Logistical and Economic Feasibility in the Cheese Production Chain: A Study Using Monte Carlo Simulation
Abstract
1. Introduction
- : Cost of equity capital.
- : Cost of third-party capital.
- : Amount of third-party capital.
- : Amount equity capital.
- : Company income tax rate.
- is the Net Present Value.
- represents the cash flow on date zero.
- represents the cash flow on the nth date.
- is the project analysis deadline.
- is the initial investment.
- represents the number of cash flow periods.
- represents the cash flow discount rate.
- is the project analysis deadline.
2. Materials and Methods
2.1. Market in the Region
2.2. Characterization and Study Steps
3. Results
3.1. Deterministic Analysis
3.2. Probabilistic Analysis
4. Discussion
Comparative Analysis and Transportation Considerations for Deteriorating Products
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sociedade Nacional da Agricultura—SNA. SNA: Valor Bruto da Produção Agropecuária Deve Atingir BRL 1.36 Trilhão em 2023. 2023. Available online: https://sna.agr.br/cna-valor-bruto-da-producao-agropecuaria-deve-atingir-r-1-36-trilhao-em-2023/ (accessed on 10 October 2023).
- Ministério da Agricultura e Pecuária—MAPA. Projeções do Agronegócio. 2023. Available online: https://www.gov.br/agricultura/pt-br/assuntos/politica-agricola/todas-publicacoes-de-politica-agricola/projecoes-do-agronegocio/projecoes-do-agronegocio-2022-2023-a-2032-2033.pdf (accessed on 10 October 2023).
- Organização das Nações Unidas Para a Alimentação e a Agricultura—FAO. COP 26: Com Apoio da FAO, Mapa Lança Coletânea Sobre Gases de Efeito Estufa e Adaptação Agropecuária à Mudança do Clima. 2023. Available online: https://www.fao.org/brasil/noticias/detail-events/pt/c/1454747/ (accessed on 10 October 2023).
- Associação Brasileira das Indústrias de Queijo—ABIQ. Notícias. 2023. Available online: https://www.abiq.com.br/ (accessed on 10 October 2023).
- Copeland, T.E.; Weston, J.F.; Shastri, K. Financial Theory and Corporate Policy; Pearson Addison Wesley: Boston, MA, USA, 2005; Volume 4. [Google Scholar]
- Yao, X.; Yuan, X.; Yu, S.; Lei, M. Economic feasibility analysis of carbon capture technology in steelworks based on system dynamics. J. Clean. Prod. 2021, 322, 129046. [Google Scholar] [CrossRef]
- Brealey, R.A.; Myers, S.C.; Allen, F. Principles of Corporate Finance; McGraw-Hill: New York, NY, USA, 2020. [Google Scholar]
- Monteiro, L.S.; Costa, K.A.; Christo, E.D.S.; Freitas, W.K. Economic feasibility analysis of small hydro power projects. Int. J. Environ. Sci. Technol. 2021, 18, 1653–1664. [Google Scholar] [CrossRef]
- Shahid, Z.; Santarelli, M.; Marocco, P.; Ferrero, D.; Zahid, U. Techno-economic feasibility analysis of renewable-fed Power-to-Power (P2P) systems for small French islands. Energy Convers. Manag. 2022, 255, 115368. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Wu, L.; Liu, Y.; Qiu, S.; Xu, P. A novel Monte Carlo simulation on gas flow in fractal shale reservoir. Energy 2021, 236, 121513. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Hadei, M.; Sharafi, K. Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran: Uncertainty and sensitivity analysis. J. Food Compos. Anal. 2021, 96, 103697. [Google Scholar] [CrossRef]
- Lozanovski, B.; Downing, D.; Tran, P.; Shidid, D.; Qian, M.; Choong, P.; Brandt, M.; Leary, M. A Monte Carlo simulation-based approach to realistic modelling of additively manufactured lattice structures. Addit. Manuf. 2020, 32, 101092. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhou, A.; Xu, Y.S. Approach based on TOPSIS and Monte Carlo simulation methods to evaluate lake eutrophication levels. Water Res. 2020, 187, 116437. [Google Scholar] [CrossRef]
- Wealer, B.; Bauer, S.; Hirschhausen, C.V.; Kemfert, C.; Göke, L. Investing into third generation nuclear power plants: Review of recent trends and analysis of future investments using Monte Carlo simulation. Renew. Sustain. Energy Rev. 2021, 143, 110836. [Google Scholar] [CrossRef]
- Jang, D.; Kim, J.; Kim, D.; Han, W.B.; Kang, S. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Convers. Manag. 2022, 258, 115499. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística—IBGE. Projeções da População do Brasil e das Unidades da Federação por Sexo e Idade: 2000–2060; IBGE: Rio de Janeiro, Brazil, 2023. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/9109-projecao-da-populacao.html (accessed on 10 October 2023).
- Pandey, P.; Pandey, M.M. Research Methodology: Tools and Techniques; Bridge Center: Buzau, Romania, 2021. [Google Scholar]
- de Melo, G.A.; Peixoto, M.G.M.; Barbosa, S.B.; Alves, A.J.S.; Souza, A.C.L.; Mendonça, M.C.A.; de Castro Júnior, L.G.; Santos, P.G.D.; Serrano, A.L.M. Generating insights to improve the performance of communities supported agriculture: An analysis focused on female participation, governance structure and volume of food distributed. Environ. Dev. Sustain. 2024, 1–19. [Google Scholar] [CrossRef]
- de Melo, G.A.; Peixoto, M.G.M.; Barbosa, S.B.; Mendonça, M.C.A.; Nogueira, T.H.; de Andrade Guerra, J.B.S.O.; de Castro Júnior, L.G.; Serrano, A.L.M.; Ferreira, L.O.G. Fuel flow logistics: An empirical analysis of performance in a network of gas stations using principal component analysis and data envelopment analysis. J. Adv. Manag. Res. 2024, 21, 605–626. [Google Scholar] [CrossRef]
- de Melo, G.A.; Peixoto, M.G.M.; Mendonça, M.C.A.; Musetti, M.A.; Serrano, A.L.M.; Ferreira, L.O.G. Performance measurement of Brazilian federal university hospitals: An overview of the public health care services through principal component analysis. J. Health Organ. Manag. 2024, 38, 351–371. [Google Scholar] [CrossRef]
- Peixoto, M.G.M.; Mendonça, M.C.A.; Castro, C.C.; de Castro, L.G.J.; de Melo, G.A.; Batalha, M.O. Evaluation of the operational efficiency of southeast intermodal terminals in the grain logistics chain using data envelopment analysis. Manag. Decis. Econ. 2022, 43, 3044–3058. [Google Scholar] [CrossRef]
- Alves de Melo, G.; Peixoto, M.G.M.; Barbosa, S.B.; de Mendonça, M.C. The analysis of macro processes of the cashier service in a supermarket organization: A case study of quality management and simulation. Dyna 2022, 89, 19–26. [Google Scholar] [CrossRef]
- de Melo, G.A.; Paes, T.F.A.; da Costa, J.S.; Silva, C.S.J.E.; de Castro Júnior, L.G.; Gomide, L.R.; Peixoto, M.G.M.; Guarnieri, P.; Barbosa, S.B.; Serrano, A.L.M.; et al. Optimizing forest sector performance based on life cycle cost analysis and real options. Sci. Total Environ. 2025, 988, 179675. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Y.; Guo, J.; Zhang, H.; Liu, B. Cold chain optimisation models: A systematic literature review. Cold Reg. Sci. Technol. 2024, 215, 105689. [Google Scholar] [CrossRef]
- Ferrari, A.; Gutiérrez, S.; Sin, G. Markov Chain Monte Carlo simulation-based optimization for a production scale milk drying process. Comput. Aided Chem. Eng. 2023, 52, 291–296. [Google Scholar]
- Griep-Moyer, E.R.; Trmčić, A.; Qian, C.; Moraru, C.I. Monte Carlo simulation model predicts bactofugation can extend shelf-life of pasteurized fluid milk. J. Dairy Sci. 2022, 105, 9439–9449. [Google Scholar] [CrossRef]
- Kirillova, O.V.; Amirova, E.F.; Kuznetsov, M.G.; Valeeva, G.A.; Zakharova, G.P. Innovative directions of agricultural development aimed at ensuring food security in Russia. BIO Web Conf. 2020, 17, 00068. [Google Scholar] [CrossRef]
- Barros, M.V.; Salvador, R.; Maciel, A.M.; Ferreira, M.B.; de Paula, V.R.; de Francisco, A.C.; Rocha, C.H.B.; Piekarski, C.M. An analysis of Brazilian raw cow milk production systems and environmental product declarations of whole milk. J. Clean. Prod. 2022, 367, 133067. [Google Scholar] [CrossRef]
- Kovács, K.; Szűcs, I. Exploring efficiency reserves in Hungarian milk production. Stud. Agric. Econ. 2020, 122, 37–43. [Google Scholar] [CrossRef]
- Oğuz, C.; Yener, A. The use of energy in milk production: A case study from Konya province of Turkey. Energy 2019, 183, 142–148. [Google Scholar] [CrossRef]
- Pedolin, D.; Six, J.; Nemecek, T. Assessing between and within product group variance of environmental efficiency of Swiss agriculture using life cycle assessment and data envelopment analysis. Agronomy 2021, 11, 1862. [Google Scholar] [CrossRef]
- Siafakas, S.; Tsiplakou, E.; Kotsarinis, M.; Tsiboukas, K.; Zervas, G. Identification of efficient dairy farms in Greece based on home grown feedstuffs using the Data Envelopment Analysis method. Livest. Sci. 2019, 222, 14–20. [Google Scholar] [CrossRef]
- Soteriades, A.D.; Foskolos, A.; Styles, D.; Gibbons, J.M. Maintaining production while reducing local and global environmental emissions in dairy farming. J. Environ. Manag. 2020, 272, 111054. [Google Scholar] [CrossRef]
- Avishan, F.; Yanıkoğlu, İ.; Soysal, M. Adaptive optimization approach for production and distribution planning of perishable food products under demand uncertainty. Ann. Oper. Res. 2025, 1–48. [Google Scholar] [CrossRef]
- Pol, S.M.; Rayte, A.; Patil, B.T.; Joshi, K.N. Analysis and optimization of transportation logistics for supply chain management of perishable goods using Monte Carlo Simulation. E3S Web Conf. 2024, 559, 04004. [Google Scholar] [CrossRef]
- Elsharkawy, W.B. Monte Carlo simulation for quantitative determination of fat content in dairy products. J. Food Meas. Charact. 2021, 15, 976–982. [Google Scholar] [CrossRef]
- Pérez-Lechuga, G.; Martínez-Sánchez, J.F.; Venegas-Martínez, F.; Madrid-Fernández, K.N. A routing model for the distribution of perishable food in a green cold chain. Mathematics 2024, 12, 332. [Google Scholar] [CrossRef]






| Municipalities (Radius = 100 km) |
|---|
| Campo Belo; Candeias; Cristais; Boa Esperança; Perdões; Cana Verde; Santo Antônio do Amparo; Bom sucesso; Formiga; Lavras; Itapecerica; Nepomuceno; Campos Gerais; Santana da Vargem; Tiradentes; Varginha; Carmo da cachoeira; Três corações; Campo do Meio; Luminárias; Elói Mendes; Paraguaçu; Coqueiral; Carrancas; Itutinga; Nazareno; São Joao del Rei; São Tiago; Oliveira; Carmópolis de Minas; Itumirim. |
| Year | Population | Class AB Cheese-Consuming Population in Southern Minas Gerais | Per Capita Cheese Consumption Forecast (kg) | Total Cheese Consumption (kg) | Demand Forecast for the Stipulated Share (kg/Per Capita/Year) | Projected Mozzarella Demand (kg) | Projected Parmesan Demand (kg) |
|---|---|---|---|---|---|---|---|
| 2024 | 1,061,542 | 169,847 | 6.529 | 1,108,963.651 | 55,448 | 22,179 | 33,268 |
| 2025 | 1,076,086 | 172,174 | 6.770 | 1,165,615.877 | 58,280 | 23,312 | 34,968 |
| 2026 | 1,090,828 | 174,532 | 7.011 | 1,223,612.233 | 61,180 | 24,472 | 36,708 |
| 2027 | 1,105,772 | 176,924 | 7.252 | 1,282,978.915 | 64,148 | 25,659 | 38,489 |
| 2028 | 1,120,921 | 179,347 | 7.492 | 1,343,742.584 | 67,187 | 26,874 | 40,312 |
| 2029 | 1,136,278 | 181,804 | 7.733 | 1,405,930.375 | 70,296 | 28,118 | 42,177 |
| 2030 | 1,151,845 | 184,295 | 7.974 | 1,469,569.905 | 73,478 | 29,391 | 44,087 |
| Initial Investments | Total Value |
|---|---|
| Industrial Facilities (land and construction) | BRL 520,000 |
| Equipment | BRL 212,635 |
| Brand | BRL 10,000 |
| Administration (computers, printers, scanners, various materials, tables, chairs, cabinets, etc.) | BRL 30,000 |
| Vehicles | BRL 250,000 |
| Legal Expenses | BRL 5,500 |
| Total | BRL 1,028,135 |
| Financial Indicators | |
|---|---|
| Sum PVs | BRL 1,672,969 |
| NPV | BRL 644,834 |
| IRR | 41.06% |
| Profitability Rate | 1.52 |
| Payback | 3.96 |
| Inputs | Probability Distribution | Parameters |
|---|---|---|
| Per capita cheese consumption (kg/per capita/year) | Pert | (5.87; 6.52; 8.18) |
| Market Share (%) | Triangular | (0.02; 0.05; 0.08) |
| Operating costs (BRL) | Pert | (564,040.84; 742,817.20; 1,047,956.01) |
| Logistics Costs (BRL) | Pert | (23,421.96; 26,024.4; 28,626.84) |
| Parmesan-production cost (BRL/kg) | Pert | (32.33; 35.93; 39.52) |
| Mozzarella-production cost (BRL/kg) | Pert | (25.56; 28.40; 31.24) |
| Administrative costs (BRL) | Pert | (46,620; 51,800; 56,980) |
| Sales commission percentage (%) | Pert | (0.005; 0.01; 0.015) |
| MAR | Pert | (0.225; 0.275; 0.325) |
| IPCA (%) | Pert | (0.02; 0.0519; 0.07) |
| Parmesan markup (%) | Pert | (1; 1.3; 1.5) |
| Mozzarella markup (%) | Pert | (0.25; 0.34; 0.5) |
| Population growth rate (%) | Pert | (0.01; 0.0137; 0.02) |
| Class AB percentage (%) | Pert | (0.1; 0.16; 0.2) |
| Inputs | Target for Positive Profitability = 98% |
|---|---|
| Cheese consumption per capita (kg/per capita/year) | 7.461 |
| Market share (%) | 3.98% |
| Operational costs (BRL) | BRL 664,288 |
| Parmesan cheese markup (%) | 149% |
| Class AB percentage (%) | 16.93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Melo, G.A.; de Castro Júnior, L.G.; Peixoto, M.G.M.; do Prado, J.W.; Serrano, A.L.M.; Nogueira, T.H. Logistical and Economic Feasibility in the Cheese Production Chain: A Study Using Monte Carlo Simulation. Logistics 2025, 9, 169. https://doi.org/10.3390/logistics9040169
de Melo GA, de Castro Júnior LG, Peixoto MGM, do Prado JW, Serrano ALM, Nogueira TH. Logistical and Economic Feasibility in the Cheese Production Chain: A Study Using Monte Carlo Simulation. Logistics. 2025; 9(4):169. https://doi.org/10.3390/logistics9040169
Chicago/Turabian Stylede Melo, Gustavo Alves, Luiz Gonzaga de Castro Júnior, Maria Gabriela Mendonça Peixoto, José Willer do Prado, Andre Luiz Marques Serrano, and Thiago Henrique Nogueira. 2025. "Logistical and Economic Feasibility in the Cheese Production Chain: A Study Using Monte Carlo Simulation" Logistics 9, no. 4: 169. https://doi.org/10.3390/logistics9040169
APA Stylede Melo, G. A., de Castro Júnior, L. G., Peixoto, M. G. M., do Prado, J. W., Serrano, A. L. M., & Nogueira, T. H. (2025). Logistical and Economic Feasibility in the Cheese Production Chain: A Study Using Monte Carlo Simulation. Logistics, 9(4), 169. https://doi.org/10.3390/logistics9040169

