Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food
Abstract
:1. Introduction
2. Review
2.1. Black Soldier Fly as Livestock Feed
2.2. Nutritional Aspects of Black Soldier Fly Larvae
2.3. Microbial and Chemical Contaminants
2.4. Rearing Strategies for Black Soldier Fly
2.5. Legal Regulations Regarding Black Soldier Fly
2.6. Records of Human Consumption
3. Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Some Insect Foods of the American Indians: And How the Early Whites Reacted to Them. 1994. Available online: http://www.hollowtop.com/finl_html/amerindians.htm (accessed on 16 October 2017).
- Ramos-Elorduy, J. Anthropo-entomophagy: Cultures, evolution and sustainability. Entomol. Res. 2009, 39, 271–288. [Google Scholar] [CrossRef]
- Ayieko, M.A.; Oriaro, V.; Nyambuga, I.A. Processed products of termites and lake flies: Improving entomophagy for food security within the lake Victoria region. Afr. J. Food Agric. Nutr. Dev. 2010, 10, 2085–2098. [Google Scholar] [CrossRef]
- When Chicago Braced for the Onslaught of the 17-Year Cicada. 1990. Available online: http://labs.russell.wisc.edu/insectsasfood/files/2012/09/Volume_3_No_3.pdf (accessed on 16 October 2017).
- Yen, A.L. Edible Insects and Other Invertebrates in Australia: Future Prospects; Food and Agriculture Organization: Ciang Mai, Thailand, 2008; pp. 65–84. [Google Scholar]
- Johnson, D.V. The contribution of edible forest insects to human nutrition and to forest management. In Forest Insects as Food: Humans Bite Back; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2010; pp. 5–22. [Google Scholar]
- Meyer-Rochow, V.B.; Chakravorty, J. Notes on entomophagy and entomotherapy generally and information on the situation in India in particular. Appl. Entomol. Zool. 2013, 48, 105–112. [Google Scholar] [CrossRef]
- Hanboonsong, Y. Edible insects and associated food habits in Thailand. In Forest Insects as Food: Humans Bite Back; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2010; pp. 173–182. [Google Scholar]
- Yen, A.L. Edible insects: Traditional knowledge or western phobia? Entomol. Res. 2009, 39, 289–298. [Google Scholar] [CrossRef]
- Holt, V.M. Why Not Eat Insects? Field & Tuer, Leadenhall Press: London, UK, 1885; p. 99. [Google Scholar]
- DeFoliart, G.R.; Dunkel, F.V.; Gracer, D. The Food Insects Newsletter Volumes 1–13, 1988 through 2000: Chronicle of a Changing Culture Unabridged Collection of the Food Insects Newsletter; Aardvark Global Publishing Company, L.L.C.: Salt Lake City, UT, USA, 2009; p. 414. [Google Scholar]
- Vane-Wright, R.I. Why not eat insects? Bull. Entomol. Res. 1991, 81, 1–4. [Google Scholar] [CrossRef]
- Gracer, D. Filling the plates: Serving insects to the public in the United States. In Forest Insects as Food: Humans Bite Back; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2010; pp. 217–220. [Google Scholar]
- Lensvelt, E.J.; Steenbekkers, L.P. Exploring consumer acceptance of entomophagy: A survey and experiment in Australia and The Netherlands. Ecol. Food Nutr. 2014, 53, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Megido, R.C.; Sablon, L.; Geuens, M.; Brostaux, Y.; Alabi, T.; Blecker, C.; Drugmand, D.; Haubruge, É.; Francis, F. Edible insects acceptance by belgian consumers: Promising attitude for entomophagy development. J. Sens. Stud. 2014, 29, 14–20. [Google Scholar] [CrossRef]
- A query: Are Processed Insect Food Products Still Commercially Available in the United States? 1988. Available online: http://labs.russell.wisc.edu/insectsasfood/files/2012/09/Volume_1_No_2.pdf (accessed on 16 October 2017).
- Tucker, C.A. The significance of sensory appeal for reduced meat consumption. Appetite 2014, 81, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Tranter, H. Insects creeping into english diets: Introducing entomophagy to school children in a provincial town. Master’s Thesis, University of East Anglia, Norwich, UK, 2013. [Google Scholar]
- Van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and agriculture organization of the United Nations (FAO): Rome, Italy, 2013; p. 171. [Google Scholar]
- Halloran, A.; Flore, R.; Mercier, C. Notes from the ‘insects in a gastronomic context’ workshop in Bangkok, Thailand. J. Insects Food Feed 2015, 1, 241–243. [Google Scholar] [CrossRef]
- Vantomme, P.; Münke, C.; Van Huis, A.; Van Itterbeeck, J.; Hakman, A. Insects to Feed the World Conference: Summary Report; FAO/Wageningen University: Wageningen, The Netherlands, 2014. [Google Scholar]
- Taylor, R.L.; Carter, B.J. Entertaining with Insects or: The Original Guide to Insect Cookery; Woodbridge Press: Santa Barbara, CA, USA, 1976; p. 160. [Google Scholar]
- Gordon, D.G. The Eat-a-Bug Cookbook; Ten Speed Press: Berkely, CA, USA, 1998; p. 103. [Google Scholar]
- Menzel, P.; D’Aluisio, F. Man Eating Bugs: The Art and Science of Eating Insects; Ten Speed Press: Berkeley, CA, USA, 1998. [Google Scholar]
- Van Huis, A.; van Gurp, H.; Dicke, M. The Insect Cookbook: Food for a Sustainable Planet; Columbia University Press: New York, NY, USA, 2014; p. 13. [Google Scholar]
- Gahukar, R.T. Entomophagy and human food security. Int. J. Tropical Insect Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef]
- Martin, D. Edible: An Adventure into the World of Eating Insects and the Last Great Hope to Save the Planet; Houghton Mifflin Harcourt: Boston, MA, USA, 2014. [Google Scholar]
- Nadeau, L.; Nadeau, I.; Franklin, F.; Dunkel, F. The potential for entomophagy to address undernutrition. Ecol. Food Nutr. 2015, 55, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Shelomi, M. The meat of affliction: Insects and the future of food as seen in expo 2015. Trends Food Sci. Technol. 2016, 56, 175–179. [Google Scholar] [CrossRef]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Ann. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.A.B.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- Costa-Neto, E.M. Insects as human food: An overview. Amaz. Rev. Antropol. 2013, 5, 562–582. [Google Scholar] [CrossRef]
- Oonincx, D.G.; van Itterbeeck, J.; Heetkamp, M.J.; van den Brand, H.; van Loon, J.J.; van Huis, A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.; de Boer, I.J. Environmental impact of the production of mealworms as a protein source for humans—A life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Miglietta, P.P.; De Leo, F.; Ruberti, M.; Massari, S. Mealworms for food: A water footprint perspective. Water 2015, 7, 6190–6203. [Google Scholar] [CrossRef]
- Singh-Ackbarali, D.; Maharaj, R. Mini livestock ranching: Solution to reducing the carbon footprint and negative environmental impacts of agriculture. In Environmental Sustainability and Climate Change Adaptation Strategies; Ganpat, W., Isaac, W.-A., Eds.; IGI Global: Hershey, PA, USA, 2017; pp. 188–212. [Google Scholar]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar]
- Ferreira, A. Saving the mopane worm: South Africa’s wiggly protein snack in danger. Food Insects Newsl. 1995, 8, 6. [Google Scholar]
- DeFoliart, G.R. Edible insects as minilivestock. Biodivers. Conserv. 1995, 4, 306–321. [Google Scholar] [CrossRef]
- Popa, R.; Green, T.R. Using black soldier fly larvae for processing organic leachates. J. Econ. Entomol. 2012, 105, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental impact of food waste bioconversion by insects: Application of life cycle assessment to process using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Sheppard, D.C.; Newton, G.L.; Thompson, S.A.; Savage, S. A value-added manure management-system using the black soldier fly. Bioresour. Technol. 1994, 50, 275–279. [Google Scholar] [CrossRef]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Spranghers, T.; Noyez, A.; Schildermans, K.; De Clercq, P. Cold hardiness of the black soldier fly (diptera: Stratiomyidae). J. Econ. Entomol. 2017, 110, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, D.C.; Tomberlin, J.K.; Joyce, J.A.; Kiser, B.C.; Sumner, S.M. Rearing methods for the black soldier fly (diptera : Stratiomyidae). J. Med. Entomol. 2002, 39, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C. Housefly and lesser fly control utilizing the black soldier fly in manure management-systems for caged laying hens. Environ. Entomol. 1983, 12, 1439–1442. [Google Scholar] [CrossRef]
- Yu, G.H.; Chen, Y.H.; Yu, Z.N.; Cheng, P. Research progress on the larvae and prepupae of black soldier fly Hermetia illucens used as animal feedstuff. Chin. Bull. Entomol. 2009, 46, 41–45. [Google Scholar]
- Zheng, L.Y.; Hou, Y.F.; Li, W.; Yang, S.; Li, Q.; Yu, Z.N. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 2012, 47, 225–229. [Google Scholar] [CrossRef]
- Green, T.R.; Popa, R. Enhanced ammonia content in compost leachate processed by black soldier fly larvae. Appl. Biochem. Biotechnol. 2012, 166, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Webster, C.D.; Rawles, S.D.; Koch, J.F.; Thompson, K.R.; Kobayashi, Y.; Gannam, A.L.; Twibell, R.G.; Hyde, N.M. Bio-ag reutilization of distiller’s dried grains with solubles (DDGS) as a substrate for black soldier fly larvae, Hermetia illucens, along with poultry by-product meal and soybean meal, as total replacement of fish meal in diets for nile tilapia, Oreochromis niloticus. Aquac. Nutr. 2016, 22, 976–988. [Google Scholar]
- Lalander, C.; Diener, S.; Magri, M.E.; Zurbrugg, C.; Lindstrom, A.; Vinneras, B. Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—From a hygiene aspect. Sci. Total Environ. 2013, 458, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Banks, I.J.; Gibson, W.T.; Cameron, M.M. Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Trop. Med. Int. Health 2014, 19, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.X.; Tomberlin, J.K.; Vanlaerhoven, S. Ability of black soldier fly (diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol. 2015, 44, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Bae, S.; Park, K.; Lee, S.; Choi, Y.; Han, S.; Koh, Y. Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (diptera: Stratiomyidae). J. Asia Pac. Entomol. 2011, 14, 11–14. [Google Scholar] [CrossRef]
- Blum, M.S. The limits of entomophagy: A discretionary gourmand in a world of toxic insects. Food Insects Newsl. 1994, 7, 1–6. [Google Scholar]
- Li, Q.; Zheng, L.Y.; Qiu, N.; Cai, H.; Tomberlin, J.K.; Yu, Z.N. Bioconversion of dairy manure by black soldier fly (diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag. 2011, 31, 1316–1320. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qian, L.; Wang, W.; Wang, T.; Deng, Z.; Yang, F.; Xiong, J.; Feng, W. Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (I). Renew. Energy 2017, 111, 749–756. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Liang, S.-H.; Doan, T.T.; Su, C.-H.; Yang, P.-C. Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Convers. Manag. 2017, 145, 335–342. [Google Scholar] [CrossRef]
- Mohd-Noor, S.-N.; Wong, C.-Y.; Lim, J.-W.; Uemura, Y.; Lam, M.-K.; Ramli, A.; Bashir, M.J.K.; Tham, L. Optimization of self-fermented period of waste coconut endosperm destined to feed black soldier fly larvae in enhancing the lipid and protein yields. Renew. Energy 2017, 111, 646–654. [Google Scholar] [CrossRef]
- Lalander, C.H.; Fidjeland, J.; Diener, S.; Eriksson, S.; Vinneras, B. High waste-to-biomass conversion and efficient Salmonella spp. Reduction using black soldier fly for waste recycling. Agron. Sustain. Dev. 2015, 35, 261–271. [Google Scholar] [CrossRef]
- Diener, S.; Solano, N.M.S.; Gutiérrez, F.R.; Zurbrügg, C.; Tockner, K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valoriz. 2011, 2, 357–363. [Google Scholar] [CrossRef]
- Kroeckel, S.; Harjes, A.G.E.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364, 345–352. [Google Scholar] [CrossRef]
- Li, S.L.; Ji, H.; Zhang, B.X.; Tian, J.J.; Zhou, J.S.; Yu, H.B. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile jian carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- St-Hilaire, S.; Cranfill, K.; McGuire, M.A.; Mosley, E.E.; Tomberlin, J.K.; Newton, L.; Sealey, W.; Sheppard, C.; Irving, S. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquac. Soc. 2007, 38, 309–313. [Google Scholar] [CrossRef]
- Sealey, W.M.; Gaylord, T.G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J. World Aquac. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss walbaum) diets. J. Anim. Sci. Biotechnol. 2017, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- St-Hilaire, S.; Sheppard, C.; Tomberlin, J.K.; Irving, S.; Newton, L.; McGuire, M.A.; Mosley, E.E.; Hardy, R.W.; Sealey, W. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J. World Aquac. Soc. 2007, 38, 59–67. [Google Scholar] [CrossRef]
- Aniebo, A.O.; Erondu, E.S.; Owen, O.J. Replacement of fish meal with maggot meal in African catfish (Clarias gariepinus) diets. Revista Cientifica UDO Agricola 2009, 9, 653–656. [Google Scholar]
- Diener, S.; Zurbrugg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Resour. 2009, 27, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, R.; Sánchez-López, A.; Leal, R.S.; Martínez-Llorens, S.; Oliva-Teles, A.; Peres, H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 2017, 476, 79–85. [Google Scholar] [CrossRef]
- Bondari, K.; Sheppard, D.C. Soldier fly larvae as feed in commercial fish production. Aquaculture 1981, 24, 103–109. [Google Scholar] [CrossRef]
- Cummins, V.C.; Rawles, S.D.; Thompson, K.R.; Velasquez, A.; Kobayashi, Y.; Hager, J.; Webster, C.D. Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for pacific white shrimp (Litopenaeus vannamei). Aquaculture 2017, 473, 337–344. [Google Scholar] [CrossRef]
- Bradley, S.W.; Booth, D.C.; Sheppard, D.C. Parasitism of the black soldier fly by Trichopria sp. (hymenoptera, diapriidae) in poultry houses. Environ. Entomol. 1984, 13, 451–454. [Google Scholar] [CrossRef]
- Bradley, S.W.; Sheppard, D.C. Housefly oviposition inhibition by larvae of Hermetia illucens, the black soldier fly. J. Chem. Ecol. 1984, 10, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Acuti, G.; Marangon, A.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits. Animal 2017, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Ruhnke, I.; Normant, C.; Iqbal, Z.; Campbell, D.L.M.; Zentek, J.; Choct, M. Feed refusal of laying hens—A case report. In Proceedings of the 28th Annual Australian Poultry Science Symposium, Sydney, New South Wales, Australia, 13–15 February 2017; The University of Sydney, Sydney: New South Wales, Australia, 2017; pp. 213–216. [Google Scholar]
- Bodri, M.S.; Cole, E.R. Black soldier fly (Hermetia illucens L.) as feed for the american alligator (Alligator mississippiensis daudin). Ga. J. Sci. 2007, 65, 82. [Google Scholar]
- Zhou, F.; Tomberlin, J.K.; Zheng, L.Y.; Yu, Z.N.; Zhang, J.B. Developmental and waste reduction plasticity of three black soldier fly strains (diptera: Stratiomyidae) raised on different livestock manures. J. Med. Entomol. 2013, 50, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zheng, L.; Cai, H.; Garza, E.; Yu, Z.; Zhou, S. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 2011, 90, 1545–1548. [Google Scholar] [CrossRef]
- Mallin, M.A.; Cahoon, L.B. Industrialized animal production—A major source of nutrient and microbial pollution to aquatic ecosystems. Popul. Environ. 2003, 24, 369–385. [Google Scholar] [CrossRef]
- Lardé, G. A program profile: Research on insects as animal feed in El Salvador. Food Insects Newsl. 1989, 2, 2–8. [Google Scholar]
- Newton, L.; Sheppard, C.; Watson, D.W.; Burtle, G.; Dove, R. Using the Black Soldier Fly, Hermetia Illucens, as a Value-Added Tool for the Management of Swine Manure; North Carolina State University: Raleigh, NC, USA, 2005; pp. 1–17. [Google Scholar]
- Ur Rehman, K.; Cai, M.; Xiao, X.; Zheng, L.; Wang, H.; Soomro, A.A.; Zhou, Y.; Li, W.; Yu, Z.; Zhang, J. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). J. Environ. Manag. 2017, 196, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Ur Rehman, K.; Rehman, A.; Cai, M.; Zheng, L.; Xiao, X.; Somroo, A.A.; Wang, H.; Li, W.; Yu, Z.; Zhang, J. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod. 2017, 154, 366–373. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Van Huis, A.; Benbow, M.E.; Jordan, H.; Astuti, D.A.; Azzollini, D.; Banks, I.; Bava, V.; Borgemeister, C.; Cammack, J.A. Protecting the environment through insect farming as a means to produce protein for use as livestock, poultry, and aquaculture feed. J. Insects Food Feed 2015, 1, 307–309. [Google Scholar] [CrossRef] [Green Version]
- Nyakeri, E.M.; Ogola, H.J.; Ayieko, M.A.; Amimo, F.A. An open system for farming black soldier fly larvae as a source of proteins for smallscale poultry and fish production. J. Insects Food Feed 2017, 3, 51–56. [Google Scholar] [CrossRef]
- Klonick, A. Bug ideas: Assessing the market potential and regulation of insects. Master’s Thesis, Duke University, Durham, NC, USA, 2017. [Google Scholar]
- Ghosh, S.; Lee, S.-M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Barroso, F.G.; Sánchez-Muros, M.-J.; Segura, M.; Morote, E.; Torres, A.; Ramos, R.; Guil, J.-L. Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J. Food Compos. Anal. 2017, 62, 8–13. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G. Insect fatty acids: A comparison of lipids from three orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- Starčević, K.; Gavrilović, A.; Gottstein, Ž.; Mašek, T. Influence of substitution of sunflower oil by different oils on the growth, survival rate and fatty acid composition of Jamaican field cricket (Gryllus assimilis). Anim. Feed Sci. Technol. 2017, 228, 66–71. [Google Scholar] [CrossRef]
- Surendra, K.C.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 2016, 98, 197–202. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [PubMed]
- Bussler, S.; Rumpold, B.A.; Jander, E.; Rawel, H.M.; Schluter, O.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2016, 2, e00218. [Google Scholar] [CrossRef] [PubMed]
- Arango Gutiérrez, G.P.; Vergara Ruiz, R.A.; Mejía Vélez, H. Compositional, microbiological and protein digestibility analysis of the larva meal of Hermetia illuscens L. (diptera: Stratiomyiidae) at Angelópolis-Antioquia, Colombia. Revista Facultad Nacional de Agronomía, Medellín 2004, 57, 2491–2500. [Google Scholar]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Kim, H.-W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Russin, T.A.; Boye, J.I.; Arcand, Y.; Rajamohamed, S.H. Alternative techniques for defatting soy: A practical review. Food Bioprocess Technol. 2011, 4, 200–223. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.M.; Kim, I.H. Effect of medium chain fatty acids (mcfa) and probiotic (Enterococcus faecium) supplementation on the growth performance, digestibility and blood profiles in weanling pigs. Vet. Med. 2014, 59, 527–535. [Google Scholar]
- Skrivanova, E.; Marounek, M.; Benda, V.; Brezina, P. Susceptibility of Escherichia coli, Salmonella sp. And clostridium perfringens to organic acids and monolaurin. Vet. Med. 2006, 51, 81–88. [Google Scholar]
- Gorham, J.R. The significance for human health of insects in food. Ann. Rev. Entomol. 1979, 24, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Barre, A.; Caze-Subra, S.; Gironde, C.; Bienvenu, F.; Bienvenu, J.; Rougé, P. Entomophagie et risque allergique. Rev. Fr. Allergol. 2014, 54, 315–321. [Google Scholar] [CrossRef]
- Klunder, H.C.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Schabel, H.G. Forest Insects as Food: A Global Review; Food and Agriculture Organization: Ciang Mai, Thailand, 2008; pp. 37–64. [Google Scholar]
- EFSA Scientific Committee. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [Green Version]
- Liu, Q.L.; Tomberlin, J.K.; Brady, J.A.; Sanford, M.R.; Yu, Z.N. Black soldier fly (diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environ. Entomol. 2008, 37, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli o157: H7 and Salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Brickey, P.M.; Gorham, J.R. Preliminary comments on federal regulations pertaining to insects as food. Food Insects Newsl. 1989, 2, 1–7. [Google Scholar]
- Yu, G.H.; Cheng, P.; Chen, Y.H.; Li, Y.J.; Yang, Z.H.; Chen, Y.F.; Tomberlin, J.K. Inoculating poultry manure with companion bacteria influences growth and development of black soldier fly (diptera: Stratiomyidae) larvae. Environ. Entomol. 2011, 40, 30–35. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and the Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. 2015. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2015:327:TOC (accessed on 16 October 2017).
- Van Raamsdonk, L.W.D.; van der Fels-Klerx, H.J.; de Jong, J. New feed ingredients: The insect opportunity. Food Addit. Contam. Part A 2017, 34, 1384–1397. [Google Scholar]
- European Commission. Regulation (EU) 2017/893 of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. 2017. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2017.138.01.0092.01.ENG&toc=OJ:L:2017:138:TOC (accessed on 16 October 2017).
- Kupferschmidt, K. Buzz food. Science 2015, 350, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Buiani, R. The rise of the insect industry: Sustainable potential or wasteful accumulation. Tecnoscienza Ital. J. Sci. Technol. Stud. 2014, 5, 191–200. [Google Scholar]
- Van der Spiegel, M. Safety of foods based on insects. In Regulating Safety of Traditional and Ethnic Foods; Prakash, V., Martin-Belloso, O., Keener, L., Astley, S.B., Braun, S., McMahon, H., Lelieveld, H., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 205–216. [Google Scholar]
- Schlüter, O.; Rumpold, B.; Holzhauser, T.; Roth, A.; Vogel, R.F.; Quasigroch, W.; Vogel, S.; Heinz, V.; Jäger, H.; Bandick, N.; et al. Safety aspects of the production of foods and food ingredients from insects. Mol. Nutr. Food Res. 2016, 61, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Purschke, B.; Scheibelberger, R.; Axmann, S.; Adler, A.; Jager, H. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Wang, X.Y.; Wang, W.Q.; Lei, C.L.; Zhu, F. Influences of chromium and cadmium on the development of black soldier fly larvae. Environ. Sci. Pollut. R. 2017, 24, 8637–8644. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.; Zurbrügg, C.; Tockner, K. Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. J. Insects Food Feed 2015, 1, 261–270. [Google Scholar] [CrossRef]
- Bosch, G.; van der Fels-Klerx, H.J.; Rijk, T.C.d.; Oonincx, D.G.A.B. Aflatoxin b1 tolerance and accumulation in black soldier fly larvae (Hermetia illucens) and yellow mealworms (Tenebrio molitor). Toxins 2017, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Lalander, C.; Senecal, J.; Calvo, M.G.; Ahrens, L.; Josefsson, S.; Wiberg, K.; Vinnerås, B. Fate of pharmaceuticals and pesticides in fly larvae composting. Sci. Total Environ. 2016, 565, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Meleney, H.E.; Harwood, P.D. Human intestinal myiasis due to the larvae of the soldier fly, Hermetia illucens L. (diptera, stratiomyidae). Am. J. Trop. Med. Hyg. 1935, 1, 45–49. [Google Scholar] [CrossRef]
- Lee, H.L.; Chandrawathani, P.; Wong, W.Y.; Tharam, S.; Lim, W.Y. A case of human enteric myiasis due to larvae of Hermetia illucens (family: Stratiomyiadae): First report in Malaysia. Malays. J. Pathol. 1995, 17, 109–111. [Google Scholar] [PubMed]
- Yang, P. Two records of intestinal myiasis caused by Ornidia obesa and Hermetia illucens in Hawaii. Proc. Hawaii Entomol. Soc. 2014, 46, 29. [Google Scholar]
- Werner, F.G. Two cases of intestinal myiasis in man produced by Hermetia (diptera: Stratiomyiidae). Psyche 1956, 63, 112. [Google Scholar] [CrossRef]
- Adler, A.I.; Brancato, F.P. Human furuncular myiasis caused by Hermetia illucens (diptera: Stratiomyidae). J. Med. Entomol. 1995, 32, 745–746. [Google Scholar] [CrossRef] [PubMed]
- Manurung, R.; Supriatna, A.; Esyanthi, R.R.; Putra, R.E. Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): Optimal feed rate for biomass production. J. Entomol. Zool. Stud. 2016, 4, 1036–1041. [Google Scholar]
- Mutafela, R.N. High Value Organic Waste Treatment via Black Soldier Fly Bioconversion: Onsite Pilot Study. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2015. [Google Scholar]
- Aldana, J.; Quan, E.; Vickerson, A.; Marchant, B.; Kaulfuss, O.; Radley, R. Contained Systems to Provide Reproductive Habitat for Hermetia illucens. U.S. Patent 9510572, 6 December 2016. [Google Scholar]
- Azagoh, C.; Hubert, A.; Mezdour, S. Insect biorefinery in Europe: ‘Designing the insect biorefinery to contribute to a more sustainable agro-food industry’. J. Insects Food Feed 2015, 1, 159–168. [Google Scholar] [CrossRef]
- Pastor, B.; Velasquez, Y.; Gobbi, P.; Rojo, S. Conversion of organic wastes into fly larval biomass: Bottlenecks and challenges. J. Insects Food Feed 2015, 1, 179–193. [Google Scholar] [CrossRef]
- Myers, H.M.; Tomberlin, J.K.; Lambert, B.D.; Kattes, D. Development of black soldier fly (diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 2008, 37, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Tomberlin, J.K.; Adler, P.H.; Myers, H.M. Development of the black soldier fly (diptera: Stratiomyidae) in relation to temperature. Environ. Entomol. 2009, 38, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Li, Y.; Yang, Y.; Xia, Q. Effects of the artificial diet with low water content on the growth and development of the black soldier fly, Hermetia illucens (diptera: Stratiomyidae). Acta Entomologica Sinica 2014, 57, 943–950. [Google Scholar]
- Tomberlin, J.K.; Sheppard, D.C. Factors influencing mating and oviposition of black soldier flies (diptera: Stratiomyidae) in a colony. J. Entomol. Sci. 2002, 37, 345–352. [Google Scholar] [CrossRef]
- Nakamura, S.; Ichiki, R.T.; Shimoda, M.; Morioka, S. Small-scale rearing of the black soldier fly, Hermetia illucens (diptera: Stratiomyidae), in the laboratory: Low-cost and year-round rearing. Appl. Entomol. Zool. 2016, 51, 161–166. [Google Scholar] [CrossRef]
- Booth, D.C.; Sheppard, C. Oviposition of the black soldier fly, Hermetia illucens (diptera, stratiomyidae)—Eggs, masses, timing, and site characteristics. Environ. Entomol. 1984, 13, 421–423. [Google Scholar] [CrossRef]
- Zhang, J.B.; Huang, L.; He, J.; Tomberlin, J.K.; Li, J.H.; Lei, C.L.; Sun, M.; Liu, Z.D.; Yu, Z.N. An artificial light source influences mating and oviposition of black soldier flies, Hermetia illucens. J. Insect Sci. 2010, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Ledig, F.T.; Kitzmiller, J.H. Genetic strategies for reforestation in the face of global climate change. For. Ecol. Manag. 1992, 50, 153–169. [Google Scholar] [CrossRef]
- Nagy, M. Black Soldier Fly Larvae—Tasting Notes. 2017. Available online: https://thefutureofedibleinsects.com/2017/01/30/black-soldier-fly-larvae-tasting-notes/ (accessed on 11 October 2017).
- Purschke, B.; Stegmann, T.; Schreiner, M.; Jäger, H. Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. Larvae–influence of extraction conditions on kinetics, defatting performance and compositional properties. Eur. J. Lipid Sci. Technol. 2017, 119, 1600134. [Google Scholar] [CrossRef]
- Kok, R.; Lomaliza, K.; Shivhare, U.S. The design and performance of an insect farm/chemical reactor for human food production. Can. Agric. Eng. 1988, 30, 307–317. [Google Scholar]
- Paoletti, M.G. Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails; Science Publishers, Inc.: Enfield, NH, USA, 2005; p. 662. [Google Scholar]
- Knowles, T.; Moody, R.; McEachern, M.G. European food scares and their impact on EU food policy. Br. Food J. 2007, 109, 43–67. [Google Scholar] [CrossRef]
- Barska, A. Attitudes of young consumers towards innovations on the food market. Management 2014, 18, 419–431. [Google Scholar] [CrossRef]
- Siegrist, M. Factors influencing public acceptance of innovative food technologies and products. Trends Food Sci. Technol. 2008, 19, 603–608. [Google Scholar] [CrossRef]
- Shelomi, M. Why we still don’t eat insects: Assessing entomophagy promotion through a diffusion of innovations framework. Trends Food Sci. Technol. 2015, 45, 311–318. [Google Scholar] [CrossRef]
- Vos, E. EU food safety regulation in the aftermath of the bse crisis. J. Consum. Policy 2000, 23, 227–255. [Google Scholar] [CrossRef]
- Laurenza, E.C.; Carreño, I. Edible insects and insect-based products in the EU: Safety assessments, legal loopholes and business opportunities. Eur. J. Risk Regul. 2015, 6, 288–292. [Google Scholar] [CrossRef]
- Association of American Feed Control Officials. In Proceedings of the AAFCO Annual Meeting Agenda and Committee Reports, Pittsburgh, PA, USA, 31 July–3 August 2016; AAFCO: Pittsburgh, PA, USA, 2016; p. 112.
- Food and Drug Administration. Defect levels handbook. In The Food Defect Action Levels: Levels Of Natural or Unavoidable Defects in Foods That Present no Health Hazards for Humans; Center for Food Safety and Applied Nutrition, Ed.; US Food and Drug Administration: Washington, DC, USA, 2010. [Google Scholar]
- Remember Those Chocolate-covered Ants? They’re still around but a lot Harder to Find. 1993. Available online: http://labs.russell.wisc.edu/insectsasfood/files/2012/09/Volume_6_No_2.pdf (accessed on 16 October 2017).
- Mitsuhashi, J. Edible Insects of the World; CRC Press: Boca Raton, FL, USA, 2017; p. 296. [Google Scholar]
- Ramos-Elorduy, J. Insects: A sustainable source of food? Ecol. Food Nutr. 1997, 36, 247–276. [Google Scholar] [CrossRef]
- Chung, A.Y.C.; Khen, C.V.; Unchi, S.; Binti, M. Edible insects and entomophagy in Sabah, Malaysia. Malay. Nat. J. 2002, 56, 131–144. [Google Scholar]
- Chung, A.Y.C. Edible insects and entomophagy in Borneo. In Forest Insects as Food: Humans Bite Back; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2010; pp. 141–150. [Google Scholar]
- McFadden, M.W. Discovery of fossils of Hermetia illucens (Linnaeus) in Mexico. Proc. Entomol. Soc. Wash. 1966, 68, 56. [Google Scholar]
- Oonincx, D.G.A.B. Insects as Food and Feed: Nutrient Composition and Environmental Impact. PhD Thesis, Wageningen University, Wageningen, The Netherlands, 2015. [Google Scholar]
- Ramos-Elorduy, J. Creepy Crawly Cuisine: The Gourmet Guide to Edible Insects. Rochester, Park Street Press: Randolph, VT, USA, 1998. [Google Scholar]
- Ramos-Elorduy, J. Energy supplied by edible insects from Mexico and their nutritional and ecological importance. Ecol. Food Nutr. 2008, 47, 280–297. [Google Scholar] [CrossRef]
- Chakravorty, J. Diversity of edible insects and practices of entomophagy in India: An overview. Biodivers. Bioprospect. Dev. 2014, 1, 124. [Google Scholar] [CrossRef]
- Rozin, P.; Millman, L.; Nemeroff, C. Operation of the laws of sympathetic magic in disgust and other domains. J. Personal. Soc. Psychol. 1986, 50, 703. [Google Scholar] [CrossRef]
- Rozin, P. Social and moral aspects of food and eating. In The Legacy of Solomon Asch: Essays in Cognition and Social Psychology; Rock, I., Ed.; Psychology Press: New York, NY, USA, 1990; pp. 97–110. [Google Scholar]
- Deroy, O.; Reade, B.; Spence, C. The insectivore’s dilemma, and how to take the west out of it. Food Qual. Preference 2015, 44, 44–55. [Google Scholar] [CrossRef]
- Benecke, M. Six forensic entomology cases: Description and commentary. J. Forensic Sci. 1998, 43, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed–A review. J. Insects Food Feed 2017, 1, 1–16. [Google Scholar] [CrossRef]
- Warnants, N.; Van Oeckel, M.J.; Boucqué, C.V. Effect of incorporation of dietary polyunsaturated fatty acids in pork backfat on the quality of salami. Meat Sci. 1998, 49, 435–445. [Google Scholar] [CrossRef]
- Díaz, M.T.; Cañeque, V.; Sánchez, C.I.; Lauzurica, S.; Pérez, C.; Fernández, C.; Álvarez, I.; De la Fuente, J. Nutritional and sensory aspects of light lamb meat enriched in n− 3 fatty acids during refrigerated storage. Food Chem. 2011, 124, 147–155. [Google Scholar] [CrossRef]
- Verbeke, W.; Van Oeckel, M.J.; Warnants, N.; Viaene, J.; Boucque, C.V. Consumer perception, facts and possibilities to improve acceptability of health and sensory characteristics of pork. Meat Sci. 1999, 53, 77–99. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Van Huis, A. Edible insects contributing to food security? Agric. Food Secur. 2015, 4, 20. [Google Scholar] [CrossRef]
- Tan, H.S.G.; Fischer, A.R.H.; Tinchan, P.; Stieger, M.; Steenbekkers, L.P.A.; van Trijp, H.C.M. Insects as food: Exploring cultural exposure and individual experience as determinants of acceptance. Food Qual. Preference 2015, 42, 78–89. [Google Scholar] [CrossRef]
- Soares, S.; Forkes, A. Insects Au Gratin—An Investigation into the experiences of developing a 3D printer that uses insect protein based flour as a building medium for the production of sustainable food. In DS 78: Proceedings of the 16th International conference on Engineering and Product Design Education (E&PDE14), Design Education and Human Technology Relations, University of Twente, Enschede, The Netherlands, 4–5 September 2014. [Google Scholar]
- De Boer, J.; Schösler, H.; Boersema, J.J. Motivational differences in food orientation and the choice of snacks made from lentils, locusts, seaweed or “hybrid” meat. Food Qual. Preference 2013, 28, 32–35. [Google Scholar] [CrossRef]
- In Mexico—Insect-Fortified Tortillas. 1993. Available online: http://labs.russell.wisc.edu/insectsasfood/files/2012/09/Volume_6_No_1.pdf (accessed on 16 October 2017).
- Mariño-Pérez, R. Edible orthopteroids: The Mexican case. Metaleptea 2015, 35, 7–8. [Google Scholar]
- Deroy, O. Eat insects for fun, not to help the environment. Nature 2015, 521, 395. [Google Scholar] [CrossRef] [PubMed]
- Van Itterbeeck, J.; van Huis, A. Environmental manipulation for edible insect procurement: A historical perspective. J. Ethnobiol. Ethnomed. 2012, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Erkman, S.; Ramaswamy, R. Industrial ecology: An introduction. In Industrial Ecology and Spaces of Innovation; Green, K., Randles, S., Eds.; Edward Elgar: Cheltenham, UK, 2006; pp. 28–42. [Google Scholar]
- Gabler, F.; Vinnerås, B. Using Black Soldier Fly for Waste Recycling and Effective Salmonella spp. Reduction; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2014. [Google Scholar]
- Katayama, N.; Yamashita, M.; Wada, H.; Mitsuhashi, J.; Force, S.A.T. Entomophagy as part of a space diet for habitation on Mars. J. Space Technol. Sci. 2005, 21, 27–38. [Google Scholar]
- Stamer, A. Insect proteins—A new source for animal feed. EMBO Rep. 2015, 16, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Yu, X.; Liu, H. Insect food for astronauts: Gas exchange in silkworms fed on mulberry and lettuce and the nutritional value of these insects for human consumption during deep space flights. Bull. Entomol Res. 2011, 101, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Franke-Whittle, I.H.; Insam, H. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review. Crit. Rev. Microbiol. 2013, 39, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Charlton, A.J.; Dickinson, M.; Wakefield, M.E.; Fitches, E.; Kenis, M.; Han, R.; Zhu, F.; Kone, N.; Grant, M.; Devic, E. Exploring the chemical safety of fly larvae as a source of protein for animal feed. J. Insects Food Feed 2015, 1, 7–16. [Google Scholar] [CrossRef]
- Post, K.; Riesner, D.; Walldorf, V.; Mehlhorn, H. Fly larvae and pupae as vectors for scrapie. Lancet 1999, 354, 1969–1970. [Google Scholar] [CrossRef]
- Lord, W.D.; Goff, M.L.; Adkins, T.R.; Haskell, N.H. The black soldier fly Hermetia illucens (diptera: Stratiomyidae) as a potential measure of human postmortem interval: Observations and case histories. J. Forensic Sci. 1994, 39, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, A.; Magana, C.; Salona, M.; Rojo, S. First record of Hermetia illucens (diptera: Stratiomyidae) on human corpses in Iberian peninsula. Forensic Sci. Int. 2011, 206, e76–e78. [Google Scholar] [CrossRef] [PubMed]
- Pujol-Luz, J.R.; Francez, P.A.d.C.; Ururahy-Rodrigues, A.; Constantino, R. The black soldier-fly, Hermetia illucens (diptera, Stratiomyidae), used to estimate the postmortem interval in a case in amapá state, Brazil. J. Forensic Sci. 2008, 53, 476–478. [Google Scholar] [CrossRef] [PubMed]
- Salleh, A.F.M.; Marwi, M.A.; Jeffery, J.; Hamid, N.A.A.; Zuha, R.M.; Omar, B. Review of forensic entomology cases from kuala lumpur hospital and hospital universiti kebangsaan Malaysia, 2002. J. Trop. Med. Parasitol. 2007, 30, 51–54. [Google Scholar]
- Tomberlin, J.K.; Sheppard, D.C.; Joyce, J.A. Black soldier fly (diptera: Stratiomyidae) colonization of pig carrion in South Georgia. J. Forensic Sci. 2005, 50, JFS2003391–JFS2003392. [Google Scholar] [CrossRef]
- Looy, H.; Dunkel, F.V.; Wood, J.R. How then shall we eat? Insect-eating attitudes and sustainable foodways. Agric. Hum. Values 2014, 31, 131–141. [Google Scholar] [CrossRef]
- Fleischer, R. Soylent Green. Metro-Goldwyn-Mayer: Los Angeles, CA, USA, 1973. [Google Scholar]
- Sexton, A. Meat thy maker: In vitro meat, insects and the role of design inedibility formation. In Food Design on the Edge, Proceedings of the International Food Design Conference and Studio 2014, Dunedin, New Zealand, 2–4 July 2014; Mitchell, R.D., Ed.; Otago Polytechnic: Dunedin, New Zealand, 2014; pp. 10–18. [Google Scholar]
Diet or Source | % Protein | % Fat | Source |
---|---|---|---|
Cattle blood and wheat bran | 47.6 | 25.3 | Aniebo et al. 2009 [71] |
Poultry manure | 37.9 | 18.73 | Arango Gutiérrez et al. 2004 [103] |
Proprietary (Hermetia Futtermittel GbR, Baruth, Germany) | 31.7 | 21.1 | Bußler et al. 2016 [102] |
Proprietary (Hermetia Futtermittel GbR, Baruth, Germany) | 36.9 | 34.3 | de Marco et al. 2015 [104] |
UFA 625 chicken feed | 37.86 | - | Diener et al. 2009 [128] |
Proprietary (Hermetia Futtermittel GbR, Baruth, Germany) | 47.6 | 11.8 | Kroeckel et al. 2012 [65] |
Municipal organic waste | 39.8 | 30.1 | Mutafela 2015 [137] |
Horse manure | 40.9 | 12.9 | Mutafela 2015 [137] |
Fresh fruit waste | 37.8 | 41.7 | Mutafela 2015 [137] |
Swine manure | 43.2 | 28 | Newton et al. 2005 [89] |
Poultry manure | 42.1 | 34.8 | Newton et al. 2005 [89] |
Wild (Bondo area, west Kenya) | 40 | 33 | Nyakeri et al. 2017 [93] |
Food manufacturing by-product mixes | 38–46 | 21–35 | Oonincx et al. 2015 [32] |
Laying hens' manure | 42 | 35 | Sheppard et al. 1994 [45] |
TOTAL 77 Chicken feed | 41.2 | 33.6 | Spranghers et al. 2017b [97] |
Biogas digestate | 42.2 | 21.8 | Spranghers et al. 2017b [97] |
Vegetable waste | 39.9 | 37.1 | Spranghers et al. 2017b [97] |
Restaurant waste (vegan) | 43.1 | 38.6 | Spranghers et al. 2017b [97] |
Cow manure | - | 21.42 | St-Hilaire et al. 2007a [67] |
50/50 Fish offal: Cow manure | - | 30.44 | St-Hilaire et al. 2007a [67] |
Swine manure | 43.2 | 33.1 | St-Hilaire et al. 2007a [67] |
Animal manures | 42–44 | 31–35 | Yu et al. 2009 [50] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. https://doi.org/10.3390/foods6100091
Wang Y-S, Shelomi M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods. 2017; 6(10):91. https://doi.org/10.3390/foods6100091
Chicago/Turabian StyleWang, Yu-Shiang, and Matan Shelomi. 2017. "Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food" Foods 6, no. 10: 91. https://doi.org/10.3390/foods6100091