Using a Modified SERVQUAL Approach to Assess the Quality of Supply Chain Services in Greek Online Supermarkets
Abstract
:1. Introduction
- To employ and extend an established methodological approach and suggest a framework that can be used to examine the service quality and the logistics performance of online supermarkets from the end-customer point of view;
- To apply this approach to the case of Greek online supermarkets.
2. Supply Chain Management and Quality Management
3. The SERVQUAL Model
4. Online Shopping Trends
5. The Greek Supermarket Sector
6. Materials and Methods
6.1. Research Objective and Method
- Questions 1–4 refer to tangibility;
- Questions 5–9 refer to reliability;
- Questions 10–13 refer to responsiveness;
- Questions 14–17 refer to assurance;
- Questions 18–22 refer to empathy.
6.2. Sample and Collection of Answers
7. Results
7.1. Reliability
7.2. Demographics
7.3. Expectations and Perceptions
7.4. Gap Analysis
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
5: Strongly agree 4: Agree 3: Neither agree nor disagree 2: Disagree 1: Strongly disagree | ||||
No | E-shop features | What do you expect by an excellent e-shop: | What did you receive by a supermarket e-shop: | |
Tangibility | 1 | Modern and easy-to-use website | ||
2 | Tidy distributing vehicles | |||
3 | Neat appearance of drivers and delivery personnel | |||
4 | Proper packaging for product specification | |||
Reliability | 5 | On-time delivery of the order | ||
6 | Employees with sincere interest to solve customers’ problems | |||
7 | Delivery of all products at once | |||
8 | Reasonable compensation for damaged package | |||
9 | Accurate records of the delivery | |||
Responsiveness | 10 | Information provision to the customers about the exact status of the order | ||
11 | Possibility to change the delivery time after order | |||
12 | Employees’ willingness to help customers | |||
13 | Employees’ availability to respond to customers’ requests | |||
Assurance | 14 | Employees’ behavior which promotes customers’ confidence | ||
15 | Website with sense of safety to perform transactions | |||
16 | Employees consistently courteous with customers | |||
17 | Knowledgeable employees to answer customers’ questions | |||
Empathy | 18 | Individual attention/personalized promotions to customers | ||
19 | Convenient delivery time frames to all customers | |||
20 | Convenient payment methods to all customers | |||
21 | Customers’ best interests at heart | |||
22 | Undestand specific needs of the customers |
References
- LeMay, S.; Helms, M.M.; Kimball, B.; McMahon, D. Supply chain management: The elusive concept and definition. IJLM 2017, 28, 1425–1453. [Google Scholar] [CrossRef]
- Zijm, H.; Klumpp, M.; Heragu, S.; Regattieri, A. Operations, Logistics and Supply Chain Management: Definitions and Objectives. In Operations, Logistics and Supply Chain Management; Zijm, H., Klumpp, M., Regattieri, A., Heragu, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 27–42. ISBN 978-3-319-92446-5. [Google Scholar]
- Anand, N.; Grover, N. Measuring retail supply chain performance: Theoretical model using key performance indicators (KPIs). Benchmarking Int. J. 2015, 22, 135–166. [Google Scholar] [CrossRef]
- Fahimnia, B.; Parkinson, E.; Rachaniotis, N.P.; Mohamed, Z.; Goh, a. Supply chain planning for a multinational enterprise: A performance analysis case study. Int. J. Logist. Res. Appl. 2013, 16, 349–366. [Google Scholar] [CrossRef]
- Pandiyan Kaliani Sundram, V.; Razak Ibrahim, A.; Chandran Govindaraju, V.G.R. Supply chain management practices in the electronics industry in Malaysia: Consequences for supply chain performance. Benchmarking 2011, 18, 834–855. [Google Scholar] [CrossRef]
- Salehzadeh, R.; Tabaeeian, R.A.; Esteki, F. Exploring the consequences of judgmental and quantitative forecasting on firms’ competitive performance in supply chains. BIJ 2020, 27, 1717–1737. [Google Scholar] [CrossRef]
- Aramyan, L.H.; Oude Lansink, A.G.J.M.; van der Vorst, J.G.A.J.; van Kooten, O. Performance measurement in agri-food supply chains: A case study. Supply Chain. Manag. 2007, 12, 304–315. [Google Scholar] [CrossRef]
- Brandenburg, M. Supply chain efficiency, value creation and the economic crisis—An empirical assessment of the European automotive industry 2002–2010. Int. J. Prod. Econ. 2016, 171, 321–335. [Google Scholar] [CrossRef]
- Ellinger, A.; Shin, H.; Magnus Northington, W.; Adams, F.G.; Hofman, D.; O’Marah, K. The influence of supply chain management competency on customer satisfaction and shareholder value. Supply Chain Manag. 2012, 17, 249–262. [Google Scholar] [CrossRef]
- Lu, D.; Asian, S.; Ertek, G.; Sevinc, M. Mind the perception gap: An integrative performance management framework for service supply chains. IJPDLM 2019, 49, 33–51. [Google Scholar] [CrossRef]
- Nikfarjam, H.; Rostamy-Malkhalifeh, M.; Mamizadeh-Chatghayeh, S. Measuring supply chain efficiency based on a hybrid approach. Transp. Res. Part D Transp. Environ. 2015, 39, 141–150. [Google Scholar] [CrossRef]
- Nakandala, D.; Lau, H.C.W. Innovative adoption of hybrid supply chain strategies in urban local fresh food supply chain. SCM 2019, 24, 241–255. [Google Scholar] [CrossRef]
- Hofmann, E.; Osterwalder, F. Third-Party Logistics Providers in the Digital Age: Towards a New Competitive Arena? Logistics 2017, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Moagăr-Poladian, S.; Dumitrescu, G.; Tănase, I. Retail e-Commerce (E-tail)—Evolution, characteristics and perspectives in China, the USA and Europe. Glob. Econ. Obs. 2017, 5, 167–178. [Google Scholar]
- Bosona, T. Urban Freight Last Mile Logistics—Challenges and Opportunities to Improve Sustainability: A Literature Review. Sustainability 2020, 12, 8769. [Google Scholar] [CrossRef]
- Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Characteristics and Typology of Last-mile Logistics from an Innovation Perspective in an Urban Context. In City Distribution and Urban Freight Transport; Edward Elgar Publishing: Cheltenham, UK, 2011; p. 14398. ISBN 978-0-85793-275-4. [Google Scholar]
- Muñoz-Villamizar, A.; Solano-Charris, E.L.; Reyes-Rubiano, L.; Faulin, J. Measuring Disruptions in Last-Mile Delivery Operations. Logistics 2021, 5, 17. [Google Scholar] [CrossRef]
- Jardas, M.; Perić Hadžić, A.; Tijan, E. Defining and Measuring the Relevance of Criteria for the Evaluation of the Inflow of Goods in City Centers. Logistics 2021, 5, 44. [Google Scholar] [CrossRef]
- Morganti, E.; Dablanc, L.; Fortin, F. Final deliveries for online shopping: The deployment of pickup point networks in urban and suburban areas. Res. Transp. Bus. Manag. 2014, 11, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Michałowska, M.; Kotylak, S.; Danielak, W. Forming relationships on the e-commerce market as a basis to build loyalty and create value for the customer. Empirical findings. Management 2015, 19, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Jap, S.D. The Strategic Role of the Salesforce in Developing Customer Satisfaction Across the Relationship Lifecycle. J. Pers. Sell. Sales Manag. 2001, 21, 95–108. [Google Scholar] [CrossRef]
- Sivadas, E.; Baker-Prewitt, J.L. An examination of the relationship between service quality, customer satisfaction, and store loyalty. Int. J. Retail Distrib. Manag. 2000, 28, 73–82. [Google Scholar] [CrossRef]
- Tao, F. Customer Relationship Management based on Increasing Customer Satisfaction. Int. J. Bus. Soc. Sci. 2014, 5, 256–263. [Google Scholar]
- Hill, N.; Brierley, J.; MacDougall, R. How to Measure Customer Satisfaction; Gower Publishing, Ltd.: Hampshire, UK, 2003; ISBN 978-0-566-08595-6. [Google Scholar]
- Jeng, S.P. Enhancing the creativity of frontline employees: The effects of job complexity and customer orientation. IJLM 2018, 29, 387–408. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, H. The impact of customer orientation on new product development performance: The role of top management support. IJPPM 2018, 67, 590–607. [Google Scholar] [CrossRef]
- Ferreira, C.; Cardoso, C.; Travassos, M.; Paiva, M.; Pestana, M.; Lopes, J.M.; Oliveira, M. Disorders, Vulnerabilities and Resilience in the Supply Chain in Pandemic Times. Logistics 2021, 5, 48. [Google Scholar] [CrossRef]
- Folinas, D.; Tsolakis, N.; Aidonis, D. Logistics Services Sector and Economic Recession in Greece: Challenges and Opportunities. Logistics 2018, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.C.; Telles, R.; Sampaio, P.; Queiroz, M.M.; Fernandes, A.C. Performance measurement for supply chain management and quality management integration: A systematic literature review. Benchmarking 2020, 27, 2130–2147. [Google Scholar] [CrossRef]
- Mondal, S.; Samaddar, K. Reinforcing the significance of human factor in achieving quality performance in data-driven supply chain management. TQM J. 2021. [Google Scholar] [CrossRef]
- Huo, B.; Ye, Y.; Zhao, X.; Zhu, K. Supply Chain Quality Integration: A Taxonomy Perspective. Int. J. Prod. Econ. 2019, 207, 236–246. [Google Scholar] [CrossRef]
- Ford, M.W.; Greer, B.M. Institutional Uncertainty and Supply Chain Quality Management: A Conceptual Framework. Qual. Manag. J. 2020, 27, 134–146. [Google Scholar] [CrossRef]
- Foster, S.T. Towards an Understanding of Supply Chain Quality Management. J. Oper. Manag. 2008, 26, 461–467. [Google Scholar] [CrossRef]
- Cogollo-Florez, J.M.; Correa-Espinal, A.A. Analytical Modeling of Supply Chain Quality Management Coordination and Integration: A Literature Review. Qual. Manag. J. 2019, 26, 72–83. [Google Scholar] [CrossRef]
- Talib, F.; Rahman, Z.; Qureshi, M.N. A Study of Total Quality Management and Supply Chain Management Practices. Int. J. Product. Perform. Manag. 2011, 60, 268–288. [Google Scholar] [CrossRef]
- Bastas, A.; Liyanage, K. ISO 9001 and Supply Chain Integration Principles Based Sustainable Development: A Delphi Study. Sustain. Switz. 2018, 10, 4569. [Google Scholar] [CrossRef] [Green Version]
- Bastas, A.; Liyanage, K. Integrated Quality and Supply Chain Management Business Diagnostics for Organizational Sustainability Improvement. Sustain. Prod. Consum. 2019, 17, 11–30. [Google Scholar] [CrossRef]
- Peng, X.; Prybutok, V.; Xie, H. Integration of Supply Chain Management and Quality Management within a Quality Focused Organizational Framework. Int. J. Prod. Res. 2020, 58, 448–466. [Google Scholar] [CrossRef]
- Zimon, D.; Madzik, P.; Sroufe, R. Management Systems and Improving Supply Chain Processes: Perspectives of Focal Companies and Logistics Service Providers. Int. J. Retail Distrib. Manag. 2020, 48, 939–961. [Google Scholar] [CrossRef]
- Agrawal, R.; Wankhede, V.A.; Kumar, A.; Luthra, S. A Systematic and Network-Based Analysis of Data-Driven Quality Management in Supply Chains and Proposed Future Research Directions. TQM J. 2021. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Vilhena, E.; Oliveira, R.; Sampaio, P.; Carvalho, M.S. Supply Chain Quality Management Impact on Organization Performance: Results from an International Survey. Int. J. Qual. Reliab. Manag. 2021. [Google Scholar] [CrossRef]
- Karamouz, S.S.; Ahmadi Kahnali, R.; Ghafournia, M. Supply Chain Quality Management Performance Measurement: Systematic Review. Int. J. Qual. Reliab. Manag. 2021, 38, 484–504. [Google Scholar] [CrossRef]
- Zaid, A.; Sleimi, M.; Saleh, M.W.A.; Othman, M. The Mediating Roles of Knowledge Transfer and Supply Chain Quality Management Capabilities on Organisational Performance. VINE J. Inf. Knowl. Manag. Syst. 2021. [Google Scholar] [CrossRef]
- Chountalas, P.T.; Magoutas, A.I.; Zografaki, E. The Heterogeneous Implementation of ISO 9001 in Service-Oriented Organizations. TQM J. 2020, 32, 56–77. [Google Scholar] [CrossRef]
- Sachdev, S.B.; Verma, H. Relative Importance of Service Quality Dimensions: A Multisectoral Study. J. Serv. Res. 2004, 4, 93–116. [Google Scholar]
- Grönroos, C. A Service Quality Model and Its Marketing Implications. Eur. J. Mark. 1984, 18, 36–44. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.; Berry, L. SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A Conceptual Model of Service Quality and Its Implications for Future Research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Amiri Aghdaie, S.F.; Faghani, F. Mobile Banking Service Quality and Customer Satisfaction (Application of SERVQUAL Model). Int. J. Manag. Bus. Res. 2012, 2, 351–361. [Google Scholar]
- Han, S.-L.; Baek, S. Antecedents and Consequences of Service Quality in Online Banking: An Application of the Servqual Instrument. ACR N. Am. Adv. 2004, NA-31, 208–214. [Google Scholar]
- Raza, S.A.; Umer, A.; Qureshi, M.A.; Dahri, A.S. Internet Banking Service Quality, e-Customer Satisfaction and Loyalty: The Modified e-SERVQUAL Model. TQM J. 2020, 32, 1443–1466. [Google Scholar] [CrossRef]
- Alnsour, M.S.; Abu Tayeh, B.; Awwad Alzyadat, M. Using SERVQUAL to Assess the Quality of Service Provided by Jordanian Telecommunications Sector. Int. J. Commer. Manag. 2014, 24, 209–218. [Google Scholar] [CrossRef]
- Van der Wal, R.W.E.; Pampallis, A.; Bond, C. Service Quality in a Cellular Telecommunications Company: A South African Experience. Manag. Serv. Qual. Int. J. 2002, 12, 323–335. [Google Scholar] [CrossRef]
- Jabnoun, N.; Juma, A.L.; Rasasi, A. Transformational Leadership and Service Quality in UAE Hospitals. Manag. Serv. Qual. Int. J. 2005, 15, 70–81. [Google Scholar] [CrossRef]
- Kilbourne, W.E.; Duffy, J.A.; Duffy, M.; Giarchi, G. The Applicability of SERVQUAL in Cross-national Measurements of Health-care Quality. J. Serv. Mark. 2004, 18, 524–533. [Google Scholar] [CrossRef]
- Lam, S.S.K. SERVQUAL: A Tool for Measuring Patients’ Opinions of Hospital Service Quality in Hong Kong. Total Qual. Manag. 1997, 8, 145–152. [Google Scholar] [CrossRef]
- Chaturvedi, R.K. Mapping Service Quality in Hospitality Industry: A Case through SERVQUAL. Asian J. Manag. 2017, 8, 413. [Google Scholar] [CrossRef]
- Lee, Y.L.; Hing, N. Measuring Quality in Restaurant Operations: An Application of the SERVQUAL Instrument. Int. J. Hosp. Manag. 1995, 14, 293–310. [Google Scholar] [CrossRef]
- Marković, S. Students’ Expectations and Perceptions in Croatian Tourism and Hospitality Higher Education: SERVQUAL versus UNIQUAL. Nbae Gospod. 2006, Feb2006, 78–96. [Google Scholar]
- Abili, K.; Narenji Thani, F.; Afarinandehbin, M. Measuring University Service Quality by Means of SERVQUAL Method. Asian J. Qual. 2012, 13, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Yousapronpaiboon, K. SERVQUAL: Measuring Higher Education Service Quality in Thailand. Procedia Soc. Behav. Sci. 2014, 116, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Kahnali, R.A.; Esmaeili, A. An Integration of SERVQUAL Dimensions and Logistics Service Quality Indicators (A Case Study). Int. J. Serv. Oper. Manag. 2015, 21, 289. [Google Scholar] [CrossRef]
- Kolat, D.; Ajlan Kökçü, H.; Kiranli, M.; Özbiltekin, M.; Öztürkoğlu, Y. Measuring Service Quality in the Logistic Sector by Using Servqual and Best Worst Method. In Proceedings of the International Symposium for Production Research 2019; Durakbasa, N.M., Gençyılmaz, M.G., Eds.; Lecture Notes in Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2020; pp. 720–731. ISBN 978-3-030-31342-5. [Google Scholar]
- Stević, Ž.; Tanackov, I.; Puška, A.; Jovanov, G.; Vasiljević, J.; Lojaničić, D. Development of Modified SERVQUAL–MCDM Model for Quality Determination in Reverse Logistics. Sustainability 2021, 13, 5734. [Google Scholar] [CrossRef]
- Gajewska, T.; Zimon, D.; Kaczor, G.; Madzík, P. The Impact of the Level of Customer Satisfaction on the Quality of E-Commerce Services. Int. J. Product. Perform. Manag. 2020, 69, 666–684. [Google Scholar] [CrossRef]
- Farag, S.; Schwanen, T.; Dijst, M.; Faber, J. Shopping Online and/or in-Store? A Structural Equation Model of the Relationships between e-Shopping and in-Store Shopping. Transp. Res. Part Policy Pract. 2007, 41, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Keisidou, E.; Sarigiannidis, L.; Maditinos, D. Consumer Characteristics and Their Effect on Accepting Online Shopping, in the Context of Different Product Types. Int. J. Bus. Sci. Appl. Manag. 2011, 6, 31–51. [Google Scholar]
- Hellenic Statistical Authority Survey on the Use of Information and Communication Technologies in Households and by Individuals; Athens, Greece. 2020. Available online: https://www.statistics.gr/el/infographic-information-technologies-2020 (accessed on 1 August 2021).
- IELKA Online Supermarket: High Growth Rates despite Low Sales Levels. Available online: http://www.ielka.gr/?p=2339 (accessed on 1 August 2021).
- IELKA 1 in 4 Internet Users Orders Food Remotely. Available online: http://www.ielka.gr/?p=2819 (accessed on 1 August 2021).
- Kaoud, E.; Abdel-Aal, M.A.M.; Sakaguchi, T.; Uchiyama, N. Design and Optimization of the Dual-Channel Closed Loop Supply Chain with e-Commerce. Sustainability 2020, 12, 10117. [Google Scholar] [CrossRef]
- Li, C.-F.; Guo, X.-Q.; Du, D.-L. Pricing Decisions in Dual-Channel Closed-Loop Supply Chain Under Retailer’s Risk Aversion and Fairness Concerns. J. Oper. Res. Soc. China 2020. [Google Scholar] [CrossRef]
- Blumberg, B.; Cooper, D.R.; Schindler, P.S. Business Research Methods; McGraw-Hill Education: New York, NY, USA, 2014; ISBN 978-0-07-715748-7. [Google Scholar]
- Cronbach, L.J. Coefficient Alpha and the Internal Structure of Tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Nunnaly, J.C. Psychometric Theory; McGraw-Hill: New Yoirk, NY, USA, 1978; ISBN 978-0-07-047465-9. [Google Scholar]
Q1 | Q2 | Q3 | Q4 | |||||
---|---|---|---|---|---|---|---|---|
Exp | Per | Exp | Per | Exp | Per | Exp | Per | |
Mean | 4.415 | 3.769 | 4.388 | 3.721 | 4.088 | 3.728 | 4.503 | 3.946 |
Standard error | 0.05 | 0.058 | 0.052 | 0.055 | 0.055 | 0.061 | 0.052 | 0.063 |
Median | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 4 |
Mode | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 4 |
Standard deviation | 0.606 | 0.703 | 0.635 | 0.67 | 0.672 | 0.736 | 0.634 | 0.766 |
Sample variance | 0.368 | 0.494 | 0.403 | 0.449 | 0.451 | 0.542 | 0.402 | 0.586 |
Kurtosis | 0.54 | 1.657 | 0.314 | −0.59 | 0.227 | −0.36 | 1.909 | 0.053 |
Skewness | −0.7 | −0.84 | −0.71 | 0.255 | −0.38 | −0.04 | −1.24 | −0.46 |
Range | 3 | 4 | 3 | 3 | 3 | 3 | 3 | 3 |
Minimum | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
Maximum | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Sum | 649 | 554 | 645 | 547 | 601 | 548 | 662 | 580 |
Q5 | Q6 | Q7 | Q8 | Q9 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Exp | Per | Exp | Per | Exp | Per | Exp | Per | Exp | Per | |
Mean | 4.531 | 3.905 | 4.347 | 3.701 | 4.361 | 4.102 | 4.367 | 3.639 | 4.293 | 3.891 |
Standard error | 0.051 | 0.068 | 0.051 | 0.071 | 0.059 | 0.067 | 0.054 | 0.064 | 0.056 | 0.069 |
Median | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Mode | 5 | 4 | 4 | 4 | 5 | 4 | 4 | 4 | 4 | 4 |
Standard deviation | 0.623 | 0.822 | 0.615 | 0.855 | 0.721 | 0.817 | 0.653 | 0.776 | 0.685 | 0.837 |
Sample variance | 0.388 | 0.676 | 0.379 | 0.732 | 0.52 | 0.668 | 0.426 | 0.602 | 0.469 | 0.7 |
Kurtosis | 2.278 | 1.001 | 0.363 | 0.827 | 0.824 | 1.221 | 1.798 | 0.168 | 1.035 | −0.04 |
Skewness | −1.33 | −0.87 | −0.56 | −0.64 | −1 | −0.95 | −0.99 | −0.16 | −0.84 | −0.57 |
Range | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 3 |
Minimum | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 |
Maximum | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Sum | 666 | 574 | 639 | 544 | 641 | 603 | 642 | 535 | 631 | 572 |
Count | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 |
Q10 | Q11 | Q12 | Q13 | |||||
---|---|---|---|---|---|---|---|---|
Exp | Per | Exp | Per | Exp | Per | Exp | Per | |
Mean | 4.313 | 3.646 | 4.007 | 3.231 | 4.367 | 3.789 | 4.231 | 3.694 |
Standard error | 0.053 | 0.079 | 0.07 | 0.095 | 0.051 | 0.076 | 0.057 | 0.079 |
Median | 4 | 4 | 4 | 3 | 4 | 4 | 4 | 4 |
Mode | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Standard deviation | 0.639 | 0.964 | 0.848 | 1.147 | 0.62 | 0.916 | 0.693 | 0.962 |
Sample variance | 0.408 | 0.929 | 0.719 | 1.316 | 0.385 | 0.839 | 0.48 | 0.926 |
Kurtosis | 0.156 | 0.225 | 1.73 | −0.55 | 1.364 | 0.914 | 1.283 | 0.781 |
Skewness | −0.54 | −0.73 | −0.97 | −0.49 | −0.79 | −0.81 | −0.84 | −0.8 |
Range | 3 | 4 | 4 | 4 | 3 | 4 | 3 | 4 |
Minimum | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 1 |
Maximum | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Sum | 634 | 536 | 589 | 475 | 642 | 557 | 622 | 543 |
Count | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 |
Q14 | Q15 | Q16 | Q17 | |||||
---|---|---|---|---|---|---|---|---|
Exp | Per | Exp | Per | Exp | Per | Exp | Per | |
Mean | 4.299 | 3.837 | 4.565 | 4.095 | 4.347 | 3.837 | 4.19 | 3.735 |
Standard error | 0.057 | 0.066 | 0.051 | 0.066 | 0.054 | 0.071 | 0.057 | 0.07 |
Median | 4 | 4 | 5 | 4 | 4 | 4 | 4 | 4 |
Mode | 4 | 4 | 5 | 4 | 4 | 4 | 4 | 4 |
Standard deviation | 0.687 | 0.803 | 0.62 | 0.805 | 0.658 | 0.86 | 0.686 | 0.855 |
Sample variance | 0.471 | 0.644 | 0.384 | 0.648 | 0.434 | 0.74 | 0.47 | 0.731 |
Kurtosis | −0.2 | 0.418 | 1.441 | 0.912 | 0.847 | 0.414 | 0.742 | 0.201 |
Skewness | −0.6 | −0.5 | −1.3 | −0.81 | −0.8 | −0.53 | −0.65 | −0.33 |
Range | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 |
Minimum | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
Maximum | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Sum | 632 | 564 | 671 | 602 | 639 | 564 | 616 | 549 |
Count | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 |
Q18 | Q19 | Q20 | Q21 | Q22 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Exp | Per | Exp | Per | Exp | Per | Exp | Per | Exp | Per | |
Mean | 3.912 | 3.272 | 4.204 | 3.571 | 4.361 | 4.088 | 4.129 | 3.517 | 4.122 | 3.517 |
Standard error | 0.063 | 0.088 | 0.058 | 0.079 | 0.056 | 0.068 | 0.066 | 0.07 | 0.062 | 0.079 |
Median | 4 | 3 | 4 | 4 | 4 | 4 | 4 | 3 | 4 | 4 |
Mode | 4 | 3 | 4 | 4 | 5 | 4 | 4 | 3 | 4 | 4 |
Standard deviation | 0.758 | 1.063 | 0.702 | 0.958 | 0.682 | 0.819 | 0.796 | 0.847 | 0.758 | 0.953 |
Sample variance | 0.574 | 1.131 | 0.492 | 0.918 | 0.465 | 0.67 | 0.634 | 0.717 | 0.574 | 0.909 |
Kurtosis | −0.6 | −0.32 | 0.06 | −0 | 0.643 | 1.966 | 1.458 | −0.24 | 1.56 | 0.156 |
Skewness | −0.14 | −0.29 | −0.55 | −0.42 | −0.86 | −1.08 | −0.98 | −0.05 | −0.88 | −0.43 |
Range | 3 | 4 | 3 | 4 | 3 | 4 | 4 | 4 | 4 | 4 |
Minimum | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
Maximum | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Sum | 575 | 481 | 618 | 525 | 641 | 601 | 607 | 517 | 606 | 517 |
Count | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 |
Mean Expectation | Mean Perception | Mean Gap | ||
---|---|---|---|---|
Tangibility | Q1 | 4.415 | 3.769 | −0.646 |
Q2 | 4.388 | 3.721 | −0.667 | |
Q3 | 4.088 | 3.728 | −0.360 | |
Q4 | 4.503 | 3.946 | −0.557 | |
Reliability | Q5 | 4.531 | 3.905 | −0.626 |
Q6 | 4.347 | 3.701 | −0.646 | |
Q7 | 4.361 | 4.102 | −0.259 | |
Q8 | 4.367 | 3.639 | −0.728 | |
Q9 | 4.293 | 3.891 | −0.402 | |
Responsiveness | Q10 | 4.313 | 3.646 | −0.667 |
Q11 | 4.007 | 3.231 | −0.776 | |
Q12 | 4.367 | 3.789 | −0.578 | |
Q13 | 4.231 | 3.694 | −0.537 | |
Assurance | Q14 | 4.299 | 3.837 | −0.462 |
Q15 | 4.565 | 4.095 | −0.470 | |
Q16 | 4.347 | 3.837 | −0.510 | |
Q17 | 4.190 | 3.735 | −0.455 | |
Empathy | Q18 | 3.912 | 3.272 | −0.640 |
Q19 | 4.204 | 3.571 | −0.633 | |
Q20 | 4.361 | 4.088 | −0.273 | |
Q21 | 4.129 | 3.517 | −0.612 | |
Q22 | 4.122 | 3.517 | −0.605 |
Mean Expectation | Mean Perception | Mean Gap | |
---|---|---|---|
Tangibility | 4.349 | 3.791 | −0.558 |
Reliability | 4.380 | 3.848 | −0.532 |
Responsiveness | 4.230 | 3.590 | −0.640 |
Assurance | 4.350 | 3.876 | −0.474 |
Empathy | 4.146 | 3.593 | −0.553 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitropoulou, A.D.; Tsoulfas, G.T. Using a Modified SERVQUAL Approach to Assess the Quality of Supply Chain Services in Greek Online Supermarkets. Logistics 2021, 5, 69. https://doi.org/10.3390/logistics5040069
Mitropoulou AD, Tsoulfas GT. Using a Modified SERVQUAL Approach to Assess the Quality of Supply Chain Services in Greek Online Supermarkets. Logistics. 2021; 5(4):69. https://doi.org/10.3390/logistics5040069
Chicago/Turabian StyleMitropoulou, Anastasia D., and Giannis T. Tsoulfas. 2021. "Using a Modified SERVQUAL Approach to Assess the Quality of Supply Chain Services in Greek Online Supermarkets" Logistics 5, no. 4: 69. https://doi.org/10.3390/logistics5040069
APA StyleMitropoulou, A. D., & Tsoulfas, G. T. (2021). Using a Modified SERVQUAL Approach to Assess the Quality of Supply Chain Services in Greek Online Supermarkets. Logistics, 5(4), 69. https://doi.org/10.3390/logistics5040069