Study of the Factors Involved in the Adhesion Process of Salmonella enterica Enteritidis, Escherichia coli, and Staphylococcus aureus to the Surface of Apple, Arugula, Cucumber, and Strawberry
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sample Selection
2.2. Bacterial Strains and Culture Preparation
2.3. Surface Roughness Characterization
2.4. Contact Angle Measurements of Fresh Produce and Bacteria
2.5. Qualitative Evaluation of Surface Hydrophobicity
2.6. Determination of the Total Interfacial Tension
2.7. Free Energy of Hydrophobic Interaction
2.8. Determination of the Total Free Energy of Adhesion
2.9. Bacterial Adhesion Assay
2.9.1. Inoculum Preparation
2.9.2. Produce Inoculation and Contact Phase
2.9.3. Adhesion Incubation Period
2.9.4. Enumeration of Adhered Bacteria
2.10. Statistical Analysis
3. Results
3.1. Surface Roughness of Fresh Produce
3.2. Hydrophobicity Characteristics
3.2.1. Qualitative Hydrophobicity Assessment
3.2.2. Quantitative Hydrophobicity and Free Energy of Interaction
3.3. Thermodynamic Analysis of Bacterial Adhesion
3.4. Effect of Temperature on Bacterial Adhesion
4. Discussion
4.1. Surface Roughness as a Determinant of Bacterial Attachment Sites
4.2. Hydrophobicity Characteristics of Produce and Bacterial Surfaces
4.2.1. Differences Between Qualitative and Quantitative Hydrophobicity Assessments
4.2.2. Bacterial Surface Hydrophobicity and Strain-Specific Variations
4.2.3. Produce Surface Chemistry and Wax Composition
4.3. Thermodynamic Predictions Versus Observed Adhesion Outcomes
4.4. Temperature-Dependent Adhesion Patterns and Storage Implications
4.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BHI | Brain heart infusion |
| EPS | Extracellular polymeric substance |
| MPFV | Minimally processed fruits and vegetables |
| PBS | Phosphate-buffered saline |
| RTE | Ready-to-eat |
References
- CDC. Fruit and Vegetable Safety. Available online: https://www.cdc.gov/foodsafety/pdfs/fruit-veggie-safety-H.pdf (accessed on 6 January 2026).
- Obeng, F.A.; Gyasi, P.B.; Olu-Taiwo, M.; Ayeh-kumi, F.P. Microbial Assessment of Tomatoes (Lycopersicon esculentum) Sold at Some Central Markets in Ghana. Biomed Res. Int. 2018, 2018, 1. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Bui, H.T.; Truong, T.A.; Lam, D.N.; Ikeuchi, S.; Ly, L.K.T.; Hara-Kudo, Y.; Taniguchi, T.; Hayashidani, H. Retail Fresh Vegetables as a Potential Source of Salmonella Infection in the Mekong Delta, Vietnam. Int. J. Food Microbiol. 2021, 341, 109049. [Google Scholar] [CrossRef]
- Dos Santos, L.S.; da Silva, L.V.; Lepaus, B.M.; de São José, J.F.B. Microbial Quality and Labeling of Minimally Processed Fruits and Vegetables. Biosci. J. 2021, 37, e37059. [Google Scholar] [CrossRef]
- Bai, Y.; Li, J.; Huang, M.; Yan, S.; Li, F.; Xu, J.; Peng, Z.; Wang, X.; Ma, J.; Sun, J.; et al. Prevalence and Characterization of Foodborne Pathogens Isolated from Fresh-Cut Fruits and Vegetables in Beijing, China. Int. J. Food Microbiol. 2024, 421, 110804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yamamoto, E.; Murphy, J.; Locas, A. Microbiological Safety of Ready-to-Eat Fresh-Cut Fruits and Vegetables Sold on the Canadian Retail Market. Int. J. Food Microbiol. 2020, 335, 108855. [Google Scholar] [CrossRef]
- Habib, I.; Khan, M.; Mohamed, M.-Y.I.; Ghazawi, A.; Abdalla, A.; Lakshmi, G.; Elbediwi, M.; Al Marzooqi, H.M.; Afifi, H.S.; Shehata, M.G.; et al. Assessing the Prevalence and Potential Risks of Salmonella Infection Associated with Fresh Salad Vegetable Consumption in the United Arab Emirates. Foods 2023, 12, 3060. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Foodborne Outbreaks-Current Outbreaks. Available online: https://www.cdc.gov/foodborne-outbreaks/outbreaks/index.html (accessed on 28 December 2025).
- Food and Drug Administration (FDA). Investigations of Foodborne Illness Outbreaks. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/investigations-foodborne-illness-outbreaks (accessed on 28 December 2025).
- Qu, M.; Zhang, L.; Zhang, J.; Yu, X.; Jiang, L.; Zhu, H.; Zhang, X. Probiotics as a biocontrol strategy against Salmonella in poultry: A global meta-analysis. Food Control 2025, 183, 111952. [Google Scholar] [CrossRef]
- Yang, S.-C.; Lin, C.-H.; Aljuffali, I.A.; Fang, J.-Y. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 2017, 199, 811–825. [Google Scholar] [CrossRef] [PubMed]
- Tahi, A.A.; Sousa, S.; Madani, K.; Silva, C.L.M.; Miller, F.A. Ultrasound and heat treatment effects on Staphylococcus aureus cell viability in orange juice. Ultrason. Sonochem. 2021, 78, 105743. [Google Scholar] [CrossRef]
- Giaouris, E.E.; Simões, M.V. Pathogenic Biofilm Formation in the Food Industry and Alternative Control Strategies. Foodborne Dis. 2018, 15, 309–377. [Google Scholar] [CrossRef]
- Yuan, L.; Sadiq, F.A.; Wang, N.; Yang, Z.; He, G. Recent Advances in Understanding the Control of Disinfectant-Resistant Biofilms by Hurdle Technology in the Food Industry. Crit. Rev. Food Sci. Nutr. 2021, 61, 3876–3891. [Google Scholar] [CrossRef]
- Grivokostopoulos, N.C.; Makariti, I.P.; Tsadaris, S.; Skandamis, P.N. Impact of Population Density and Stress Adaptation on the Internalization of Salmonella in Leafy Greens. Food Microbiol. 2022, 106, 104053. [Google Scholar] [CrossRef]
- Zarkani, A.A.; Schikora, A. Mechanisms Adopted by Salmonella to Colonize Plant Hosts. Food Microbiol. 2021, 99, 103833. [Google Scholar] [CrossRef]
- Adeboye, A.; Onyeaka, H.; Al-Sharify, Z.; Nnaji, N. Understanding the Influence of Rheology on Biofilm Adhesion and Implication for Food Safety. Int. J. Food Sci. 2024, 2024, 2208472. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Obe, T.; Richards, A.K.; Shariat, N.W. Differences in Biofilm Formation of Salmonella Serovars on Two Surfaces under Two Temperature Conditions. J. Appl. Microbiol. 2022, 132, 2410–2420. [Google Scholar] [CrossRef]
- Busscher, H.J.; Weerkamp, A.H.; van Der Mei, H.C.; van Pelt, A.W.; de Jong, H.P.; Arends, J. Measurement of the Surface Free Energy of Bacterial Cell Surfaces and Its Relevance for Adhesion. Appl. Environ. Microbiol. 1984, 48, 980–983. [Google Scholar] [CrossRef] [PubMed]
- de São José, J.F.B.; de Medeiros, H.S.; Bernardes, P.C.; de Andrade, N.J. Removal of Salmonella enterica Enteritidis and Escherichia coli from Green Peppers and Melons by Ultrasound and Organic Acids. Int. J. Food Microbiol. 2014, 190, 9–13. [Google Scholar] [CrossRef]
- Vogler, E.A. Structure and Reactivity of Water at Biomaterial Surfaces. Adv. Colloid Interface Sci. 1998, 74, 69–117. [Google Scholar] [CrossRef] [PubMed]
- Lepaus, B.M.; Rocha, J.S.; de São José, J.F.B. Organic Acids and Hydrogen Peroxide Can Replace Chlorinated Compounds as Sanitizers on Strawberries, Cucumbers and Rocket Leaves. Food Sci. Technol. 2020, 40, 242–249. [Google Scholar] [CrossRef]
- Wang, H.; Feng, H.; Liang, W.; Luo, Y.; Malyarchuk, V. Effect of Surface Roughness on Retention and Removal of Escherichia Coli O157:H7 on Surfaces of Selected Fruits. J. Food Sci. 2009, 74, E8–E15. [Google Scholar] [CrossRef]
- Palma-Salgado, S.; Ku, K.M.; Dong, M.; Nguyen, T.H.; Juvik, J.A.; Feng, H. Adhesion and Removal of E. Coli K12 as Affected by Leafy Green Produce Epicuticular Wax Composition, Surface Roughness, Produce and Bacterial Surface Hydrophobicity, and Sanitizers. Int. J. Food Microbiol. 2020, 334, 108834. [Google Scholar] [CrossRef]
- Pelissari, E.M.R.; Covre, K.V.; do Rosario, D.K.A.; de São José, J.F.B. Application of Chemometrics to Assess the Influence of Ultrasound and Chemical Sanitizers on Vegetables: Impact on Natural Microbiota, Salmonella Enteritidis and Physicochemical Nutritional Quality. LWT 2021, 148, 111711. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, B.; Feng, H. Surface Characteristics of Fresh Produce and Their Impact on Attachment and Removal of Human Pathogens on Produce Surfaces. In Decontamination of Fresh and Minimally Processed Produce; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Doan, H.K.; Antequera-Gómez, M.L.; Parikh, A.N.; Leveau, J.H.J. Leaf Surface Topography Contributes to the Ability of Escherichia Coli on Leafy Greens to Resist Removal by Washing, Escape Disinfection with Chlorine, and Disperse Through Splash. Front. Microbiol. 2020, 11, 1485. [Google Scholar] [CrossRef]
- Sunde, M.; Pham, C.L.L.; Kwan, A.H. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. Annu. Rev. Biochem. 2017, 86, 585–608. [Google Scholar] [CrossRef]
- Redeker, C.; Briscoe, W.H. Interactions between Mutant Bacterial Lipopolysaccharide (LPS-Ra) Surface Layers: Surface Vesicles, Membrane Fusion, and Effect of Ca2+ and Temperature. Langmuir 2019, 35, 15739–15750. [Google Scholar] [CrossRef]
- Liao, C.; Santoscoy, M.C.; Craft, J.; Anderson, C.; Soupir, M.L.; Jarboe, L.R. Allelic Variation of Escherichia coli Outer Membrane Protein A: Impact on Cell Surface Properties, Stress Tolerance and Allele Distribution. PLoS ONE 2022, 17, e0276046. [Google Scholar] [CrossRef] [PubMed]
- Carniello, V.; Peterson, B.W.; van der Mei, H.C.; Busscher, H.J. Physico-Chemistry from Initial Bacterial Adhesion to Surface-Programmed Biofilm Growth. Adv. Colloid Interface Sci. 2018, 261, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Han, J.; Gong, G.; Koffas, M.A.G.; Zha, J. Wall Teichoic Acids: Physiology and Applications. FEMS Microbiol. Rev. 2021, 45, fuaa064. [Google Scholar] [CrossRef]
- Zhydzetski, A.; Głowacka-Grzyb, Z.; Bukowski, M.; Żądło, T.; Bonar, E.; Władyka, B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024, 29, 4065. [Google Scholar] [CrossRef]
- Parker, C.T.; Liebana, E.; Henzler, D.J.; Guard-Petter, J. Lipopolysaccharide O-chain Microheterogeneity of Salmonella Serotypes Enteritidis and Typhimurium. Environ. Microbiol. 2001, 3, 332–342. [Google Scholar] [CrossRef]
- Krzyżewska-Dudek, E.; Dulipati, V.; Kapczyńska, K.; Noszka, M.; Chen, C.; Kotimaa, J.; Książczyk, M.; Dudek, B.; Bugla-Płoskońska, G.; Pawlik, K.; et al. Lipopolysaccharide with Long O-Antigen Is Crucial for Salmonella Enteritidis to Evade Complement Activity and to Facilitate Bacterial Survival In Vivo in the Galleria Mellonella Infection Model. Med. Microbiol. Immunol. 2024, 213, 8. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, Y.; Guan, H.; Liang, H.; Zhao, X.; Wang, D. Adhesion Mechanism and Biofilm Formation of Escherichia coli O157:H7 in Infected Cucumber (Cucumis sativus L.). Food Microbiol. 2022, 105, 103885. [Google Scholar] [CrossRef]
- Saharan, B.S.; Beniwal, N.; Duhan, J.S. From Formulation to Function: A Detailed Review of Microbial Biofilms and Their Polymer-Based Extracellular Substances. Microbe 2024, 5, 100194. [Google Scholar] [CrossRef]
- Atmakuri, A.; Yadav, B.; Tiwari, B.; Drogui, P.; Tyagi, R.D.; Wong, J.W.C. Nature’s Architects: A Comprehensive Review of Extracellular Polymeric Substances and Their Diverse Applications. Waste Dispos. Sustain. Energy 2024, 6, 529–551. [Google Scholar] [CrossRef]
- Friedlander, R.S.; Vogel, N.; Aizenberg, J. Role of Flagella in Adhesion of Escherichia coli to Abiotic Surfaces. Langmuir 2015, 31, 6137–6144. [Google Scholar] [CrossRef]
- Horstmann, J.A.; Lunelli, M.; Cazzola, H.; Heidemann, J.; Kühne, C.; Steffen, P.; Szefs, S.; Rossi, C.; Lokareddy, R.K.; Wang, C.; et al. Methylation of Salmonella Typhimurium Flagella Promotes Bacterial Adhesion and Host Cell Invasion. Nat. Commun. 2020, 11, 2013. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huo, W.; Wang, Z.; Xu, X.; Chen, Y.; Shang, Y.; Hou, H.; Zhang, Y.; Chen, M.; Jiang, S. The Study of Epidermal Wax of Different Apple Varieties and Functional Analysis of MdMYB94 Regulating Wax Biosynthesis. Plant Physiol. Biochem. 2025, 228, 110276. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Wang, X.-J.; Cao, Y.; Zhong, M.-S.; Zhang, J.; Yu, K.; Li, Z.-W.; You, C.-X.; Li, Y.-Y. Chemical Composition and Morphology of Apple Cuticular Wax during Fruit Growth and Development. Fruit Res. 2022, 2, 5. [Google Scholar] [CrossRef]
- Ren, J.; Yang, L.; Cao, R.; Wang, Y.; Zhang, C.; Yu, X.; Meng, W.; Ye, X. Integrated Metabolome and Transcriptome Analysis Provides New Insights into the Glossy Graft Cucumber Fruit (Cucumis sativus L.). Int. J. Mol. Sci. 2023, 24, 12147. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, G.; Knoche, M. Microcracking of Strawberry Fruit Cuticles: Mechanism and Factors. Sci. Rep. 2023, 13, 19376. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, I.C.; Luna, E.O.; Pozo, M.D.; Vásquez, M.V.; Montoya, D.C.; Moran, G.C.; Romero, L.G.; Yépez, X.; Salazar, R.; Romero-Peña, M.; et al. Conventional and Non-Conventional Disinfection Methods to Prevent Microbial Contamination in Minimally Processed Fruits and Vegetables. LWT 2022, 165, 113714. [Google Scholar] [CrossRef]
- González-López, C.; Martínez-Peniche, R.A.; Iturriaga, M.H.; Arvizu-Medrano, S.M. Attachment and Colonization of Salmonella on ‘Rayada’, ‘Golden Delicious’, and ‘Red Delicious’ Apples. J. Sci. Food Agric. 2019, 99, 1166–1171. [Google Scholar] [CrossRef]
- Cebrián, G.; Condón, S.; Mañas, P. Influence of Growth and Treatment Temperature on Staphylococcus aureus Resistance to Pulsed Electric Fields: Relationship with Membrane Fluidity. Innov. Food Sci. Emerg. Technol. 2016, 37, 161–169. [Google Scholar] [CrossRef]
- Maistro, L.C.; Miya, N.T.N.; Sant’Ana, A.S.; Pereira, J.L. Microbiological Quality and Safety of Minimally Processed Vegetables Marketed in Campinas, SP-Brazil, as Assessed by Traditional and Alternative Methods. Food Control 2012, 28, 258–264. [Google Scholar] [CrossRef]
- Lim, J.S.; Ha, J.W. Growth Temperature Influences the Resistance of Escherichia coli O157:H7 and Salmonella Enterica Serovar Typhimurium on Lettuce to X-Ray Irradiation. Food Microbiol. 2021, 99, 103825. [Google Scholar] [CrossRef] [PubMed]

| Liquid | Interfacial Tension (mJ·m−2) | |||
|---|---|---|---|---|
| α-Bromonaphthalene (θB) | 44.4 | 44.4 | 0.0 | 0.0 |
| Water (θw) | 72.8 | 21.8 | 25.5 | 25.5 |
| Formamide (θF) | 58.0 | 39.0 | 2.28 | 39.6 |
| Sample | Roughness (Ra) Means ± Standard Deviation (µm) |
|---|---|
| Apple | 2.51 ± 0.12 a |
| Arugula | 5.86 ± 0.11 d |
| Cucumber | 4.35 ± 0.18 c |
| Strawberry | 3.09 ± 0.39 b |
| Surface | Contact Angle (°) | ||
|---|---|---|---|
| θw | θF | θB | |
| E. coli | 16.9 ± 1.4 | 55.5 ± 4.5 | 46.1± 3.5 |
| S. aureus | 24.6 ± 4.3 | 24.9 ± 0.9 | 29.6 ± 3.6 |
| S. enterica | 21.2 ± 4.0 | 32.1 ± 2.6 | 60.6 ± 3.4 |
| Apple | 91.5 ± 4.4 | 66.5 ± 2.6 | 58.3 ± 4.3 |
| Arugula | 67.3 ± 7.4 | 66.8 ± 8.3 | 41.0 ± 5.1 |
| Cucumber | 70.5 ± 5.9 | 70.9 ± 3.0 | 51.3 ± 2.3 |
| Strawberry | 66.0 ± 5.4 | 71.7 ± 2.7 | 27.9 ± 5.0 |
| Sample | ΔGswsLW (mJ/m2) | ΔGswsAB (mJ/m2) | ΔGswsTOT (mJ/m2) |
|---|---|---|---|
| E. coli | −1.89 | −19.72 | −21.61 |
| S. enterica | −0.17 | 33.39 | 33.21 |
| S. aureus | −4.87 | 34.31 | 29.45 |
| Apple | −0.35 | −60.96 | −61.31 |
| Arugula | −2.32 | −37.70 | −40.02 |
| Cucumber | −1.11 | −72.75 | −73.86 |
| Strawberry | −5.04 | 26.67 | 21.63 |
| Bacteria × Surface | ΔGadhesion (mJ/m2) | Adhesion (log CFU·g−1) |
|---|---|---|
| S. enterica × Arugula | 5.11 | 5.30 |
| S. enterica × Strawberry | 29.35 | 5.20 |
| S. enterica × Apple | −5.24 | 5.12 |
| S. enterica × Cucumber | −3.44 | 5.07 |
| E. coli × Arugula | −31.43 | 5.84 |
| E. coli × Strawberry | 5.71 | 5.23 |
| E. coli × Apple | −43.28 | 6.20 |
| E. coli × Cucumber | −46.57 | 6.13 |
| S. aureus × Arugula | −5.47 | 5.14 |
| S. aureus × Strawberry | 25.33 | 5.92 |
| S. aureus × Apple | −16.69 | 5.53 |
| S. aureus × Cucumber | −16.54 | 6.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rocha, J.S.; Lepaus, B.M.; Domingos, M.M.; Bernardes, P.C.; de São José, J.F.B. Study of the Factors Involved in the Adhesion Process of Salmonella enterica Enteritidis, Escherichia coli, and Staphylococcus aureus to the Surface of Apple, Arugula, Cucumber, and Strawberry. Foods 2026, 15, 449. https://doi.org/10.3390/foods15030449
Rocha JS, Lepaus BM, Domingos MM, Bernardes PC, de São José JFB. Study of the Factors Involved in the Adhesion Process of Salmonella enterica Enteritidis, Escherichia coli, and Staphylococcus aureus to the Surface of Apple, Arugula, Cucumber, and Strawberry. Foods. 2026; 15(3):449. https://doi.org/10.3390/foods15030449
Chicago/Turabian StyleRocha, Jéssica Souza, Bárbara Morandi Lepaus, Manueli Monciozo Domingos, Patrícia Campos Bernardes, and Jackline Freitas Brilhante de São José. 2026. "Study of the Factors Involved in the Adhesion Process of Salmonella enterica Enteritidis, Escherichia coli, and Staphylococcus aureus to the Surface of Apple, Arugula, Cucumber, and Strawberry" Foods 15, no. 3: 449. https://doi.org/10.3390/foods15030449
APA StyleRocha, J. S., Lepaus, B. M., Domingos, M. M., Bernardes, P. C., & de São José, J. F. B. (2026). Study of the Factors Involved in the Adhesion Process of Salmonella enterica Enteritidis, Escherichia coli, and Staphylococcus aureus to the Surface of Apple, Arugula, Cucumber, and Strawberry. Foods, 15(3), 449. https://doi.org/10.3390/foods15030449

