholar] [CrossRef] [PubMed]
- Kaisari, S.; Rom, O.; Aizenbud, D.; Reznick, A.Z. Involvement of NF-κB and muscle specific E3 ubiquitin ligase MuRF1 in cigarette smoke-induced catabolism in C2 myotubes. In Neurobiology of Respiration; Springer: Berlin/Heidelberg, Germany, 2013; pp. 7–17. [Google Scholar]
- Caron, M.A.; Morissette, M.C.; Thériault, M.E.; Nikota, J.K.; Stämpfli, M.R.; Debigaré, R. Alterations in skeletal muscle cell homeostasis in a mouse model of cigarette smoke exposure. PLoS ONE 2013, 8, e66433. [Google Scholar] [CrossRef]
- Nogueira, L.; Trisko, B.M.; Lima-Rosa, F.L.; Jackson, J.; Lund-Palau, H.; Yamaguchi, M.; Breen, E.C. Cigarette smoke directly impairs skeletal muscle function through capillary regression and altered myofibre calcium kinetics in mice. J. Physiol. 2018, 596, 2901–2916. [Google Scholar] [CrossRef]
- Jackson, J.M.; Palau, H.G.; Wagner, P.D.; Breen, E.C. Skeletal muscle satellite cells are reduced in cigarette smoke exposed mice. FASEB J. 2013, 27, 753.3. [Google Scholar] [CrossRef]
- Degens, H. The role of systemic inflammation in age-related muscle weakness and wasting. Scand. J. Med. Sci. Sports 2010, 20, 28–38. [Google Scholar] [CrossRef]
- Mangubat, M.; Lutfy, K.; Lee, M.L.; Pulido, L.; Stout, D.; Davis, R.; Shin, C.-S.; Shahbazian, M.; Seasholtz, S.; Sinha-Hikim, A.; et al. Effect of nicotine on body composition in mice. J. Endocrinol. 2011, 212, 317–326. [Google Scholar] [CrossRef]
- Chao, A.M.; Wadden, T.A.; Ashare, R.L.; Loughead, J.; Schmidt, H.D. Tobacco Smoking, Eating Behaviors, and Body Weight: A Review. Curr. Addict. Rep. 2019, 6, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Seoane-Collazo, P.; Diéguez, C.; Nogueiras, R.; Rahmouni, K.; Fernández-Real, J.M.; López, M. Nicotine’ actions on energy balance: Friend or foe? Pharmacol. Ther. 2020, 219, 107693. [Google Scholar] [CrossRef] [PubMed]
ID | Chronic Obstructive Pulmonary Disease |
1. | COPD |
2. | COAD |
3. | COBD |
4. | Chronic Airflow Obstruction |
5. | Airflow Obstruction, Chronic |
6. | Chronic Obstructive Airway Disease |
7. | Chronic Obstructive Pulmonary Disease |
8. | Chronic Obstructive Lung Disease |
9. | Pulmonary Disease, Chronic Obstructive |
10. | Lung Diseases, Obstructive |
11. | Emphysema* |
12. | (Obstruct* and (pulmonary or lung or airway* or airflow* or bronchitis* or respirat*)) |
13. | 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 |
ID | Muscle Derangement |
14. | Muscle Derangement |
15. | Muscle Dysfunction |
16. | Muscle Weakness |
17. | 14 OR 15 OR 16 |
ID | Cigarette Smoking |
18. | Cigar Smoking |
19. | Smoking, Cigar |
20. | Tobacco Smoking |
21. | Smoking, Tobacco |
22. | Cigarette Smoking |
23. | Smoking, Cigarette |
24. | 18 OR 19 OR 20 OR 21 OR 22 OR 23 |
ID | Animal |
25. | No human |
26. | Animal |
27. | 25 OR 26 |
28. | 13 AND 17 AND 24 AND 27 |
Author (Year) | Rodents | Cigarette Smoke (CS) Exposure Protocol | |||||||
---|---|---|---|---|---|---|---|---|---|
Species | Strain | Age (Weeks) | Exposure Period (Weeks) | Sample Size | Type of CS Exposure | No. of Cigarettes/Week | The Concentration of CS Exposure | ||
SA (n) | CS (n) | ||||||||
Ma (2018) [24] | Mouse | Balb/c | 6–8 | 24 | 15 | 15 | Whole body | 45 |
|
Basic (2012) [28] | Mouse | 129/SvJ | 8–10 | 24 | 8 | 6 | Whole body | - |
|
Rinaldi (2012) [29] | Mouse | C57Bl/6 | 8 | 12 | 6 | 6 | Nose-only | 40 |
|
24 | 12 | 12 | |||||||
Tang (2010) [30] | Mouse | C57Bl/6 | 8 | 8 | 6 | 6 | Whole body | 60 |
|
16 | 6 | 6 | |||||||
Barreiro (2010) [9] | Guinea pig | Hartley | 4 | 12 | 7 | 7 | Whole body | 35 |
|
16 | 7 | 7 | |||||||
24 | 7 | 7 | |||||||
Gosker (2009) [26] | Mouse | C57Bl/6 | 7–9 | 24 | 13 | 13 | Whole body | 100 |
|
De Paepe (2008) [25] | Mouse | C57Bl/6 | 8 | 18 | 4 | 4 | Whole body | 100 |
|
Krüger (2015) [23] | Mouse | C57Bl/6 | 6–8 | 8 | 10 | 10 | Whole body | - |
|
16 | 10 | 10 | |||||||
24 | 10 | 10 | |||||||
32 | 10 | 10 | |||||||
Nakatani (2003) [31] | Rat | Wistar-Kyoto | 10 | L: 8 | 20 | 20 | Whole body | 115 |
|
M: 8 | 20 | 20 | 130 | ||||||
H: 8 | 20 | 20 | 150 | ||||||
Nakatani (2002) [32] | Rat | Wistar-Kyoto | 10 | L: 8 | 20 | 20 | Whole body | 115 |
|
M: 8 | 20 | 20 | 130 | ||||||
H: 8 | 20 | 20 | 150 |
Author (Year) | Selection Bias | Performance Bias | Detection Bias | Attrition Bias | Reporting Bias | |
---|---|---|---|---|---|---|
Random Sequence Generation | Allocation Concealment | Blinding of Researcher | Blinding of Outcome Assessment: Objective Measures | Incomplete Outcome Data: All Outcomes | Selective Reporting | |
Ma (2018) [24] | High risk | Unclear risk | Unclear risk | Low risk | Low risk | Unclear risk |
Basic (2012) [28] | High risk | Unclear risk | Unclear risk | Low risk | Low risk | Unclear risk |
Rinaldi (2012) [29] | High risk | Unclear risk | Unclear risk | Low risk | High risk | Unclear risk |
Tang (2010) [30] | High risk | Unclear risk | Unclear risk | Low risk | Low risk | Unclear risk |
Barreiro (2010) [9] | High risk | Unclear risk | Unclear risk | Low risk | Low risk | Unclear risk |
Gosker (2009) [26] | High risk | Unclear risk | Unclear risk | Low risk | Low risk | Unclear risk |
De Paepe (2008) [25] | High risk | Unclear risk | Unclear risk | Low risk | Low risk | Unclear risk |
Krüger (2015) [23] | High risk | High risk | Unclear risk | Low risk | Low risk | Unclear risk |
Nakatani (2003) [31] | High risk | Unclear risk | Unclear risk | Low risk | Low risk | Unclear risk |
Nakatani (2002) [32] | High risk | Unclear risk | Unclear risk | Low risk | Low risk | Unclear risk |
Muscles | Species /Strain | Author (Year) | Muscle Fiber Type | CS Exposure Period (Weeks) | Groups | Summary | |
---|---|---|---|---|---|---|---|
SA | CS | ||||||
Diaphragm | Guinea pigs | Barreiro (2010) [9] | Type I (%) | 12 | 37 ± 5 | 34 ± 2 |
|
16 | 29 ± 3 | 30 ± 4 | |||||
24 | 35 ± 5 | 30 ± 2 * | |||||
Type II (%) | 12 | 63 ± 5 | 66 ± 2 |
| |||
16 | 71 ± 3 | 70 ± 4 | |||||
24 | 65 ± 5 | 70 ± 2 * | |||||
Rectus femoris | Mouse, C57Bl/6 | Krüger (2015) [23] | Type I (%) | 8 | No significant difference |
| |
16 | No significant difference | ||||||
24 | ↓* CS vs. SA | ||||||
32 | ↓* CS vs. SA | ||||||
Type II (%) | 8 | No significant difference |
| ||||
16 | No significant difference | ||||||
24 | ↑* CS vs. SA | ||||||
32 | ↑* CS vs. SA | ||||||
Soleus | Mouse, C57Bl/6 | Krüger (2015) [23] | Type I (%) | 8 | No significant difference |
| |
Tang (2010) [30] | No significant difference | ||||||
Rinaldi (2012) [29] | 12 | No significant difference | |||||
Krüger (2015) [23] | 16 | No significant difference | |||||
Tang (2010) [30] | 18 | No significant difference | |||||
Krüger (2015) [23] | 24 | ↓* CS vs. SA | |||||
Rinaldi (2012) [29] | 24 | No significant difference | |||||
Gosker (2009) [26] | 24 | No significant difference | |||||
Krüger (2015) [23] | 32 | ↓* CS vs. SA | |||||
Wistar-Kyoto rats | Nakatani (2002) [32] | 8 | No significant difference |
| |||
Mouse, C57Bl/6 | Krüger (2015) [23] | Type II (%) | 8 | No significant difference |
| ||
16 | No significant difference | ||||||
24 | ↑* CS vs. SA | ||||||
32 | ↑* CS vs. SA | ||||||
Wistar-Kyoto rats | Nakatani (2002) [32] | 8 | No significant difference |
| |||
Mouse, C57Bl/6 | Tang (2010) [30] | Type IIa (%) | 8 | ↓* CS vs. SA |
| ||
Rinaldi (2012) [29] | 12 | No significant difference | |||||
Tang (2010) [30] | 18 | 54.4 ± 7.3 | 44.0 ± 8.0 * | ||||
Rinaldi (2012) [29] | 24 | No significant difference | |||||
Gosker (2009) [26] | ↓* CS vs. SA | ||||||
Tang (2010) [30] | Type IIb (%) | 8 | 0.53 ± 0.37 | 2.56 ± 1.34 * |
| ||
18 | 0.53 ± 0.37 | 12.9 ± 3.8 * | |||||
Rinaldi (2012) [29] | Type IIb/x (%) | 12 | No significant difference |
| |||
Gosker (2009) [26] | 24 | No significant difference | |||||
Rinaldi (2012) [29] | 24 | 9.8 ± 0.7 | 15.1 ± 1.2 * | ||||
Gastrocnemius | Guinea pigs | Barreiro (2010) [9] | Type I (%) | 12 | 10 ± 3 | 10 ± 4 |
|
16 | 11 ± 5 | 8 ± 3 | |||||
24 | 9 ± 3 | 13 ± 4 | |||||
Mouse, C57Bl/6 | Krüger (2015) [23] | 8 | No significant difference |
| |||
Krüger (2015) [23] | 16 | No significant difference | |||||
Gosker (2009) [26] | 24 | No significant difference | |||||
Krüger (2015) [23] | 24 | ↓* CS vs. SA | |||||
Krüger (2015) [23] | 32 | ↓* CS vs. SA | |||||
Guinea pigs | Barreiro (2010) [9] | Type II (%) | 12 | 90 ± 3 | 90 ± 4 |
| |
16 | 89 ± 5 | 92 ± 3 | |||||
24 | 91 ± 3 | 87 ± 6 | |||||
Mouse, C57Bl/6 | Krüger (2015) [23] | 8 | No significant difference |
| |||
16 | No significant difference | ||||||
24 | ↑* CS vs. SA | ||||||
32 | ↑* CS vs. SA | ||||||
De Paepe (2008) [25] | Type IIa (%) | 18 | 37.2 ± 5.7 | 20.9 ± 2.8 * |
| ||
Gosker (2009) [26] | 24 | No significant difference | |||||
De Paepe (2008) [25] | Type IIb (%) | 18 | 44.7 ± 4.7 | 76.5 ± 3.5 * |
| ||
Gosker (2009) [26] | 24 | No significant difference | |||||
De Paepe (2008) [25] | Type IIx (%) | 18 | 12.4 ± 2.4 | 14.5 ± 3.8 |
| ||
Gosker (2009) [26] | 24 | No significant difference | |||||
EDL | Mouse, C57Bl/6 | Tang (2010) [30] | Type I (%) | 8 | No significant difference |
| |
Rinaldi (2012) [29] | 12 | ||||||
Tang (2010) [30] | 18 | ||||||
Rinaldi (2012) [29] | 24 | ||||||
Wistar-Kyoto rats | Nakatani (2003) [31] | 8 | No significant difference |
| |||
Mouse, C57Bl/6 | Tang (2010) [30] | Type IIa (%) | 8 | 14.3 ± 6.1 | 14.3 ± 6.1 |
| |
Rinaldi (2012) [29] | 12 | No significant difference | |||||
Tang (2010) [30] | 18 | 14.3 ± 6.1 | 14.3 ± 6.1 | ||||
Rinaldi (2012) [29] | 24 | No significant difference | |||||
Wistar-Kyoto rats | Nakatani (2003) [31] | 8 | No significant difference |
| |||
Mouse, C57Bl/6 | Tang (2010) [30] | Type IIb (%) | 8 | 83.6 ± 5.5 | 83.6 ± 5.5 |
| |
18 | 83.6 ± 5.5 | 83.6 ± 5.5 | |||||
Rats, Wistar-Kyoto | Nakatani (2003) [31] | 8 | No significant difference |
| |||
Mouse, C57Bl/6 | Tang (2010) [30] | Type IIb/x (%) | 8 | No significant difference |
| ||
Rinaldi (2012) [29] | 12 | ||||||
Tang (2010) [30] | 18 | ||||||
Rinaldi (2012) [29] | 24 | ||||||
Plantaris | Mouse, C57Bl/6 | Gosker (2009) [26] | Type I (%) | 24 | No significant difference |
| |
Type IIa (%) |
| ||||||
Type IIb/x (%) |
| ||||||
Tibialis | Mouse, C57Bl/6 | Gosker (2009) [26] | Type I (%) | 24 | No significant difference |
| |
Type IIa (%) |
| ||||||
Type IIb/x (%) |
|
Muscles | Species /Strain | Author (Year) | Muscle Fiber Type | CS Exposure Period (Weeks) | Groups | Summary | |
---|---|---|---|---|---|---|---|
SA | CS | ||||||
Diaphragm | Guinea pigs | Barreiro (2010) [9] | Type I (µm2) | 12 | 734 ± 143 | 666 ± 304 |
|
16 | 593 ± 146 | 647 ± 195 | |||||
24 | 697 ± 192 | 757 ± 134 | |||||
Type II (µm2) | 12 | 850 ± 135 | 743 ± 127 |
| |||
16 | 743 ± 127 | 685 ± 148 | |||||
24 | 1013 ± 130 | 908 ± 203 | |||||
Quadriceps | Mouse, Balb/c | Ma (2018) [24] | Total CSA (µm2) | 24 | 48.43 ± 1.17 | 41.05 ± 0.10 * |
|
Rectus femoris | Mouse, C57Bl/6 | Krüger (2015) [23] | Type I (µm2) | 8 | No significant difference |
| |
16 | No significant difference | ||||||
24 | ↓* CS vs. SA | ||||||
Type II (µm2) | 8 | No significant difference |
| ||||
16 | No significant difference | ||||||
24 | ↓* CS vs. SA | ||||||
Soleus | Rats, Wistar-Kyoto | Nakatani (2002) [32] | Total CSA (µm2) | 8 | No significant difference |
| |
Mouse, C57Bl/6 | Krüger (2015) [23] | Type I (µm2) | 8 | No significant difference |
| ||
16 | No significant difference | ||||||
24 | No significant difference | ||||||
32 | ↓* CS vs. SA | ||||||
Type II (µm2) | 8 | No significant difference |
| ||||
16 | No significant difference | ||||||
24 | No significant difference | ||||||
32 | ↓* CS vs. SA | ||||||
Gastrocnemius | Mice, 129/SvJ | Basic (2012) [28] | Total CSA (µm2) | 24 | 2771.16 | 2429.3 * |
|
Guinea pigs | Barreiro (2010) [9] | Type I (µm2) | 12 | 894 ± 256 | 779 ± 198 |
| |
16 | 797 ± 200 | 787 ± 212 | |||||
24 | 1010 ± 399 | 1296 ± 582 | |||||
Mouse, C57Bl/6 | Krüger (2015) [23] | 8 | No significant difference |
| |||
16 | No significant difference | ||||||
De Paepe (2008) [25] | 18 | 550 ± 190 | 510 ± 130 | ||||
Krüger (2015) [23] | 24 | No significant difference | |||||
32 | ↓* CS vs. SA | ||||||
Guinea pigs | Barreiro (2010) [9] | Type II (µm2) | 12 | 1154 ± 325 | 1129 ± 247 |
| |
16 | 1148 ± 228 | 1125 ± 246 | |||||
24 | 1545 ± 523 | 1328 ± 248 | |||||
Mouse, C57Bl/6 | Krüger (2015) [23] | 8 | No significant difference |
| |||
16 | No significant difference | ||||||
24 | No significant difference | ||||||
32 | ↓* CS vs. SA | ||||||
De Paepe (2008) [25] | Type IIa (µm2) | 18 | 510 ± 110 | 600 ± 200 |
| ||
Type IIb (µm2) | 18 | 980 ± 170 | 1300 ± 320 |
| |||
Type IIx (µm2) | 18 | 680 ± 210 | 690 ± 200 |
| |||
EDL | Mouse, C57Bl/6 | Rinaldi (2012) [29] | Total CSA (µm2) | 12 | No significant difference |
| |
24 | No significant difference | ||||||
EDL(Superficial region) | Rats, Wistar-Kyoto | Nakatani (2003) [31] | Type I (µm2) | 8 | No significant difference |
| |
Type II (µm2) | 8 | No significant difference |
| ||||
EDL (Deep region) | Type IIa (µm2) | 8 | ↓* CS vs. SA |
| |||
Type IIb (µm2) | 8 | No significant difference |
|
Author (Year) | Characteristics of Rodents | CS Exposure Period (Weeks) | Groups | Summary | ||
---|---|---|---|---|---|---|
Species | Strain | SA | CS | |||
Ma (2018) [24] | Mouse | Balb/c | 24 | 34.5 ± 0.8 | 26.6 ± 0.4 * |
|
Krüger (2015) [23] | C57Bl/6 | 8 | 20.9 ± 1.2 | 19.5 ± 0.9 |
| |
Tang (2010) [30] | 34.9 ± 3.4 | 30.2 ± 3.2 * | ||||
Krüger (2015) [23] | 16 | 25.7 ± 0.9 | 24.3 ± 1.0 * | |||
Tang (2010) [30] | 34.9 ± 3.4 | 29.3 ± 3.7 * | ||||
De Paepe (2008) [25] | 18 | 35.1 ± 0.4 | 28.9 ± 0.6 * | |||
Krüger (2015) [23] | 24 | 29.1 ± 0.9 | 27.8 ± 1.0 * | |||
Krüger (2015) [23] | 32 | 31.5 ± 1.4 | 30.1 ± 1.6 * | |||
Basic (2012) [28] | 129/SvJ | 24 | 36.9 ± 1.01 | 31.6 ± 1.16 * |
| |
Nakatani (2003) [31] | Rats | Wistar-Kyoto | 8 | L: 359 ± 15 | 348 ± 22 |
|
M: 358 ± 14 | 348 ± 21 | |||||
H: 360 ± 25 | 343 ± 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, A.W.J.; Ngai, S.P.C.; Cheung, K.K.; Lau, B.W.M.; Sánchez-Vidaña, D.-I.; Pang, M.Y.C. Impacts of Cigarette Smoke (CS) on Muscle Derangement in Rodents—A Systematic Review. Toxics 2022, 10, 262. https://doi.org/10.3390/toxics10050262
He AWJ, Ngai SPC, Cheung KK, Lau BWM, Sánchez-Vidaña D-I, Pang MYC. Impacts of Cigarette Smoke (CS) on Muscle Derangement in Rodents—A Systematic Review. Toxics. 2022; 10(5):262. https://doi.org/10.3390/toxics10050262
Chicago/Turabian StyleHe, Aaron W. J., Shirley P. C. Ngai, Kwok Kuen Cheung, Benson W. M. Lau, Dalinda-Isabel Sánchez-Vidaña, and Marco Y. C. Pang. 2022. "Impacts of Cigarette Smoke (CS) on Muscle Derangement in Rodents—A Systematic Review" Toxics 10, no. 5: 262. https://doi.org/10.3390/toxics10050262
APA StyleHe, A. W. J., Ngai, S. P. C., Cheung, K. K., Lau, B. W. M., Sánchez-Vidaña, D. -I., & Pang, M. Y. C. (2022). Impacts of Cigarette Smoke (CS) on Muscle Derangement in Rodents—A Systematic Review. Toxics, 10(5), 262. https://doi.org/10.3390/toxics10050262