Measuring Disruptions in Last-Mile Delivery Operations
Abstract
:1. Introduction
2. Literature Review
- How can we measure the impact of disruptions in transportation operations?
- How can we manage disruptions to improve the resilience and capabilities of transportation systems?
3. Proposed Approach
4. Computational Experiments and Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pronello, C.; Camusso, C.; Valentina, R. Last mile freight distribution and transport operators’ needs: Which targets and challenges? Transp. Res. Procedia 2017, 25, 888–899. [Google Scholar] [CrossRef] [Green Version]
- Antún, J.P.; Reis, V.; Macário, R. Strategies to Improve Urban Freight Logistics in Historical Centers: The Cases of Lisbon and Mexico City. In City Logistics 3; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 349–366. [Google Scholar]
- Aljohani, K.; Thompson, R.G. Impacts of logistics sprawl on the urban environment and logistics: Taxonomy and review of literature. J. Transp. Geogr. 2016, 57, 255–263. [Google Scholar] [CrossRef]
- Marcucci, E.; Gatta, V.; Scaccia, L. Urban freight, parking and pricing policies: An evaluation from a transport providers’ perspective. Transp. Res. Part A Policy Pract. 2015, 74, 239–249. [Google Scholar] [CrossRef]
- Teo, J.S.E.; Taniguchi, E.; Qureshi, A.G. Evaluating City Logistics Measure in E-Commerce with Multiagent Systems. Procedia Soc. Behav. Sci. 2012, 39, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Lau, B.P.L.; Marakkalage, S.H.; Zhou, Y.; Hassan, N.U.; Yuen, C.; Zhang, M.; Tan, U.-X. A survey of data fusion in smart city applications. Inf. Fusion 2019, 52, 357–374. [Google Scholar] [CrossRef]
- Timm, A.; Kluge, B.; Wessolek, G. Hydrological balance of paved surfaces in moist mid-latitude climate – A review. Landsc. Urban Plan. 2018, 175, 80–91. [Google Scholar] [CrossRef]
- Xia, N.; Cheng, L.; Chen, S.; Wei, X.; Zong, W.; Li, M. Accessibility based on Gravity-Radiation model and Google Maps API: A case study in Australia. J. Transp. Geogr. 2018, 72, 178–190. [Google Scholar] [CrossRef]
- Lim, S.F.W.T.; Jin, X.; Srai, J.S. Consumer-driven e-commerce. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 308–332. [Google Scholar] [CrossRef] [Green Version]
- Bosona, T. Urban Freight Last Mile Logistics—Challenges and Opportunities to Improve Sustainability: A Literature Review. Sustainability 2020, 12, 8769. [Google Scholar] [CrossRef]
- Hu, W.; Dong, J.; Hwang, B.; Ren, R.; Chen, Z. A Scientometrics Review on City Logistics Literature: Research Trends, Advanced Theory and Practice. Sustainability 2019, 11, 2724. [Google Scholar] [CrossRef] [Green Version]
- Mareï, N.; Savy, M. Global South countries: The dark side of city logistics. Dualisation vs Bipolarisation. Transp. Policy 2021, 100, 150–160. [Google Scholar] [CrossRef]
- Holguín-Veras, J.; Kalahasthi, L.; Campbell, S.; González-Calderón, C.A.; Wang, X. Freight mode choice: Results from a nationwide qualitative and quantitative research effort. Transp. Res. Part A Policy Pract. 2021, 143, 78–120. [Google Scholar] [CrossRef]
- Zenezini, G.; Marco, A. De City logistics policy evaluation with system dynamics. Transp. Res. Procedia 2020, 46, 253–260. [Google Scholar] [CrossRef]
- Juhász, J.; Bányai, T. Last mile logistics: An integrated view. IOP Conf. Ser. Mater. Sci. Eng. 2018, 448, 012026. [Google Scholar] [CrossRef]
- Bell, M.G.H. City logistics and the urban environment. In Urban Form and Accessibility; Elsevier: Amsterdam, The Netherlands, 2021; pp. 359–378. [Google Scholar]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of Artificial Intelligence and Machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Meire, S.; Derudder, B. A bimodal accessibility analysis of Australia through application programming interfaces. Transp. A Transp. Sci. 2020, 16, 695–715. [Google Scholar] [CrossRef]
- Richardson, D.B. Real-Time Space–Time Integration in GIScience and Geography. Ann. Assoc. Am. Geogr. 2013, 103, 1062–1071. [Google Scholar] [CrossRef]
- Chen, P.-H.; Nguyen, T.C. Integrating web map service and building information modeling for location and transportation analysis in green building certification process. Autom. Constr. 2017, 77, 52–66. [Google Scholar] [CrossRef]
- Socharoentum, M.; Karimi, H.A. A comparative analysis of routes generated by Web Mapping APIs. Cartogr. Geogr. Inf. Sci. 2015, 42, 33–43. [Google Scholar] [CrossRef]
- Weiss, D.J.; Nelson, A.; Gibson, H.S.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N.; et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 2018, 553, 333–336. [Google Scholar] [CrossRef]
- May, T.H.N.; Win, Z.H. Design and Construction of Navigation Based Auto Self Driving Vehicle using Google Map API with GPS. Int. J. Trend Sci. Res. Dev. 2019, 39, 65–68. [Google Scholar] [CrossRef]
- Park, Y.; Mount, J.; Liu, L.; Xiao, N.; Miller, H.J. Assessing public transit performance using real-time data spatiotemporal patterns of bus operation enhanced Reader. J. Int. J. Geogr. Inf. Sci. 2019, 34, 367–392. [Google Scholar] [CrossRef]
- Wang, F.; Xu, Y. Estimating O–D travel time matrix by Google Maps API: Implementation, advantages, and implications. Ann. GIS 2011, 17, 199–209. [Google Scholar] [CrossRef]
- Viergutz, K.; Krajzewicz, D. Analysis of the Travel Time of Various Transportation Systems in Urban Context. Transp. Res. Procedia 2019, 41, 313–323. [Google Scholar] [CrossRef]
- Masłowski, D.; Kulińska, E.; Kulińska, K. Application of routing methods in city logistics for sustainable road traffic. Transp. Res. Procedia 2019, 39, 309–319. [Google Scholar] [CrossRef]
- Camargo, C.Q.; Bright, J.; McNeill, G.; Raman, S.; Hale, S.A. Estimating Traffic Disruption Patterns with Volunteered Geographic Information. Sci. Rep. 2020, 10, 1271. [Google Scholar] [CrossRef] [Green Version]
- Kivimaa, P.; Laakso, S.; Lonkila, A.; Kaljonen, M. Moving beyond disruptive innovation: A review of disruption in sustainability transitions. Environ. Innov. Soc. Transitions 2021, 38, 110–126. [Google Scholar] [CrossRef]
- Costa, C.; Ha, J.; Lee, S. Spatial disparity of income-weighted accessibility in Brazilian Cities: Application of a Google Maps API. J. Transp. Geogr. 2021, 90, 102905. [Google Scholar] [CrossRef]
- Google Google Maps Platform. Available online: https://cloud.google.com/maps-platform (accessed on 8 March 2021).
- Google Vehicle Routing. Available online: https://developers.google.com/optimization/routing (accessed on 8 March 2021).
- Zhang, K.; He, F.; Zhang, Z.; Lin, X.; Li, M. Multi-vehicle routing problems with soft time windows: A multi-agent reinforcement learning approach. Transp. Res. Part C Emerg. Technol. 2020, 121, 102861. [Google Scholar] [CrossRef]
- Gendreau, M.; Laporte, G.; Potvin, J.-Y. Metaheuristics for the Capacitated VRP. In The Vehicle Routing Problem; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002; pp. 129–154. [Google Scholar]
- VRPy Performance Profiles. Available online: https://vrpy.readthedocs.io/en/latest/benchmarks.html#benchmarks (accessed on 8 March 2021).
- Juan, A.A.; David Kelton, W.; Currie, C.S.M.; Faulin, J. Simheuristics applications: Dealing with uncertainty in logistics, transportation, and other supply chain areas. In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 9–12 December 2018; pp. 3048–3059. [Google Scholar]
- Dettenbach, A.M.C.; Ubber, S. Managing Disruptions in Last Mile Distribution. In Proceedings of the 2015 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 1078–1087. [Google Scholar]
- Verlinden, T.; Van de Voorde, E.; Dewulf, W. Ho.Re.Ca. logistics and European medieval structured cities: A search for cost generators. Transp. Policy 2020, 99, 419–429. [Google Scholar] [CrossRef]
- Beghelli, S.; Guastella, G.; Pareglio, S. Governance fragmentation and urban spatial expansion: Evidence from Europe and the United States. Rev. Reg. Res. 2020, 40, 13–32. [Google Scholar] [CrossRef] [Green Version]
- US Census Bureau Boston city MA 2018 Population Estimates. Available online: https://www.census.gov/programs-surveys/popest.html?intcmp=serp (accessed on 8 March 2021).
- Ayuntamiento de Pamplona Población Total Pamplona/Iruña a 2 de enero de 2020. Available online: https://www.pamplona.es/sites/default/files/2020-01/Pamplona-barriospoblacióntotalenero2020_0.pdf (accessed on 8 March 2021).
City | Distance (km) | Time (h) |
---|---|---|
Bogotá | 199.5 | 10.5 |
Boston | 90.1 | 3.3 |
Pamplona | 38.5 | 2.1 |
City | Distance (km) | Time (h) |
---|---|---|
Bogotá | 338.5 | 17.8 |
Boston | 138.6 | 6.0 |
Pamplona | 74.6 | 3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Villamizar, A.; Solano-Charris, E.L.; Reyes-Rubiano, L.; Faulin, J. Measuring Disruptions in Last-Mile Delivery Operations. Logistics 2021, 5, 17. https://doi.org/10.3390/logistics5010017
Muñoz-Villamizar A, Solano-Charris EL, Reyes-Rubiano L, Faulin J. Measuring Disruptions in Last-Mile Delivery Operations. Logistics. 2021; 5(1):17. https://doi.org/10.3390/logistics5010017
Chicago/Turabian StyleMuñoz-Villamizar, Andrés, Elyn L. Solano-Charris, Lorena Reyes-Rubiano, and Javier Faulin. 2021. "Measuring Disruptions in Last-Mile Delivery Operations" Logistics 5, no. 1: 17. https://doi.org/10.3390/logistics5010017
APA StyleMuñoz-Villamizar, A., Solano-Charris, E. L., Reyes-Rubiano, L., & Faulin, J. (2021). Measuring Disruptions in Last-Mile Delivery Operations. Logistics, 5(1), 17. https://doi.org/10.3390/logistics5010017