High Pressure Treatment in Foods
Abstract
:1. Introduction
2. High Hydrostatic Pressure Technology
Time (Years) | HPP machines in industry |
---|---|
1990 | 2 |
1991 | 2 |
1992 | 3 |
1993 | 3 |
1994 | 4 |
1995 | 4 |
1996 | 4 |
1997 | 4 |
1998 | 5 |
1999 | 9 |
2000 | 14 |
2001 | 21 |
2002 | 27 |
2003 | 38 |
2004 | 52 |
2005 | 68 |
2006 | 78 |
2007 | 95 |
2008 | 109 |
2009 | 122 |
2010 | 147 |
2011 | 167 |
3. Packaging
4. Microbial Inactivation
Food product | Microorganism | HHP conditions | Inactivation results | Reference |
---|---|---|---|---|
Pineapple juice | Byssochlamys nivea | 550–600 MPa for 3–15 min at 20–80 °C | 600 MPa for 15 min at 80 °C, 5.7 log reduction | Ferreira et al. [25] |
Apple-broccoli juice | S. cerevisiae; A. flavus | 250–400 MPa for 5–20 min at 21 °C | 400 MPa for 10 min at 21 °C, 5 log reduction | Houška et al. [26] |
Apple juice | Talaromyces avellaneus | 200–600 MPa for 10–60 min at 17–60 °C | 600 MPa for 50 min at 60 °C, 5 log reduction ascospores | Voldřich et al. [27] |
Concentrated orange juice | S. cerevisiae | 100–400 MPa for 0–120 min at 20 °C | 400 MPa for 60 min at 20 °C, 3 log reduction | Basak et al. [28] |
Cheese | P. roqueforti | 50–800 MPa for 20 min at 10–30 °C | 400 MPa for 20 min at 20 °C, 6 log reduction | O’Reilly et al. [29] |
5. Spore Inactivation
Food product | Microorganism | HHP conditions | Inactivation results | Reference |
---|---|---|---|---|
Carrot juice | B. licheniformis | 400–600 MPa for 0–40 min at 40–60 °C | 241 to 465 MPa (D value range 23.3 to 31 °C) | Tola and Ramaswamy [33] |
Cooked chicken | C. botulinum | 600 MPa for 2 min at 20 °C | 600 MPa for 2 min at 20 °C, 2 log reduction | Linton et al. [34] |
Orange juice | A. acidoterrestris | 200–600 MPa for 1–15 min at 45–65 °C | 600 MPa, D55 °C = 7 min; 200 MPa, D65 °C = 5.0 min | Silva et al. [35] |
Tomato sauce | B. coagulans; A. acidoterrestris | 100–800 MPa for 10 min at 25, 40, 60 °C | 700 MPa for 10 min at 60 °C, 2 log reduction | Vercammen et al. [36] |
Tomato pulp | B. coagulans | 300–600 MPa for 0–39 min at 50–60 °C | 600 MPa for 15 at 60 °C 5.7 log reduction | Zimmermann et al. [31] |
Orange Juice | A. acidoterrestris | 200–600 MPa for 10 min at 20–60 °C | 600 MPa for 10 min at 50 °C, 3 log reduction | Hartyáni et al. [37] |
Milk | B.sporothermodurans | 300–500 MPa for 10–30 min at 30–50 °C | 495 MPa for 30 min at 49 °C, 5 log reduction | Aouadhi et al. [38] |
6. Effects of HHP on Proteins
7. Effect of HHP on Enzymes
Food product | Enzyme | HHP conditions | Inactivation achieved | Reference |
---|---|---|---|---|
Jam | Pectin methylesterase (PME); Peroxidase (POD) | 550–700 MPa for 2.5–75 min at 45–75 °C | PME: 27%–40% POD: 51%–70% | Igual et al. [61] |
Feijoa puree | Peroxidase (POD); Polyphenol oxidase (PPO); Pectin methylesterase (PME) | 600 MPa for 5 min at 25 °C | POD: 78% PPO: 55.6% PME: 56% | Ortuño et al. [62] |
Camarosa strawberry | Polyphenol oxidase (PPO) | 600 MPa for 15 min at 34–62 °C | PPO: 82% | Sulaiman and Silva [65] |
Fruit smoothies | Polyphenol oxidase (PPO) | 600 MPa for 10 min at 20 °C | PPO: 83% | Keenan et al. [66] |
Dry-cured ham | Glutathione peroxidase (GSHPx); Superoxide dismutase (SOD) | 900 MPa for 5 min at 12 °C | GSHPx: 44.2% SOD: 17.6% | Clariana et al. [67] |
Strawberry pulps | β-Glucosidase; Polyphenol oxidase (PPO); Peroxidase (POD) | 400–600 MPa for 5–25 min at 25 °C | β-Glu: 41.4% PPO: 74.6% POD: 74.6% | Cao et al. [68] |
8. Some Industrial Applications of HHP
9. Conclusions
Acknowledgements
Author Contributions
Conflict of Interest
References
- Chevalier, D.; le Bail, A.; Ghoul, M. Effects of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Res. Int. 2001, 34, 425–429. [Google Scholar] [CrossRef]
- Polydera, A.C.; Stoforos, N.G.; Taoukis, P.S. Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. J. Food Eng. 2003, 60, 21–29. [Google Scholar] [CrossRef]
- Hiperbaric, S.A. High Pressure Processing for Seafood & Meat Products. Available online: http://www.csiro.au/~/media/CSIROau/Images/Food/HPP Workshop pdf/HPP MeatSeafood Workshop May2012.pdf (accessed on 20 March 2014).
- Ratphitagsanti, W.; Ahn, J.; Balasubramaniam, V.M.; Yousef, A.E. Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressure-assisted thermal processing. J. Food Prot. 2009, 72, 775–782. [Google Scholar] [PubMed]
- Barbosa-Canovas, G.V.; Gongora-Nieto, M.M.; Pothakamury, U.R.; Swanson, B.G. Preservation of Foods with Pulsed Electric Fields; Academic Press Ltd.: London, UK, 1999; pp. 1–9, 76–107, 108–155. [Google Scholar]
- Ayvaz, H.; Schirmer, S.; Parulekar, Y.; Balasubramaniam, V.M.; Somerville, J.A.; Daryaei, H. Influence of selected packaging materials on some quality aspects of pressure-assisted thermally processed carrots during storage. LWT Food Sci. Technol. 2012, 46, 437–447. [Google Scholar] [CrossRef]
- Juliano, P.; Koutchma, T.; Sui, Q.A.; Barbosa-Canovas, G.V.; Sadler, G. Polymeric-based food packaging for high-pressure processing. Food Eng. Rev. 2010, 2, 274–297. [Google Scholar]
- Lambert, Y.; Demazeau, G.; Largeteau, A.; Bouvier, J.M.; Laborde-Croubit, S.; Cabannes, M. New packaging solutions for high pressure treatments of food. High Press. Res. 2000, 19, 597–602. [Google Scholar]
- Gayan, E.; Torres, J.A.; Paredes-Sabja, D. Hurdle approach to increase the microbial inactivation by high pressure processing: Effect of essential oils. Food Eng. Rev. 2012, 4, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Mújica-Paz, H.; Valdez-Fragoso, A.; Tonello Samson, C.; Welti-Chanes, J.; Torres, J.A. High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol. 2011, 4, 969–985. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.-W. Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol. 2008, 1, 2–34. [Google Scholar] [CrossRef]
- Torres, J.A.; Velázquez, G. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 2005, 67, 95–112. [Google Scholar] [CrossRef]
- Huang, H.W.; Lung, H.M.; Yang, B.B.; Wang, C.Y. Responses of microorganisms to high hydrostatic pressure processing. Food Control 2014, 40, 250–259. [Google Scholar] [CrossRef]
- Yang, B.; Shi, Y.; Xia, X.; Xi, M.; Wang, X.; Ji, B. Inactivation of foodborne pathogens in raw milk using high hydrostatic pressure. Food Control 2012, 28, 273–278. [Google Scholar] [CrossRef]
- Wang, C.Y.; Huang, H.W.; Hsu, C. P.; Shyu, Y.T.; Yang, B.B. Inactivation and morphological damage of Vibrio parahaemolyticus treated with high hydrostatic pressure. Food Control 2013, 32, 348–353. [Google Scholar] [CrossRef]
- Mohamed, H.M.H.; Diono, B.H.S.; Yousef, E.Y. Structural changes in Listeria monocytogenes treated with gamma radiation, pulsed electric field and ultra-high pressure. J. Food Saf. 2012, 32, 66–73. [Google Scholar] [CrossRef]
- Mañas, P.; Mackey, B.M. Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: Relationship with cell death. Appl. Environ. Microbiol. 2004, 70, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hoover, D.G. Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerg. Technol. 2003, 4, 25–34. [Google Scholar] [CrossRef]
- Ross, A.I.V.; Griffiths, M.W.; Mittal, G.S.; Deeth, H.C. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 2003, 89, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Jofré, A.; Aymerich, T.; Grébol, N.; Garriga, M. Efficiency of high hydrostatic pressure at 600 MPa against food-borne organisms by challenge tests on convenience meat products. LWT Food Sci. Technol. 2009, 42, 924–928. [Google Scholar] [CrossRef]
- Perrier-Cornet, J.M.; Hayert, M.; Gervais, P. Yeast cell mortality related to a high-pressure shift: Occurrence of cell membrane permeabilization. J. Appl. Microbiol. 1999, 87, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Goh, E.L.C.; Hocking, A.D.; Stewart, C.M.; Buckle, K.A.; Fleet, G.H. Baroprotective effect of increased solute concentrations on yeast and moulds during high pressure processing. Innov. Food Sci. Emerg. Technol. 2007, 8, 535–542. [Google Scholar] [CrossRef]
- Evert-Arriagada, K.; Hernández-Herrero, M.M.; Juan, B.; Guamis, B.; Trujillo, A.J. Effect of high pressure on fresh cheese shelf-life. J. Food Eng. 2012, 110, 248–253. [Google Scholar]
- Rosaria Corbo, M.; Lanciotti, R.; Albenzio, M.; Sinigaglia, M. Occurrence and characterization of yeasts isolated from milks and dairy products of Apulia region. Int. J. Food Microbiol. 2001, 69, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.H.D.R.; Rosenthal, A.; Calado, A.V.; Saraiva, J.; Mendo, S. Byssochlamys nivea inactivation in pineapple juice and nectar using high pressure cycles. J. Food Eng. 2009, 95, 664–669. [Google Scholar] [CrossRef]
- Houška, M.; Strohalm, J.; Kocurová, K.; Totušek, J.; Lefnerová, D.; Tříska, J. High pressure and foods—Fruit/vegetable juices. J. Food Eng. 2006, 77, 386–398. [Google Scholar] [CrossRef]
- Voldřich, M.; Dobiáš, J.; Tichá, L.; Čeřovský, M.; Krátká, J. Resistance of vegetative cells and ascospores of heat resistant mould Talaromyces avellaneus to the high pressure treatment in apple juice. J. Food Eng. 2004, 61, 541–543. [Google Scholar]
- Basak, S.; Ramaswamy, H.S.; Piette, J.P.G. High pressure destruction kinetics of Leuconostoc mesenteroides and Saccharomyces cerevisiae in single strength and concentrated orange juice. Innov. Food Sci. Emerg. Technol. 2002, 3, 223–231. [Google Scholar] [CrossRef]
- O’Reilly, C.E.; O’Connor, P.M.; Kelly, A.L.; Beresford, T.P.; Murphy, P.M. Use of hydrostatic pressure for inactivation of microbial contaminants in cheese. Appl. Environ. Microbiol. 2000, 66, 4890–4896. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Naima, F.; Marcotte, M.; Ramaswamy, H.; Shao, Y. High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures. Int. Food Microbiol. 2008, 126, 86–92. [Google Scholar]
- Zimmermann, M.; Schaffner, D.W.; Aragão, G.M.F. Modeling the inactivation kinetics of Bacillus coagulans spores in tomato pulp from the combined effect of high pressure and moderate temperature. LWT Food Sci. Technol. 2013, 53, 107–112. [Google Scholar]
- Meyer, R.S. Ultra High-Pressure, High Temperature Food Preservation Process. US Patent 6017572, 2000. [Google Scholar]
- Tola, Y.B.; Ramaswamy, H.S. Combined effects of high pressure, moderate heat and pH on the inactivation kinetics of Bacillus licheniformis spores in carrot juice. Food Res. Int. 2014, 62, 50–58. [Google Scholar]
- Linton, M.; Connolly, M.; Houston, L.; Patterson, M.F. The control of Clostridium botulinum during extended storage of pressure-treated, cooked chicken. Food Control 2014, 37, 104–108. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Tan, E.K.; Farid, M. Bacterial spore inactivation at 45–65 °C using high pressure processing: Study of Alicyclobacillus acidoterrestris in orange juice. Food Microbiol. 2012, 32, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Vercammen, A.; Vivijs, B.; Lurquin, I.; Michiels, C.W. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. Int. J. Food Microbiol. 2012, 152, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Hartyáni, P.; Dalmadi, I.; Knorr, D. Electronic nose investigation of Alicyclobacillus acidoterrestris inoculated apple and orange juice treated by high hydrostatic pressure. Food Control 2013, 32, 262–269. [Google Scholar] [CrossRef]
- Aouadhi, C.; Simonin, H.; Prévost, H.; Lamballerie, M.D.; Maaroufi, A.; Mejri, S. Inactivation of Bacillus sporothermodurans LTIS27 spores by high hydrostatic pressure and moderate heat studied by response surface methodology. LWT Food Sci. Technol. 2013, 50, 50–56. [Google Scholar] [CrossRef]
- Heinz, I.V.; Buckow, R. Food preservation by high pressure. J. Verbraucherschutz Lebensmittelsicherheit 2010, 5, 73–78. [Google Scholar] [CrossRef]
- Setlow, P. Spore germination. Curr. Opin. Microbiol. 2003, 6, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Sabja, D.; Torres, J.A.; Setlow, P.; Sarker, M.R. Clostridium perfringens spore germination: Characterization of germinants and their receptors. J. Bacteriol. 2008, 190, 1190–1201. [Google Scholar] [CrossRef] [PubMed]
- Clements, M.O.; Moir, A. Role of the gerI operon of Bacillus cereus 569 in the response of spores to germinants. J. Bacteriol. 1998, 180, 6729–6735. [Google Scholar]
- Moir, A.; Kemp, E.H.; Robinson, C.; Corfe, B.M. The genetic analysis of bacterial spore germination. Soc. Appl. Bacteriol. Symp. Ser. 1994, 23, 9S–16S. [Google Scholar] [PubMed]
- Akhtar, S.; Paredes-Sabja, D.; Torres, J.A.; Sarker, M.R. Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiol. 2009, 26, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Georget, E.; Kapoor, S.; Winter, R.; Reineke, K.; Songa, Y.; Callananc, M.; Anantac, E.; Heinz, V.; Mathys, A. In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure. Food Microbiol. 2014, 41, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Dzwolak, W.; Kato, M.; Taniguchi, Y. Fourier transform infrared spectroscopy in high-pressure studies on proteins. Biophys. Acta 2002, 1595, 131–144. [Google Scholar]
- Messens, W.; van Camp, J.; Huyghebaert, A. The use of high pressure to modify the functionality of food proteins. Trends Food Sci. Technol. 1997, 81, 107–112. [Google Scholar] [CrossRef]
- Liu, R.; Zhaoa, S.M.; Xionga, S.B.; Xie, B.J.; Qinc, L.H. Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Sci. 2008, 80, 632–639. [Google Scholar] [PubMed]
- Tabilo-Munizaga, G.; Gordon, T.A.; Villalobos-Carvajal, R.; Moreno-Osorio, L.; Salazar, F.N.; Pérez-Won, M.; Acuña, S. Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine. Food Chem. 2014, 155, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.F.; Buckow, R.; Hemar, Y.; Kasapis, S. Structuring dairy systems through high pressure processing. J. Food Eng. 2013, 114, 106–122. [Google Scholar]
- Chronakis, L.S.; Kasapis, S. A rheological study on the application of carbohydrate-protein incompatibility to the development of low fat commercial spreads. Carbohydr. Polym. 1995, 28, 367–373. [Google Scholar] [CrossRef]
- Trujillo, A.J.; Capellas, M.; Saldo, J.; Gervilla, R.; Guamis, B. Applications of high-hydrostatic pressure on milk and dairy products: A review. Innov. Food Sci. Emerg. Technol. 2002, 3, 295–307. [Google Scholar] [CrossRef]
- Huppertz, T.; Fox, P.F.; de Kruif, K.G.; Kelly, A.L. High pressure-induced changes in bovine milk proteins: A review. Biochim. Biophys. Acta 2006, 1764, 593–598. [Google Scholar]
- He, X.H.; Liu, H.Z.; Liu, L.; Zhao, G.L.; Wang, Q. Effects of high pressure on the physicochemical and functional properties of peanut protein isolates. Food Hydrocoll. 2014, 36, 123–129. [Google Scholar] [CrossRef]
- Ye, R.; Harte, F. High pressure homogenization to improve the stability of casein-hydroxypropyl cellulose aqueous systems. Food Hydrocoll. 2014, 35, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Roach, A.; Harte, F. Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innov. Food Sci. Emerg. Technol. 2008, 9, 1–8. [Google Scholar] [CrossRef]
- Speroni, F.; Añón, M.C. Cold-set gelation of high pressure-treated soybean proteins. Food Hydrocoll. 2013, 33, 85–91. [Google Scholar] [CrossRef]
- Maltais, A.; Remondetto, G.E.; Gonzalez, R.; Subirade, M. Formation of soy protein isolate cold-set gels: Protein and salt effects. J. Food Sci. 2005, 70, 67–73. [Google Scholar] [CrossRef]
- Asaka, M.; Aoyama, Y.; Ritsuko, N.; Hayashi, R. Purification of a latent form of polyphenoloxidase from La France pear fruit and its pressure-activation. Biosci. Biotech. Biochem. 1994, 58, 1486–1489. [Google Scholar] [CrossRef]
- Huang, W.; Bi, X.; Zhang, X.; Liao, X.; Hu, X.; Wu, J. Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innov. Food Sci. Emerg. Technol. 2013, 18, 74–82. [Google Scholar] [CrossRef]
- Igual, M.; Sampedro, F.; Martínez-Navarrete, N.; Fan, X. Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam. J. Food Eng. 2013, 114, 514–521. [Google Scholar] [CrossRef]
- Ortuño, C.; Duong, T.; Balaban, M.; Benedito, J. Combined high hydrostatic pressure and carbon dioxide inactivation of pectin methylesterase, polyphenol oxidase and peroxidase in feijoa puree. J. Supercrit. Fluids 2013, 82, 56–62. [Google Scholar] [CrossRef]
- Hendrickx, M.E.; Ludikhuyze, L.R.; van den Broeck, I.; Weemaes, C.A. Effects of high-pressure on enzymes related to food quality. Trends Food Sci. Technol. 1998, 9, 197–203. [Google Scholar] [CrossRef]
- Ludikhuyze, L.; van den Broeck, I.; Hendrickx, M.E. High pressure processing of fruits and vegetables. In Fruit and Vegetable Processing: Improving Quality; Jongen, W., Ed.; CRC Press, Inc.: New York, NY, USA, 2002; pp. 346–362. [Google Scholar]
- Sulaiman, A.; Silva, F.V.M. High pressure processing, thermal processing and freezing of ‘Camarosa’ strawberry for the inactivation of polyphenoloxidase and control of browning. Food Control 2013, 33, 424–428. [Google Scholar] [CrossRef]
- Keenan, D.F.; Rößle, C.; Gormley, R.; Butler, F.; Brunton, N.P. Effect of high hydrostatic pressure and thermal processing on the nutritional quality and enzyme activity of fruit smoothies. LWT Food Sci. Technol. 2012, 45, 50–57. [Google Scholar] [CrossRef]
- Clariana, M.; Guerrero, L.; Sárraga, C.; Garcia-Regueiro, J.A. Effects of high pressure application (400 and 900 MPa) and refrigerated storage time on the oxidative stability of sliced skin vacuum packed dry-cured ham. Meat Sci. 2012, 90, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhang, Y.; Zhang, F.; Wang, Y.; Yi, J.; Liao, X. Effects of high hydrostatic pressure on enzymes, phenolic compounds, anthocyanins, polymeric color and color of strawberry pulps. J. Sci. Food Agric. 2011, 91, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Kousta, M.; Mataragas, M.; Skandamis, P.; Drosinos, E.H. Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control 2010, 21, 805–815. [Google Scholar] [CrossRef]
- Rosengrena, A.; Fabricius, A.; Guss, B.; Sylvén, S.; Lindqvist, R. Occurrence of foodborne pathogens and characterization of Staphylococcus aureus in cheese produced on farm-dairies. Int. J. Food Microbiol. 2010, 144, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.F.; Liu, L.H.; Hemar, Y.; Buckow, R.; Kasapis, S. Effect of high pressure processing on rheological and structural properties of milk-gelatin mixtures. Food Chem. 2013, 141, 1328–1334. [Google Scholar] [PubMed]
- Reij, M.W.; den Aantrekker, E.D. Recontamination as a source of pathogens in processed foods. Int. J. Food Microbiol. 2004, 91, 1–11. [Google Scholar] [PubMed]
- United States Department of Agriculture (USDA); Foreign Agricultural Service (FAS). Dairy: World Markets and Trade. Available online: http://www.fas.usda.gov/data/dairy-world-markets-and-trade (accessed on 20 March 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bello, E.F.T.; Martínez, G.G.; Ceberio, B.F.K.; Rodrigo, D.; López, A.M. High Pressure Treatment in Foods. Foods 2014, 3, 476-490. https://doi.org/10.3390/foods3030476
Bello EFT, Martínez GG, Ceberio BFK, Rodrigo D, López AM. High Pressure Treatment in Foods. Foods. 2014; 3(3):476-490. https://doi.org/10.3390/foods3030476
Chicago/Turabian StyleBello, Edwin Fabian Torres, Gerardo González Martínez, Bernadette F. Klotz Ceberio, Dolores Rodrigo, and Antonio Martínez López. 2014. "High Pressure Treatment in Foods" Foods 3, no. 3: 476-490. https://doi.org/10.3390/foods3030476
APA StyleBello, E. F. T., Martínez, G. G., Ceberio, B. F. K., Rodrigo, D., & López, A. M. (2014). High Pressure Treatment in Foods. Foods, 3(3), 476-490. https://doi.org/10.3390/foods3030476