Customer Perception on Last-Mile Delivery Services Using Kansei Engineering and Conjoint Analysis: A Case Study of Indonesian Logistics Providers
Abstract
:1. Introduction
2. Literature Review
2.1. Last-Mile Delivery
2.2. Customer Preference
2.3. Kansei Engineering
- Establishing the goal product and target segment;
- Building a Kansei word hierarchical structure;
- Conducting experiments to explore suitable product features to obtain potential alternatives.
2.4. Research Method
3. Results and Discussions
3.1. Recapitulation of Kansei Word Results
3.2. Summary of Yield Attribute Level
3.3. Attributes and Research Levels
3.4. Stimuli Plan
3.5. Respondent Profile
3.6. Conjoint Analysis Evaluation
3.6.1. Dummy Variable Encoding
3.6.2. Dummy Variable Regression Results
3.6.3. Part-Worth Coefficient of Relative Importance Value
- Calculations for two levels on the courier attribute.
- 2.
- Calculations for three levels of the delivery service attribute
3.7. Validity Result and Discussion of Conjoint Analysis
3.8. Managerial Implications
- The condition of the goods is the first attribute that respondents liked the most, so the researcher suggested that management can convey SOPs to couriers to recognize what products are delivered and the condition of the products delivered, because the goods should be in a good condition before being delivered. At the same time, when the delivery process incurs unwanted issues, the delivery service should carry out the replacement procedure. According to Sum and Teo [53], a professional workforce is very important in logistics services to meet customer needs and satisfaction.
- The technology for tracking should be improved so that customers can know their orders’ position in real-time. To aid this, RFID technology can be optimized quickly and easily [54]. In an organization, employee performance can be supported by the ease and usefulness of using information technology [55].
- It is important for logistics service providers to deliver orders in a short period, especially on products that require immediate acceptance as soon as possible [10]. Logistics service providers should send goods according to their operational time for orders to be delivered on the same day and delivered the next day [6]. Warehousing management and technology systems can also be improved because, in the industrial era 4.0, it is very effective in the order processing [56].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hua, W.; Jing, Z. An empirical study on e-commerce logistics service quality and customer satisfaction. WHICEB Proceeding 2015, 269–275. [Google Scholar]
- Masudin, I.; Ayurarasati, S.D.; Jie, F.; Restuputri, D.P. Investigating the drivers in selecting third party logistics (3PL) provider: A case study from Indonesian manufacturing industry. Int. J. Supply Chain. Manag. 2020, 9, 282–290. [Google Scholar]
- Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Characteristics and typology of last-mile logistics from an innovation perspective in an urban context. In City Distribution and Urban Freight Transport; Edward Elgar Publishing: Cheltenham, UK, 2011. [Google Scholar]
- Pham, H.C.; Nguyen, D.; Doan, C.; Thai, Q.; Nguyen, N. Last Mile Delivery As A Competitive Logistics Service—A Case Study. In Proceedings of the International Conference on Operations and Supply Chain Management, Saigon, Vietnam, 15–18 December 2019; pp. 1–8. [Google Scholar]
- Lai, P.-L.; Jang, H.; Fang, M.; Peng, K. Determinants of customer satisfaction with parcel locker services in last-mile logistics. Asian J. Shipp. Logist. 2022, 38, 25–30. [Google Scholar] [CrossRef]
- Chen, M.C.; Hsu, C.L.; Chang, K.C.; Chou, M.C. Applying Kansei engineering to design logistics services—A case of home delivery service. Int. J. Ind. Ergon. 2015, 48, 46–59. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, S. A conjoint approach to understanding online buyers’ decisions towards online marketplaces. J. Theor. Appl. Electron. Commer. Res. 2020, 15, 69–83. [Google Scholar] [CrossRef]
- Kotri, A. Analyzing Customer Value Using Conjoint Analysis: The Example of A Packaging Company; SSRN: Tartu, Estonia, 2006. [Google Scholar]
- Barnes, C.; Childs, T.; Henson, B.; Lillford, S. Kansei engineering toolkit for the packaging industry. TQM J. 2008, 20, 372–388. [Google Scholar] [CrossRef]
- Chen, M.-C.; Chang, K.-C.; Hsu, C.-L.; Xiao, J.-H. Applying a Kansei engineering-based logistics service design approach to developing international express services. Int. J. Phys. Distrib. Logist. Manag. 2015, 45, 618–646. [Google Scholar] [CrossRef]
- Maas, B. Conjoint analysis of mobility plans in the city of Dresden. Eur. Transp. Res. Rev. 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Silayoi, P.; Speece, M. The importance of packaging attributes: A conjoint analysis approach. Eur. J. Mark. 2007, 41, 1495–1517. [Google Scholar] [CrossRef] [Green Version]
- Dauda, S.Y.; Lee, J. Technology adoption: A conjoint analysis of consumers’ preference on future online banking services. Inf. Syst. 2015, 53, 1–15. [Google Scholar] [CrossRef]
- Wittink, D.R.; Cattin, P. Commercial use of conjoint analysis: An update. J. Mark. 1989, 53, 91–96. [Google Scholar] [CrossRef]
- Astuti, R.D.; Suhardi, B.; Prasetyo, W.A.; Susilo, D.D. Kansei engineering and conjoint analysis integration to design a driver seat for Mobil Listrik Nasional. In Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Surakarta, Indonesia, 4–5 November 2015; p. 3. [Google Scholar]
- Do Bagus, M.R.; Murata, T. Conjoint Analysis of Costumers’ Preferences with Kansei Engineering System for Product Exterior Design. In Proceedings of the 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Kumamoto, Japan, 10–14 July 2016; pp. 1026–1031. [Google Scholar]
- Wang, C.-H. Integrating Kansei engineering with conjoint analysis to fulfil market segmentation and product customisation for digital cameras. Int. J. Prod. Res. 2015, 53, 2427–2438. [Google Scholar] [CrossRef]
- Sudibyo. Perilaku Konsumen dan Kesinambungan Kebutuhan; Gramedia Pustaka Utama: Jakarta, Indonesia, 2002. [Google Scholar]
- Iwan, S.; Kijewska, K.; Lemke, J. Analysis of parcel lockers’ efficiency as the last mile delivery solution—The results of the research in Poland. Transp. Res. Procedia 2016, 12, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fay, S.; Wang, Q. The role of marketing in social media: How online consumer reviews evolve. J. Interact. Mark. 2011, 25, 85–94. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Shams, P.; Hellström, D.; Hjort, K. Service innovation in e-commerce last mile delivery: Mapping the e-customer journey. J. Bus. Res. 2019, 101, 461–468. [Google Scholar] [CrossRef]
- Adanacioglu, H.; Albayram, Z. A conjoint analysis of consumer preferences for traditional cheeses in Turkey: A case study on tulum cheese. Food Sci. Anim. Resour. 2012, 32, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Deswindi, L. Kecepatan tingkat penerimaan dan perilaku konsumen terhadap produk lama yang mengalami perubahan dan produk inovasi baru dalam upaya memasuki dan merebut pasar. Bus. Manag. J. 2017, 3. [Google Scholar] [CrossRef]
- Swastha, B.; Irawan, D.D. Manajemen Pemasaran Modern; Yogykarta Liberty: Yongyakata, Indonesia, 2003. [Google Scholar]
- Simamora, B. Riset Pemasaran: Falsafah, teori, dan Aplikasi; Gramedia Pustaka Utama: Jakarta, Indonesia, 2004. [Google Scholar]
- Hsiao, Y.-H.; Chen, M.-C.; Liao, W.-C. Logistics service design for cross-border E-commerce using Kansei engineering with text-mining-based online content analysis. Telemat. Inform. 2017, 34, 284–302. [Google Scholar] [CrossRef]
- Masudin, I.; Safitri, N.T.; Restuputri, D.P.; Wardana, R.W.; Amallynda, I. The effect of humanitarian logistics service quality to customer loyalty using Kansei engineering: Evidence from Indonesian logistics service providers. Cogent Bus. Manag. 2020, 7, 1826718. [Google Scholar] [CrossRef]
- Hartono, M.; Santoso, A.; Prayogo, D.N. How Kansei Engineering, Kano and QFD can improve logistics services. Int. J. Technol. 2017, 8, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
- Nagamachi, M. Kansei engineering: A new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergon. 1995, 15, 3–11. [Google Scholar] [CrossRef]
- Sugiyono, D. Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif dan R&D; Alfabeta: Bandung, Indonesia, 2013. [Google Scholar]
- Arikunto, S. Pengantar Metodologi Penelitian; PT. Rieneka Cipta: Jakarta, Indonesia, 1997. [Google Scholar]
- Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K. Probability and Statistics for Engineers and Scientists; Macmillan: New York, NY, USA, 1993; Volume 5. [Google Scholar]
- Cahyono, T. Statistika Terapan & Indikator Kesehatan; Deepublish: Yogyakarta, Indonesia, 2018. [Google Scholar]
- Eversheim, W. Innovation Management for Technical Products; Springers: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Fiedler, H.; Kaltenborn, T.; Lanwehr, R.; Melles, T. Conjoint-Analyse; Rainer Hampp Verlag: Munich, Germany, 2017. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Velčovská, Š.; Larsen, F.R. The Impact of Brand on Consumer Preferences of Milk in Online Purchases: Conjoint Analysis Approach. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2021, 69, 345–356. [Google Scholar] [CrossRef]
- Malhotra, N.K. Marketing Research. An Applied Orientation, 4th ed.; Pearson: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Babin, B.J.; Balck, W.C. Multivariate Data Analysis, 7th ed.; Pearson Education: New York, NY, USA, 2014. [Google Scholar]
- Heinzl, H.; Mittlböck, M. Pseudo R-squared measures for Poisson regression models with over-or underdispersion. Comput. Stat. Data Anal. 2003, 44, 253–271. [Google Scholar] [CrossRef]
- Kumaidi, P.; Budi, D. Pengantar Metode Statistika: Teori dan Terapannya dalam Penelitian Bidang Pendidikan dan Psikologi; Eduvision: Yogyakarta, Indonesia, 2013. [Google Scholar]
- Sabri, L.; Hastono, S.P. Statistik Kesehatan; Rajawali Pers: Depok, Indonesia, 2018. [Google Scholar]
- Supranto, J. Analisis Multivariat Arti dan Interpretasi; Rineka Cipta: Jakarta, Indonesia, 2004. [Google Scholar]
- Gigerenzer, G. Mindless statistics. J. Socio-Econ. 2004, 33, 587–606. [Google Scholar] [CrossRef]
- Thompson, C.B. Descriptive data analysis. Air Med. J. 2009, 28, 56–59. [Google Scholar] [CrossRef]
- Hardy, M.A. Regression with Dummy Variables; Sage: Southern Oaks, CA, USA, 1993; Volume 93. [Google Scholar]
- Restuputri, D.P.; Indriani, T.R.; Masudin, I. The effect of logistic service quality on customer satisfaction and loyalty using kansei engineering during the COVID-19 pandemic. Cogent Bus. Manag. 2021, 8, 1906492. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Sharma, T.G. Measuring the customer perceived service quality for life insurance services: An empirical investigation. Int. Bus. Res. 2010, 3, 171. [Google Scholar] [CrossRef] [Green Version]
- Restuputri, D.P.; Masudin, I.; Sari, C.P. Customers perception on logistics service quality using Kansei engineering: Empirical evidence from indonesian logistics providers. Cogent Bus. Manag. 2020, 7, 1751021. [Google Scholar] [CrossRef]
- Masudin, I.; Lau, E.; Safitri, N.T.; Restuputri, D.P.; Handayani, D.I. The impact of the traceability of the information systems on humanitarian logistics performance: Case study of Indonesian relief logistics services. Cogent Bus. Manag. 2021, 8, 1906052. [Google Scholar] [CrossRef]
- Hartono, M.; Chuan, T.K. How the Kano model contributes to Kansei engineering in services. Ergonomics 2011, 54, 987–1004. [Google Scholar] [CrossRef] [Green Version]
- Masudin, I.; Aprilia, G.D.; Nugraha, A.; Restuputri, D.P. Impact of E-procurement adoption on company performance: Evidence from Indonesian manufacturing industry. Logistics 2021, 5, 16. [Google Scholar] [CrossRef]
- Sum, C.C.; Teo, C.B. Strategic posture of logistics service providers in Singapore. Int. J. Phys. Distrib. Logist. Manag. 1999, 29, 588–605. [Google Scholar] [CrossRef]
- Masudin, I.; Ramadhani, A.; Restuputri, D.P.; Amallynda, I. The effect of traceability system and managerial initiative on Indonesian food cold chain performance: A Covid-19 pandemic perspective. Glob. J. Flex. Syst. Manag. 2021, 22, 331–356. [Google Scholar] [CrossRef]
- Pramanda, R.P.; Astuti, E.S.; Azizah, D.F. Pengaruh Kemudahan Dan Kemanfaatan Penggunaan Teknologi Informasi Terhadap Kinerja Karyawan (Studi Pada Karyawan Kantor Pusat Universitas Brawijaya). J. Adm. Bisnis (JAB) 2016, 39, 117–126. [Google Scholar]
- Barreto, L.; Amaral, A.; Pereira, T. Industry 4.0 implications in logistics: An overview. Procedia Manuf. 2017, 13, 1245–1252. [Google Scholar] [CrossRef]
Category | Code | Code |
---|---|---|
Category 1 | 1 | 0 |
Category 2 | 0 | 1 |
Category 3 | 0 | 0 |
Word | Length | Count | Weighted Percentage (%) |
---|---|---|---|
Delivery | 10 | 16 | 5.78 |
Courier | 5 | 14 | 5.05 |
Information | 9 | 13 | 4.69 |
Condition | 7 | 12 | 4.33 |
Located | 6 | 12 | 4.33 |
Reservation | 7 | 11 | 3.97 |
Cost | 6 | 10 | 3.61 |
Cheap | 5 | 9 | 3.25 |
Package | 5 | 9 | 3.25 |
Precise | 6 | 8 | 2.89 |
Merit | 4 | 7 | 2.53 |
Home | 5 | 7 | 2.53 |
Appopiate | 6 | 7 | 2.53 |
Good | 4 | 5 | 1.81 |
Service | 7 | 4 | 1.44 |
Get Serve | 9 | 4 | 1.44 |
Neat | 4 | 4 | 1.44 |
Cod | 3 | 3 | 1.08 |
Accepted | 8 | 3 | 1.08 |
Schedule | 6 | 3 | 1.08 |
Sent | 5 | 3 | 1.08 |
Easy | 5 | 3 | 1.08 |
Broken | 5 | 3 | 1.08 |
X | 7 | 3 | 1.08 |
System | 6 | 3 | 1.08 |
Respectful | 5 | 3 | 1.08 |
Exact | 5 | 3 | 1.08 |
Time | 5 | 3 | 1.08 |
Y | 8 | 2 | 0.72 |
Come | 6 | 2 | 0.72 |
Use | 9 | 2 | 0.72 |
Trusted | 9 | 2 | 0.72 |
Eficiency | 7 | 2 | 0.72 |
Warehouse | 6 | 2 | 0.72 |
Price | 5 | 2 | 0.72 |
Arrival | 10 | 2 | 0.72 |
Broken | 9 | 2 | 0.72 |
Tracking | 5 | 2 | 0.72 |
Serve | 8 | 2 | 0.72 |
Satisfy | 9 | 2 | 0.72 |
Packaging | 9 | 2 | 0.72 |
Perceptive | 7 | 2 | 0.72 |
No | Item | Item Indicators | R-Count | R-Table | Description |
---|---|---|---|---|---|
1 | K1 | How far is the closes warehouse from your house? | 0.605 | 0.374 | Valid |
2 | K2 | How far is the farthest warehouse to your house? | 0.503 | 0.374 | Valid |
3 | K3 | What do you think about a fast delivery service? | 0.444 | 0.374 | Valid |
4 | K4 | What do you think about a slow delivery service? | 0.503 | 0.374 | Valid |
5 | K5 | What is a good courier service according to your opinion? | 0.469 | 0.374 | Valid |
6 | K6 | What is a not good courier service according to your opinion? | 0.546 | 0.374 | Valid |
7 | K7 | In your opinion, what is considered as bad condition from an order? | 0.427 | 0.374 | Valid |
8 | K8 | In your opinion, what is considered a good condition from an order? | 0.527 | 0.374 | Valid |
Attribute | Levels | Levels |
---|---|---|
Logistic provider | 1 | X |
2 | Y | |
3 | Z | |
Delivery | 1 | Fast |
2 | Slow | |
Courier | 1 | Polite |
2 | Impolite | |
Order information | 1 | Accurate |
2 | Inaccurate | |
Condition of goods | 1 | Damaged |
2 | Undamaged | |
Location | 1 | Far |
2 | Near |
No | Logistic Provider | Delivery | Courier | Oerder Information | Item Condition | Location |
---|---|---|---|---|---|---|
1 | Y | Slow | Impolite | Inaccurate | Damaged | Near |
2 | X | Fast | Polite | Accurate | Undamaged | Near |
3 | X | Fast | Impolite | Inaccurate | Damaged | Near |
4 | X | Fast | Impolite | Inaccurate | Undamaged | Far |
5 | Y | Fast | Polite | Inaccurate | Undamaged | Far |
6 | X | Slow | Polite | Inaccurate | Damaged | Near |
7 | Z | Fast | Polite | Inaccurate | Damaged | Near |
8 | Y | Fast | Impolite | Accurate | Undamaged | Near |
9 | Z | Slow | Impolite | Inaccurate | Undamaged | Far |
10 | Z | Fast | Polite | Accurate | Undamaged | Near |
11 | X | Slow | Polite | Inaccurate | Undamaged | Far |
12 | X | Slow | Impolite | Accurate | Damaged | Far |
13 | Z | Fast | Impolite | Accurate | Damaged | Far |
14 | Y | Slow | Polite | Accurate | Damaged | Far |
15 | X | Slow | Impolite | Accurate | Undamaged | Near |
16 | X | Fast | Polite | Accurate | Damaged | Far |
Attribute | Levels | Coefficient Part-Worth |
---|---|---|
Logistic provider | X | 0.003 |
Y | −0.002 | |
Z | −0.002 | |
delivery | Fast | 0.121 |
Slow | −0.121 | |
Courier | Polite | 0.219 |
Impolite | −0.219 | |
Order information | Accurate | 0.165 |
Inacurrate | −0.165 | |
Condition of goods | damaged | −0.298 |
undamaged | 0.298 | |
Location | Far | −0.065 |
Near | 0.065 |
Attribute | Relative Importance Value (%) |
---|---|
Logistics provider | 0.29 |
Delivery | 13.90 |
Courier | 25.16 |
Order information | 18.95 |
Condition of goods | 34.23 |
Location | 7.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restuputri, D.P.; Fridawati, A.; Masudin, I. Customer Perception on Last-Mile Delivery Services Using Kansei Engineering and Conjoint Analysis: A Case Study of Indonesian Logistics Providers. Logistics 2022, 6, 29. https://doi.org/10.3390/logistics6020029
Restuputri DP, Fridawati A, Masudin I. Customer Perception on Last-Mile Delivery Services Using Kansei Engineering and Conjoint Analysis: A Case Study of Indonesian Logistics Providers. Logistics. 2022; 6(2):29. https://doi.org/10.3390/logistics6020029
Chicago/Turabian StyleRestuputri, Dian Palupi, Ayun Fridawati, and Ilyas Masudin. 2022. "Customer Perception on Last-Mile Delivery Services Using Kansei Engineering and Conjoint Analysis: A Case Study of Indonesian Logistics Providers" Logistics 6, no. 2: 29. https://doi.org/10.3390/logistics6020029
APA StyleRestuputri, D. P., Fridawati, A., & Masudin, I. (2022). Customer Perception on Last-Mile Delivery Services Using Kansei Engineering and Conjoint Analysis: A Case Study of Indonesian Logistics Providers. Logistics, 6(2), 29. https://doi.org/10.3390/logistics6020029