The Impact of Chlorogenic Acid Liposomes Dip-Coating on the Physicochemical Quality and Microbial Diversity of Low-Salt Cured Fish During Refrigerated Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cured Fish Samples
2.3. Preparation of L-CGA
2.4. pH Measurement
2.5. Peroxide Value Measurement
2.6. Thiobarbituric Acid Reactive Substances Analysis
2.7. The Traditional Microbial Culture
2.8. 16S rRNA High-Throughput Sequencing
2.9. Statistical Analysis
3. Results and Discussions
3.1. The pH Measurement
3.2. Peroxide Value Analysis
3.3. Thiobarbituric Acid Reactive Substances Analysis
3.4. The Traditional Microbial Culture
3.5. 16S rRNA High-Throughput Sequencing
3.5.1. Alpha Diversity Analysis
3.5.2. Differences in Species Abundance Distribution Among Different Groups of Cured Fish
3.5.3. Differences in the Abundance Distribution of Dominant Microflora Among Different Groups of Cured Fish (At the Phylum Level)
3.5.4. Differences in the Abundance Distribution of Dominant Microflora Among Different Groups of Cured Fish (At the Family Level)
3.5.5. Differences in the Abundance Distribution of Dominant Microflora Among Different Groups of Cured Fish (At the Genus Level)
3.5.6. The Taxonomic System Composition of Different Groups of Cured Fish
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BL | Blank liposomes |
| Water | Distilled water |
| CGA | Chlorogenic acid |
| L-CGA | Chlorogenic acid-loaded liposome |
| HTS | High-throughput sequencing |
| POV | Peroxide value |
| TBARS | Thiobarbituric acid reactive substances |
References
- Belleggia, L.; Osimani, A. Fermented Fish and Fermented Fish-Based Products, an Ever-Growing Source of Microbial Diversity: A Literature Review. Food Res. Int. 2023, 172, 113112. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Bragagnolo, N. Influence of Salt on Lipid Oxidation in Meat and Seafood Products: A Review. Food Res. Int. 2017, 94, 90–100. [Google Scholar] [CrossRef]
- Farahani, M.; Shahidi, F.; Yazdi, F.T.; Ghaderi, A. Antimicrobial and Antioxidant Effects of an Edible Coating of Lepidium Sativum Seed Mucilage and Satureja Hortensis, L. Essential Oil in Uncooked Lamb Meat. Food Control 2024, 158, 110240. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, H.; Lyu, X.; Chen, H.; Wei, F. Lipid Oxidation in Food Science and Nutritional Health: A Comprehensive Review. Oil Crop Sci. 2023, 8, 35–44. [Google Scholar] [CrossRef]
- Garba, N.Y.; Fardami, A.Y.; Adamu, A.A.; Shehu, A.A.; Ibrahim, L.; Abdullahi, S.; Aliyu, A.; Abubakar, A.S.; Salisu, A.R.; Abdulrahman, M. The Beneficial Roles of Microbes in Food Production and Preservation: A Review. Int. J. Sci. Glob. Sustain. 2025, 11, 76–92. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, W.; Sun, Y.; Pan, D.; Xia, Q.; Zhou, C.; He, J. Relationship between Flavor Characteristics and Lipid Oxidation in Air-Dried Beef at Different Roasting Stages. Int. J. Gastron. Food Sci. 2024, 37, 100988. [Google Scholar] [CrossRef]
- Liu, J.; Mai, R.; Liu, P.; Guo, S.; Yang, J.; Bai, W. Flavor Formation in Dry-Cured Fish: Regulation by Microbial Communities and Endogenous Enzymes. Foods 2023, 12, 3020. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, E.P.; Brunton, N.P.; Rai, D.K. Polyphenols in Agricultural Grassland Crops and Their Health-Promoting Activities—A Review. Foods 2023, 12, 4122. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.; Foggi, G.; Buccioni, A.; Amarie, R.E.; Tinagli, S.; Scicutella, F.; Casarosa, L.; Secci, G.; Mantino, A.; Mele, M.; et al. Dietary Supplementation with Natural Antioxidants: Assessment of Growth Performance and Meat Quality in Broiler Chickens. Poult. Sci. 2024, 103, 103421. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural Antioxidants against Lipid–Protein Oxidative Deterioration in Meat and Meat Products: A Review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef]
- Williamson, G. The Role of Polyphenols in Modern Nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef]
- Cao, Q.; Du, H.; Huang, Y.; Hu, Y.; You, J.; Liu, R.; Xiong, S.; Manyande, A. The Inhibitory Effect of Chlorogenic Acid on Lipid Oxidation of Grass Carp (Ctenopharyngodon Idellus) during Chilled Storage. Food Bioprocess Technol. 2019, 12, 2050–2061. [Google Scholar] [CrossRef]
- Yang, H.-J.; Lee, J.-H.; Won, M.; Song, K.B. Antioxidant Activities of Distiller Dried Grains with Solubles as Protein Films Containing Tea Extracts and Their Application in the Packaging of Pork Meat. Food Chem. 2016, 196, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Nurkolis, F.; Delarue, J.; Lau, V.; Syahputra, R.A.; Tsopmo, A.; Hardinsyah, H.; Prieto, M.A.; Taslim, N.A.; Tallei, T.E.; Tjandrawinata, R.R.; et al. Global Mapping of Flavonoids in Fruits and Vegetables: Targeting Insulin Receptors, GLP-1R, and Ppars to Mitigate Diabetes. Phytother. Res. 2026, 40, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Adefegha, S.; Salawi, A.; Bumrungpert, A.; Khorasani, S.; Torkaman, S.; Mozafari, M.; Taghavi, E. Encapsulation of Polyphenolic Compounds for Health Promotion and Disease Prevention: Challenges and Opportunities. Nano Micro Biosyst. 2022, 1, 1–12. [Google Scholar] [CrossRef]
- Huang, J.; Xie, M.; He, L.; Song, X.; Cao, T. Chlorogenic Acid: A Review on Its Mechanisms of Anti-Inflammation, Disease Treatment, and Related Delivery Systems. Front. Pharmacol. 2023, 14, 1218015. [Google Scholar] [CrossRef]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef]
- Barcenilla, C.; Álvarez-Ordóñez, A.; López, M.; Alvseike, O.; Prieto, M. Microbiological Safety and Shelf-Life of Low-Salt Meat Products—A Review. Foods 2022, 11, 2331. [Google Scholar] [CrossRef]
- Mebratu, A.T.; Asfaw, Y.T.; Merckx, W.; Hendriks, W.H.; Janssens, G.P. Impact of Brining and Drying Processes on the Nutritive Value of Tambaqui Fish (Colossoma Macropomum). PLoS ONE 2024, 19, e0299926. [Google Scholar] [CrossRef]
- Du, G.; Sun, X. Ethanol Injection Method for Liposome Preparation. In Liposomes: Methods and Protocols; Springer: New York, NY, USA, 2023; pp. 65–70. [Google Scholar]
- Vareltzis, P.; Hultin, H.O.; Autio, W.R. Hemoglobin-Mediated Lipid Oxidation of Protein Isolates Obtained from Cod and Haddock White Muscle as Affected by Citric Acid, Calcium Chloride and pH. Food Chem. 2008, 108, 64–74. [Google Scholar] [CrossRef]
- De Leon, J.A.D.; Borges, C.R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. JoVE 2020, 10–3791. [Google Scholar]
- Ameer, A.; Seleshe, S.; Kim, B.-J.; Kang, S.N. Inoculation of Lactobacillus Sakei on Quality Traits of Dry Fermented Sausages. Prev. Nutr. Food Sci. 2021, 26, 476. [Google Scholar] [CrossRef] [PubMed]
- Klinger, E.; Salminen, H.; Bause, K.; Weiss, J. Effect of pH on Lipid Oxidation and Anthocyanin Stability in Flaxseed Oil-in-water Emulsions with Black Carrot Extract. J. Food Sci. 2025, 90. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Orcajada, S.; Matencio, A.; Vicente-Herrero, C.; Garcia-Carmona, F.; López-Nicolás, J.M. Study of the Fluorescence and Interaction between Cyclodextrins and Neochlorogenic Acid, in Comparison with Chlorogenic Acid. Sci. Rep. 2021, 11, 3275. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Paulauskienė, A.; Gumbytė, M.; Blinstrubienė, A.; Burbulis, N. The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods 2022, 11, 2180. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, R.; Gui, M.; Jiang, Z.; Li, P. Identification of the Specific Spoilage Organism in Farmed Sturgeon (Acipenser Baerii) Fillets and Its Associated Quality and Flavour Change during Ice Storage. Foods 2021, 10, 2021. [Google Scholar] [CrossRef]
- Habibi, M.; Ariaii, P.; Fazeli, F.; Ahmady, M. Investigating the Effect of Nanoemulsion Coatings of Froriepia Subpinnata in Konjac Gum on the Quality and Shelf Life of Quail Meat. J. Food Meas. Charact. 2024, 18, 2977–2994. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Gouvêa, F.d.J.; de Oliveira, V.S.; Mariano, B.J.; Takenaka, N.A.R.; Gamallo, O.D.; da Silva Ferreira, M.; Saldanha, T. Natural Antioxidants as Strategy to Minimize the Presence of Lipid Oxidation Products in Canned Fish: Research Progress, Current Trends and Future Perspectives. Food Res. Int. 2023, 173, 113314. [Google Scholar] [CrossRef]
- Dragoev, S.G.; Staykov, A.S.; Vassilev, K.P.; Balev, D.K.; Vlahova-Vangelova, D.B. Improvement of the Quality and the Shelf Life of the High Oxygen Modified Atmosphere Packaged Veal by Superficial Spraying with Dihydroquercetin Solution. Int. J. Food Sci. 2014, 2014, 629062. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Su, Y.; Cai, Y.; Chang, C.; Li, J.; Sun, Y.; Zhao, Q.; Huang, Z.; Xiong, W.; Gu, L.; Yang, Y. Comparative Analysis on the Properties of Egg Yolk Lipids Extracted by Different Extraction Methods. J. Food Sci. Technol. 2024, 61, 2111–2120. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Gerothanassis, I.P. Analytical and Structural Tools of Lipid Hydroperoxides: Present State and Future Perspectives. Molecules 2022, 27, 2139. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef]
- Cocconcelli, P.S.; Fontana, C. Characteristics and Applications of Microbial Starters in Meat Fermentations. In Meat Biotechnology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 129–148. [Google Scholar]
- Shi, Y.; Wei, P.; Shi, Q.; Cao, J.; Zhu, K.; Liu, Z.; Zhou, D.; Shen, X.; Li, C. Quality Changes and Deterioration Mechanisms in Three Parts (Belly, Dorsal and Tail Muscle) of Tilapia Fillets during Partial Freezing Storage. Food Chem. 2022, 385, 132503. [Google Scholar] [CrossRef]
- Qu, Y.; Yun, J.; Li, Y.; Ai, D.; Zhang, W. Microbial Succession and Its Correlation with the Dynamics of Flavor Compounds Involved in the Fermentation of Longxi Bacon. Front. Microbiol. 2023, 14, 1234797. [Google Scholar] [CrossRef]
- Łepecka, A.; Kołożyn-Krajewska, D. Antioxidant Properties of Food-derived Lactic Acid Bacteria: A Review. Microb. Biotechnol. 2025, 18. [Google Scholar] [CrossRef]
- Valletta, M.; Campolattano, N.; De Chiara, I.; Marasco, R.; Singh, V.P.; Muscariello, L.; Pedone, P.V.; Chambery, A.; Russo, R. A Robust nanoLC High-Resolution Mass Spectrometry Methodology for the Comprehensive Profiling of Lactic Acid Bacteria in Milk Kefir. Food Res. Int. 2023, 173, 113298. [Google Scholar] [CrossRef]
- Abdeen, E.E.-S.; Hussien, H.; Hussan, Z.; Abdella, W. Genotyping and Virulence Genes of Enterococcus Faecalis Isolated Form Kareish Cheese and Minced Meat in Egypt. Res. J. Microbiol. 2016, 11, 133–138. [Google Scholar] [CrossRef][Green Version]
- Li, Y.; Luo, X.; Guo, H.; Bai, J.; Xiao, Y.; Fu, Y.; Wu, Y.; Wan, H.; Huang, Y.; Gao, H. Metabolomics and Metatranscriptomics Reveal the Influence Mechanism of Endogenous Microbe (Staphylococcus Succinus) Inoculation on the Flavor of Fermented Chili Pepper. Int. J. Food Microbiol. 2023, 406, 110371. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Wu, H.; Liu, S.; He, Z. Staphylococcus Inoculation Enhances the Sensorial Attributes of Chinese Bacon by Coordinating the Composition of Flavor Compounds through Amino Acid Metabolism. Food Res. Int. 2024, 178, 113936. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Hammami, R.; Cotter, P.D.; Rebuffat, S.; Said, L.B.; Gaudreau, H.; Bédard, F.; Biron, E.; Drider, D.; Fliss, I. Bacteriocins as a New Generation of Antimicrobials: Toxicity Aspects and Regulations. FEMS Microbiol. Rev. 2021, 45, fuaa039. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The Many Faces of Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, X.; Pan, Y.; Yang, H.; Han, J.; Liu, J.; Liu, W. Specific Surface Modification of Liposomes for Gut Targeting of Food Bioactive Agents. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3685–3706. [Google Scholar] [CrossRef]
- Chan, C.S.; Chan, K.-G.; Ee, R.; Hong, K.-W.; Urbieta, M.S.; Donati, E.R.; Shamsir, M.S.; Goh, K.M. Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs. Front. Microbiol. 2017, 8, 1252. [Google Scholar] [CrossRef]
- Zhou, K.; Deng, N.; Yi, X.; Cai, Y.; Peng, M.; Xiao, N. Baohe Pill Decoction for Diarrhea Induced by High-Fat and High-Protein Diet Is Associated with the Structure of Lactase-Producing Bacterial Community. Front. Cell. Infect. Microbiol. 2022, 12, 1004845. [Google Scholar] [CrossRef]
- Dobrzyński, J.; Wróbel, B.; Górska, E.B. Taxonomy, Ecology, and Cellulolytic Properties of the Genus Bacillus and Related Genera. Agriculture 2023, 13, 1979. [Google Scholar] [CrossRef]
- Rodríguez López, J.; Grande Burgos, M.J.; Pérez Pulido, R.; Iglesias Valenzuela, B.; Gálvez, A.; Lucas, R. Antimicrobial Resistance, Biocide Tolerance, and Bacterial Diversity of a Dressing Made from Coriander and Parsley after Application of Treatments Using High Hydrostatic Pressure Alone or in Combination with Moderate Heat. Foods 2022, 11, 2603. [Google Scholar] [CrossRef]
- Mazhar, S.; Hill, C.; McAuliffe, O. The Genus Macrococcus: An Insight into Its Biology, Evolution, and Relationship with Staphylococcus. Adv. Appl. Microbiol. 2018, 105, 1–50. [Google Scholar]
- Ohnishi, A.; Hasegawa, Y.; Fujimoto, N.; Suzuki, M. Biohydrogen Production by Mixed Culture of Megasphaera Elsdenii with Lactic Acid Bacteria as Lactate-Driven Dark Fermentation. Bioresour. Technol. 2022, 343, 126076. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Wirth, J.S.; Saravanan, V.S. Phylogenomic Analyses of the Staphylococcaceae Family Suggest the Reclassification of Five Species within the Genus Staphylococcus as Heterotypic Synonyms, the Promotion of Five Subspecies to Novel Species, the Taxonomic Reassignment of Five Staphylococcus Species to Mammaliicoccus Gen. Nov., and the Formal Assignment of Nosocomiicoccus to the Family Staphylococcaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 5926–5936. [Google Scholar] [CrossRef]
- Liu, L.; Lan, W.; Wang, Y.; Xie, J. Antibacterial Activity and Mechanism of Slightly Acidic Electrolyzed Water against Shewanella Putrefaciens and Staphylococcus Saprophytic. Biochem. Biophys. Res. Commun. 2022, 592, 44–50. [Google Scholar] [CrossRef]
- Ibrahim, F.; Lebeer, S.; Salvetti, E.; Felis, G.E. The Genus Lactobacillus—Across the Past and Future. In Lactic acid Bacteria; CRC Press: Boca Raton, FL, USA, 2024; pp. 28–39. [Google Scholar]
- Awah, J.; Ukwuru, M.; Alum, E.; Kingsley, T. Bio-Preservative Potential of Lactic Acid Bacteria Metabolites against Fungal Pathogens. Afr. J. Microbiol. Res. 2018, 12, 913–922. [Google Scholar] [CrossRef]
- Wang, S.; Chen, P.; Dang, H. Lactic Acid Bacteria and γ-Aminobutyric Acid and Diacetyl. In Lactic Acid Bacteria: Bioengineering and Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–19. [Google Scholar]
- Yu, P.; Yu, S.; Wang, J.; Guo, H.; Zhang, Y.; Liao, X.; Zhang, J.; Wu, S.; Gu, Q.; Xue, L.; et al. Bacillus Cereus Isolated from Vegetables in China: Incidence, Genetic Diversity, Virulence Genes, and Antimicrobial Resistance. Front. Microbiol. 2019, 10, 948. [Google Scholar] [CrossRef]
- Khadiri, M.; Boubaker, H.; Askarne, L.; Ezrari, S.; Radouane, N.; Farhaoui, A.; El Hamss, H.; Tahiri, A.; Ait Barka, E.; Lahlali, R. Bacillus Cereus B8W8 an Effective Bacterial Antagonist against Major Postharvest Fungal Pathogens of Fruit. Postharvest Biol. Technol. 2023, 200, 112315. [Google Scholar] [CrossRef]







| Code | Color | Morphology | Growth Rate | Function | Identification |
|---|---|---|---|---|---|
| (A) | White | Circular, smooth surface | Relatively slow | Producing short-chain fatty acids | Blautia hydrotrophica |
| (B) | Dark yellow center, pale yellow edge | Irregular margin, crateriform elevation | Relatively fast | Undetermined | Staphylococcus succinus DZXOTU3 |
| (C) | White | Circular with transparent halo | Slow | ① Antimicrobial activity ② Possible spoilage organism | Enterococcus faecalis GI60 |
| (D) | Yellow | Irregular margin, rough surface | Relatively fast | Liquor fermentation; Lipase production | Staphylococcus succinic strain JM40 |
| (E) | White | Circular with central protrusion | Slow | Undetermined | Unidentified |
| (F) | Dark yellow center, pale yellow edge | Circular, smooth surface | Relatively slow | ① Meat fermentation starter ② Possible spoilage organism | Staphylococcus saprophyticus |
| (G) | White | Circular, smooth surface | Extremely fast | Possible spoilage organism | Enterobacter hormaechei |
| Samples | Sequences | OUTs | Shannon | Chao1 | Ace | Simpson | Shannoneven | Coverage |
|---|---|---|---|---|---|---|---|---|
| Water | 35,543.0 | 192.0 | 1.60 | 214.55 | 214.03 | 0.48 | 0.30 | 1.00 |
| BL | 33,620.0 | 175.0 | 1.60 | 196.94 | 189.80 | 0.43 | 0.31 | 1.00 |
| 400 | 27,926.0 | 190.0 | 1.70 | 205.75 | 206.80 | 0.48 | 0.32 | 1.00 |
| 600 | 15,186.0 | 247.0 | 4.11 | 253.56 | 251.93 | 0.03 | 0.75 | 1.00 |
| 800 | 12,358.0 | 259.0 | 3.97 | 267.64 | 266.14 | 0.06 | 0.71 | 1.00 |
| 1000 | 42,648.0 | 137.0 | 1.13 | 172.05 | 168.22 | 0.60 | 0.23 | 1.00 |
| L-400 | 17,621.0 | 241.0 | 4.05 | 264.21 | 254.39 | 0.04 | 0.74 | 1.00 |
| L-600 | 20,440.0 | 214.0 | 2.80 | 221.12 | 222.90 | 0.18 | 0.52 | 1.00 |
| L-800 | 55,364.0 | 184.0 | 0.76 | 205.58 | 206.83 | 0.78 | 0.15 | 1.00 |
| L-1000 | 221,354.0 | 207.0 | 2.48 | 220.14 | 219.40 | 0.26 | 0.46 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, Z.; Wang, Y.; Jiang, Y.; Chen, L.; Yuan, M.; Zhao, L.; Bai, C. The Impact of Chlorogenic Acid Liposomes Dip-Coating on the Physicochemical Quality and Microbial Diversity of Low-Salt Cured Fish During Refrigerated Storage. Foods 2026, 15, 345. https://doi.org/10.3390/foods15020345
Li Z, Wang Y, Jiang Y, Chen L, Yuan M, Zhao L, Bai C. The Impact of Chlorogenic Acid Liposomes Dip-Coating on the Physicochemical Quality and Microbial Diversity of Low-Salt Cured Fish During Refrigerated Storage. Foods. 2026; 15(2):345. https://doi.org/10.3390/foods15020345
Chicago/Turabian StyleLi, Zixin, Yin Wang, Yong Jiang, Lili Chen, Meilan Yuan, Li Zhao, and Chunqing Bai. 2026. "The Impact of Chlorogenic Acid Liposomes Dip-Coating on the Physicochemical Quality and Microbial Diversity of Low-Salt Cured Fish During Refrigerated Storage" Foods 15, no. 2: 345. https://doi.org/10.3390/foods15020345
APA StyleLi, Z., Wang, Y., Jiang, Y., Chen, L., Yuan, M., Zhao, L., & Bai, C. (2026). The Impact of Chlorogenic Acid Liposomes Dip-Coating on the Physicochemical Quality and Microbial Diversity of Low-Salt Cured Fish During Refrigerated Storage. Foods, 15(2), 345. https://doi.org/10.3390/foods15020345

