Basil as a Green Alternative to Synthetic Additives in Clean Label Gilthead Sea Bream Patties
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Fish Fillet
2.2. Plant Material
2.3. Chemicals
2.4. Hydrodistillation (HD) and Supercritical Fluid Extraction (SFE) of Basil
2.5. Characterization of Basil Extracts Obtained by HD and SFE
2.6. Preparation of “Clean Label” Ground Fish Patties
2.7. Physicochemical Analysis
2.8. Lipid Oxidation
2.9. Protein Oxidation
2.10. Total Volatile Basic Nitrogen (TVB-N)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Chemical Profiling Basil EO and LE
3.2. pH, Water Activity and Colorimetric Evaluation of Clean Label Ground Fish Patties During Storage
3.3. Lipid Oxidation of Clean Label Ground Fish Patties
3.4. Protein Oxidation of Clean Label Ground Fish Patties
3.5. TVB-N Profile of Clean Label Ground Fish Patties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.; Bae, S.M.; Yoo, Y.; Park, J.; Jeong, J.Y. Clean-Label Strategies for the Replacement of Nitrite, Ascorbate, and Phosphate in Meat Products: A Review. Foods 2025, 14, 2442. [Google Scholar] [CrossRef]
- Konfo, T.R.C.; Djouhou, F.M.C.; Koudoro, Y.A.; Dahouenon-Ahoussi, E.; Avlessi, F.; Sohounhloue, C.K.D.; Simal-Gandara, J. Essential oils as natural antioxidants for the control of food preservation. Food Chem. Adv. 2023, 2, 100312. [Google Scholar] [CrossRef]
- Singh, B.P.; Ajayi, F.F.; Maqsood, S. A Transition from Animal- to Plant-Based Proteins to Foster Sustainable Food Systems: Advancements on Diverse Sources, Health-Promoting Properties and Applications as Alternatives/Analogues of Animal-Based Proteins. Food Bioprocess Technol. 2025, 18, 10086–10113. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Varela, P.; Peschel, A.O. Consumers’ categorization of food ingredients: Do consumers perceive them as ‘clean label’ producers expect? An exploration with projective mapping. Food Qual. Prefer. 2019, 71, 117–128. [Google Scholar] [CrossRef]
- Nousheen, S.; Amir, I.; Bukhat, H.; Farooq, U.; Batool, S. Fish as a functional food: A comprehensive review of bioactive components and their therapeutic potential for human health. Int. Aquat. Res. 2025, 17, 229–244. [Google Scholar]
- Bhat, Z.F.; Morton, J.D.; Kumar, S.; Bhat, H.F.; Aadil, R.M.; Bekhit, A.E.-D.A. 3D printing: Development of animal products and special foods. Trends Food Sci. Technol. 2021, 118, 87–105. [Google Scholar] [CrossRef]
- Backiam, A.D.S.; Duraisamy, S.; Karuppaiya, P.; Balakrishnan, S.; Sathyan, A.; Kumarasamy, A.; Raju, A. Analysis of the main bioactive compounds from Ocimum basilicum for their antimicrobial and antioxidant activity. Biotechnol. Appl. Biochem. 2023, 70, 2038–2051. [Google Scholar] [CrossRef] [PubMed]
- Pierozan, M.B.; Oliveira Filho, J.G.d.; Cappato, L.P.; Costa, A.C.; Egea, M.B. Essential Oils Against Spoilage in Fish and Seafood: Impact on Product Quality and Future Challenges. Foods 2024, 13, 3903. [Google Scholar] [CrossRef] [PubMed]
- Karoui, R.; Hassoun, A. Efficiency of Rosemary and Basil Essential Oils on the Shelf-Life Extension of Atlantic Mackerel (Scomber scombrus) Fillets Stored at 2 °C. J. AOAC Int. 2017, 100, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, M.; Bhandari, B.; Yang, C. Investigation on fish surimi gel as promising food material for 3D printing. J. Food Eng. 2018, 220, 101–108. [Google Scholar] [CrossRef]
- Gladikostić, N.; Ikonić, B.; Teslić, N.; Zeković, Z.; Božović, D.; Putnik, P.; Bursać Kovačević, D.; Pavlić, B. Essential oils from Apiaceae, Asteraceae, Cupressaceae and Lamiaceae Families Grown in Serbia: Comparative chemical profiling with in vitro antioxidant activity. Plants 2023, 12, 745. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & HealthCare (EDQM). European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2023. [Google Scholar]
- Zeković, Z.; Filip, S.; Vidović, S.; Jokić, S.; Svilović, S. Mathematical modeling of Ocimum basilicum L. supercritical CO2 extraction. Chem. Eng. Technol. 2014, 37, 2123–2128. [Google Scholar] [CrossRef]
- Šojić, B.; Ikonić, P.; Kocić-Tanackov, S.; Peulić, T.; Teslić, N.; Županjac, M.; Lončarević, I.; Zeković, Z.; Popović, M.; Vidaković, S.; et al. Antibacterial activity of selected essential oils against foodborne pathogens and their application in fresh turkey sausages. Antibiotics 2023, 12, 182. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017. [Google Scholar]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Jongberg, S.; Skov, S.H.; Tørngren, M.A.; Skibsted, L.H.; Lund, M.N. Effect of white grape extract and modified atmosphere packaging on lipid and protein oxidation in chill stored beef patties. Food Chem. 2011, 128, 276–283. [Google Scholar] [CrossRef]
- Zavadlav, S.; Lacković, I.; Bursać Kovačević, D.; Greiner, R.; Putnik, P.; Vidaček Filipec, S. Utilizing impedance for quality assessment of European Squid (Loligo vulgaris) during chilled storage. Foods 2019, 8, 624. [Google Scholar] [CrossRef]
- Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med. 2017, 17, 60. [Google Scholar] [CrossRef] [PubMed]
- Raina, A.P.; Kumar, A.; Dutta, M. Chemical characterization of aroma compounds in essential oil isolated from “Holy Basil” (Ocimum tenuiflorum L.) grown in India. Genet. Resour. Crop Evol. 2013, 60, 1727–1735. [Google Scholar] [CrossRef]
- Filip, S.; Vidović, S.; Adamović, D.; Zeković, Z. Fractionation of non-polar compounds of basil (Ocimum basilicum L.) by supercritical fluid extraction (SFE). J. Supercrit. Fluids 2014, 86, 85–90. [Google Scholar] [CrossRef]
- Zekovic, Z.; Filip, S.; Vidovic, S.; Adamovic, D.; Elgndi, A. Basil (Ocimum basilicum L.) essential oil and extracts obtained by supercritical fluid extraction. Acta Period. Technol. 2015, 46, 259–269. [Google Scholar] [CrossRef]
- Occhipinti, A.; Capuzzo, A.; Bossi, S.; Milanesi, C.; Maffei, M.E. Comparative analysis of supercritical CO2 extracts and essential oils from an Ocimum basilicum chemotype particularly rich in T-cadinol. J. Essent. Oil Res. 2013, 25, 272–277. [Google Scholar] [CrossRef]
- Coelho, J.; Veiga, J.; Karmali, A.; Nicolai, M.; Pinto Reis, C.; Nobre, B.; Palavra, A. Supercritical CO2 Extracts and Volatile Oil of Basil (Ocimum basilicum L.) Comparison with Conventional Methods. Separations 2018, 5, 21. [Google Scholar] [CrossRef]
- Filip, S.; Vidović, S.; Vladić, J.; Pavlić, B.; Adamović, D.; Zeković, Z. Chemical composition and antioxidant properties of Ocimum basilicum L. extracts obtained by supercritical carbon dioxide extraction: Drug exhausting method. J. Supercrit. Fluids 2016, 109, 20–25. [Google Scholar] [CrossRef]
- Elgndi, M.A.; Filip, S.; Pavlić, B.; Vladić, J.; Stanojković, T.; Žižak, Ž.; Zeković, Z. Antioxidative and cytotoxic activity of essential oils and extracts of Satureja montana L., Coriandrum sativum L. and Ocimum basilicum L. obtained by supercritical fluid extraction. J. Supercrit. Fluids 2017, 128, 128–137. [Google Scholar] [CrossRef]
- Sharma, H.; Mendiratta, S.K.; Agrawal, R.K.; Gurunathan, K.; Kumar, S.; Singh, T.P. Use of various essential oils as bio preservatives and their effect on the quality of vacuum packaged fresh chicken sausages under frozen conditions. LWT-Food Sci. Technol. 2017, 81, 118–127. [Google Scholar] [CrossRef]
- Pateiro, M.; Vargas, F.C.; Chincha, A.A.I.A.; Sant’Ana, A.S.; Strozzi, I.; Rocchetti, G.; Barba, F.J.; Domínguez, R.; Lucini, L.; do Amaral Sobral, P.J.; et al. Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Res. Int. 2018, 114, 55–63. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Y.; Li, R.; Wang, Q.; Dong, J.; Wang, J.; Lu, S. Thyme essential oil and sausage diameter effects on biogenic amine formation and microbiological load in smoked horse meat sausage. Food Biosci. 2021, 40, 100885. [Google Scholar] [CrossRef]
- Khemakhem, I.; Fuentes, A.; Lerma-García, M.J.; Ayadi, M.A.; Bouaziz, M.; Barat, J.M. Olive leaf extracts for shelf life extension of salmon burgers. Food Sci. Technol. Int. 2018, 25, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Duman, M. Nutritional value and sensory acceptability of fish burger prepared with flaxseed flour. Food Sci. Technol. 2022, 42, e279200. [Google Scholar] [CrossRef]
- Suvanich, V.; Marshall, D.L.; Jahncke, M.L. Microbiological and Color Quality Changes of Channel Catfish Frame Mince During Chilled and Frozen Storage. J. Food Sci. 2008, 65, 151–154. [Google Scholar] [CrossRef]
- Sadeghinejad, N.; Amini Sarteshnizi, R.; Ahmadi Gavlighi, H.; Barzegar, M. Pistachio green hull extract as a natural antioxidant in beef patties: Effect on lipid and protein oxidation, color deterioration, and microbial stability during chilled storage. Lwt 2019, 102, 393–402. [Google Scholar] [CrossRef]
- Jokanović, M.; Ivić, M.; Škaljac, S.; Tomović, V.; Pavlić, B.; Šojić, B.; Zeković, Z.; Peulić, T.; Ikonić, P. Essential oil and supercritical extracts of winter savory (Satureja montana L.) as antioxidants in precooked pork chops during chilled storage. Lwt 2020, 134, 110260. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, T.; Wang, Y.; Li, J. Effects of tea polyphenol coating combined with ozone water washing on the storage quality of black sea bream (Sparus macrocephalus). Food Chem. 2012, 135, 2915–2921. [Google Scholar] [CrossRef]
- Shi, C.; Cui, J.; Yin, X.; Luo, Y.; Zhou, Z. Grape seed and clove bud extracts as natural antioxidants in silver carp (Hypophthalmichthys molitrix) fillets during chilled storage: Effect on lipid and protein oxidation. Food Control 2014, 40, 134–139. [Google Scholar] [CrossRef]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Afolayan, A.J.; Muchenje, V. Phytochemical Constituents and Antioxidant Activity of Sweet Basil (Ocimum basilicum L.) Essential Oil on Ground Beef from Boran and Nguni Cattle. Int. J. Food Sci. 2019, 2019, 2628747. [Google Scholar] [CrossRef]
- Öztürk Kerİmoğlu, B.; Kavuşan, H.S.; SerdaroĞLu, M. The impacts of laurel (Laurus nobilis) and basil (Ocimum basilicum) essential oils on oxidative stability and freshness of sous-vide sea bass fillets. Turk. J. Vet. Anim. Sci. 2020, 44, 101–109. [Google Scholar] [CrossRef]
- Khoshnoudi-Nia, S.; Moosavi-Nasab, M. Comparison of various chemometric analysis for rapid prediction of thiobarbituric acid reactive substances in rainbow trout fillets by hyperspectral imaging technique. Food Sci. Nutr. 2019, 7, 1875–1883. [Google Scholar] [CrossRef]
- Suárez-Medina, M.D.; Sáez-Casado, M.I.; Martínez-Moya, T.; Rincón-Cervera, M.Á. The effect of low temperature storage on the lipid quality of fish, either alone or combined with alternative preservation technologies. Foods 2024, 13, 1097. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.-K.; Choi, J.S.; Yang, H.-S.; Park, T.-S.; Yim, D.-G. Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage. Meat Sci. 2018, 146, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2010, 55, 83–95. [Google Scholar] [CrossRef]
- Hu, L.; Ren, S.; Shen, Q.; Ye, X.; Chen, J.; Ling, J. Protein oxidation and proteolysis during roasting and in vitro digestion of fish (Acipenser gueldenstaedtii). J. Sci. Food Agric. 2018, 98, 5344–5351. [Google Scholar] [CrossRef] [PubMed]
- Romano, R.; De Luca, L.; Aiello, A.; Pagano, R.; Di Pierro, P.; Pizzolongo, F.; Masi, P. Basil (Ocimum basilicum L.) Leaves as a Source of Bioactive Compounds. Foods 2022, 11, 3212. [Google Scholar] [CrossRef]
- Hematyar, N.; Rustad, T.; Sampels, S.; Kastrup Dalsgaard, T. Relationship between lipid and protein oxidation in fish. Aquac. Res. 2019, 50, 1393–1403. [Google Scholar] [CrossRef]
- Abou El-Soud, N.H.; Deabes, M.; Abou El-Kassem, L.; Khalil, M. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil. Open Access Maced. J. Med. Sci. 2015, 3, 374–379. [Google Scholar] [CrossRef]
- Sunčica, K.T.; Gordana, D.; Jelena, L.; Ilija, T.; Danijela, T. Antifungal activities of basil (Ocimum basilicum L.) extract on Fusarium species. Afr. J. Biotechnol. 2011, 10, 10188–10195. [Google Scholar] [CrossRef]
- Shirazi, M.T.; Gholami, H.; Kavoosi, G.; Rowshan, V.; Tafsiry, A. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Sci. Nutr. 2014, 2, 146–155. [Google Scholar] [CrossRef] [PubMed]




| Sample | EO | LE | |||||
|---|---|---|---|---|---|---|---|
| Compound | RT (min) | Relative Percentage (%) | Std | Relative Percentage (%) | Std | Identification Method | |
| 1 | α-Thujene | 3.735 | 0.04 | 0.00 | / | / | NIST, AI (924) |
| 2 | α-Pinene | 3.868 | 0.27 | 0.02 | 0.08 | 0.00 | NIST, AI (932) |
| 3 | Camphene | 4.159 | 0.04 | 0.00 | / | / | NIST, AI (946) |
| 4 | Sabinene | 4.678 | 0.08 | 0.00 | 0.05 | 0.00 | AI (969) |
| 5 | β-Pinene | 4.757 | 0.51 | 0.00 | 0.19 | 0.01 | NIST, AI (974) |
| 6 | Myrcene | 5.07 | 0.20 | 0.00 | 0.07 | 0.01 | NIST, AI (988) |
| 7 | α-Terpinene | 5.721 | 0.07 | 0.01 | / | / | NIST, AI (1014) |
| 8 | p-Cymene | 5.959 | 0.07 | 0.01 | 0.03 | 0.00 | NIST, AI (1020) |
| 9 | Limonene+β-Phellandrene | 6.065 | 0.10 | 0.03 | 0.05 | 0.01 | NIST, AI (1024/1025) |
| 10 | Eucalyptol (1,8-Cineole) | 6.129 | 6.50 | 0.03 | 3.68 | 0.04 | NIST, AI (1026), ST |
| 11 | Lavender lactone | 6.409 | / | / | 0.28 | 0.03 | AI (1034) |
| 12 | trans-β-Ocimene | 6.642 | 0.07 | 0.01 | / | / | NIST, AI (1044) |
| 13 | γ-Terpinene | 6.965 | 0.15 | 0.01 | 0.05 | 0.00 | NIST, AI (1054) |
| 14 | cis-Sabinene hydrate | 7.23 | 0.06 | 0.01 | 0.21 | 0.01 | NIST, AI (1065) |
| 15 | cis-Linalool oxide (furanoid) | 7.378 | 0.87 | 0.03 | 2.25 | 0.02 | NIST, AI (1067) |
| 16 | trans-Linalool oxide (furanoid) | 7.855 | 0.70 | 0.04 | 2.00 | 0.03 | NIST, AI (1084) |
| 17 | Linalool | 8.268 | 66.95 | 0.66 | 60.80 | 0.27 | NIST, AI (1095) |
| 18 | Camphor | 9.777 | 0.74 | 0.02 | 0.61 | 0.01 | NIST, AI (1141) |
| 19 | Borneol | 10.656 | 0.24 | 0.02 | 0.17 | 0.01 | NIST, AI (1165) |
| 20 | Epoxylinalol | 10.804 | / | / | 0.28 | 0.01 | NIST |
| 21 | Menthol | 10.947 | 0.10 | 0.01 | / | / | NIST, AI (1167) |
| 22 | Terpinen-4-ol | 11.043 | 0.66 | 0.03 | 0.55 | 0.00 | NIST, AI (1174) |
| 23 | α-Terpineol | 11.599 | 0.71 | 0.01 | 0.35 | 0.05 | NIST, AI (1186) |
| 24 | 2,6-Dimethyl-3,7-octadiene-2,6-diol | 11.699 | / | / | 1.06 | 0.02 | NIST |
| 25 | Estragole | 11.863 | 0.75 | 0.03 | 0.69 | 0.01 | NIST, AI (1195) |
| 26 | Carvone | 13.664 | / | / | 0.09 | 0.01 | NIST, AI (1239) |
| 27 | Geraniol | 14.214 | 0.44 | 0.03 | 0.65 | 0.02 | NIST, AI (1249), ST |
| 28 | Bornyl acetate | 15.29 | 0.29 | 0.01 | 0.24 | 0.01 | NIST, AI (1284) |
| 29 | 1,5,5-Trimethyl-6-methylene-cyclohexene | 17.302 | 0.07 | 0.01 | 0.12 | 0.00 | NIST |
| 30 | α-Cubebene | 17.815 | 0.09 | 0.00 | 0.10 | 0.00 | NIST, AI (1345) |
| 31 | Eugenol | 18.377 | 0.73 | 0.05 | 2.82 | 0.07 | NIST, AI (1356) |
| 32 | α-Copaene | 18.832 | 0.18 | 0.02 | 0.28 | 0.01 | NIST, AI (1374) |
| 33 | β-Elemene | 19.52 | 1.94 | 0.03 | 2.58 | 0.02 | NIST, AI (1389) |
| 34 | trans-Caryophyllene | 20.495 | 0.32 | 0.01 | 0.59 | 0.02 | NIST, AI (1417) |
| 35 | β-Copaene | 20.956 | 0.08 | 0.01 | 0.12 | 0.01 | NIST, AI (1430) |
| 36 | α-trans-Bergamotene | 21.252 | 1.83 | 0.05 | 1.98 | 0.06 | NIST, AI (1432) |
| 37 | α-Guaiene | 21.406 | 0.55 | 0.04 | 0.93 | 0.02 | NIST, AI (1437) |
| 38 | α-Humulene (α-Caryophyllene) | 21.856 | 0.37 | 0.01 | 0.46 | 0.01 | NIST, AI (1452) |
| 39 | cis-Muurola-4(14),5-diene | 22.263 | 0.27 | 0.01 | 0.38 | 0.00 | NIST |
| 40 | Germacrene D | 22.962 | 1.71 | 0.06 | 3.55 | 0.01 | NIST, AI (1484), ST |
| 41 | Bicyclogermacrene | 23.54 | 0.37 | 0.00 | 0.62 | 0.01 | NIST, AI (1500) |
| 42 | α-Bulnesene (δ-Guaiene) | 23.979 | 0.90 | 0.00 | 1.59 | 0.02 | NIST, AI (1509) |
| 43 | γ-Cadinene | 24.292 | 1.73 | 0.09 | 2.55 | 0.05 | NIST, AI (1513) |
| 44 | trans-Calamenene | 24.642 | 0.13 | 0.01 | 0.14 | 0.03 | NIST, AI (1521) |
| 45 | δ-Cadinene | 24.715 | 0.27 | 0.03 | 0.20 | 0.02 | NIST, AI (1522) |
| 46 | Spathulenol | 26.706 | 0.81 | 0.06 | 0.58 | 0.01 | NIST, AI (1577) |
| 47 | Cubenol <1,10-di-epi-> | 28.099 | 0.80 | 0.01 | 0.62 | 0.01 | NIST, AI (1617) |
| 48 | τ-Cadinol | 29.084 | 5.19 | 0.23 | 4.06 | 0.05 | NIST, AI (1638) |
| 49 | α-Cadinol | 29.597 | 0.25 | 0.01 | 0.29 | 0.02 | NIST, AI (1652) |
| Monoterpene hydrocarbons | 1.59 | 0.52 | |||||
| Sesquiterpene hydrocarbons | 10.71 | 16.06 | |||||
| Oxygenated monoterpenes | 79.72 | 75.38 | |||||
| Oxygenated sesquiterpenes | 7.04 | 5.55 | |||||
| Other | 0.07 | 1.46 | |||||
| Total | 99.23 | 99.05 | |||||
| EO | LE | |||
|---|---|---|---|---|
| Compound | mg/g | Std | mg/g | Std |
| Eucalyptol (1,8-Cineole) | 36.65 | 1.09 | 12.21 | 0.05 |
| Germacrene D | 15.99 | 0.14 | 6.3 | 0.01 |
| Geraniol | 10.38 | 0.04 | 14.97 | 0.05 |
| pH Values | |||||
| Storage day | Treatments | ||||
| GFPC | GFP1 | GFP2 | GFP3 | GFP4 | |
| 0 | 5.97 ± 0.06 aA | 5.99 ± 0.05 abA | 6.13 ± 0.02 bB | 5.98 ± 0.02 aA | 6.23 ± 0.01 bC |
| 1 | 6.03 ± 0.01 abA | 6.06 ± 0.02 bcA | 6.03 ± 0.03 aA | 6.05 ± 0.01 aA | 6.04 ± 0.01 aA |
| 2 | 6.08 ± 0.04 bA | 6.10 ± 0.01 cA | 6.06 ± 0.02 abA | 6.08 ± 0.05 aA | 6.06 ± 0.01 aA |
| 3 | 6.01 ± 0.03 abA | 5.96 ± 0.05 aA | 6.08 ± 0.08 abA | 6.05 ± 0.11 aA | 6.00 ± 0.07 aA |
| aw Values | |||||
| Storage day | Treatments | ||||
| GFPC | GFP1 | GFP2 | GFP3 | GFP4 | |
| 0 | 0.959 ± 0.001 aA | 0.964 ± 0.001 aB | 0.964 ± 0.001 aB | 0.968 ± 0.001 cC | 0.958 ± 0.001 aA |
| 1 | 0.961 ± 0.004 aA | 0.962 ± 0.001 aA | 0.965 ± 0.006 abA | 0.965 ± 0.001 aA | 0.961 ± 0.004 bA |
| 2 | 0.966 ± 0.001 bB | 0.960 ± 0.006 aA | 0.964 ± 0.001 aAB | 0.961 ± 0.002 bA | 0.963 ± 0.001 cAB |
| 3 | 0.965 ± 0.001 bA | 0.969 ± 0.002 bB | 0.969 ± 0.002 bB | 0.964 ± 0.001 aA | 0.966 ± 0.001 dA |
| L* Values | |||||
| Storage day | Treatments | ||||
| GFPC | GFP1 | GFP2 | GFP3 | GFP4 | |
| 0 | 71.43 ± 3.55 aA | 69.47 ± 2.04 aA | 71.32 ± 1.35 abA | 72.57 ± 2.97 aA | 70.55 ± 2.40 aA |
| 1 | 68.62 ± 3.89 aA | 69.40 ± 7.66 aA | 70.66 ± 2.97 aA | 70.27 ± 1.39 aA | 71.80 ± 3.34 aA |
| 2 | 71.43 ± 3.57 aA | 71.43 ± 3.56 aAB | 71.43 ± 3.57 aAB | 71.43 ± 3.58 bAB | 72.04 ± 3.01 aB |
| 3 | 71.78 ± 0.88 aA | 70.73 ± 1.22 aA | 73.54 ± 1.19 bB | 71.98 ± 0.65 aA | 71.70 ± 1.54 aA |
| a* Values | |||||
| Storage day | Treatments | ||||
| GFPC | GFP1 | GFP2 | GFP3 | GFP4 | |
| 0 | 2.10 ± 2.62 aA | 2.31 ± 1.31 aA | 1.33 ± 0.42 aA | 1.52 ± 0.65 aA | 1.89 ± 0.94 aA |
| 1 | 0.75 ± 0.57 aA | 1.92 ± 1.45 aA | 0.72 ± 0.85 aA | 0.64 ± 0.71 aA | 1.58 ± 1.29 aA |
| 2 | 0.12 ± 0.58 abAB | 0.06 ± 0.44 aA | 0.76 ± 0.49 aBC | 0.52 ± 0.47 aABC | 1.13 ± 0.33 aC |
| 3 | 0.75 ± 0.35 aAB | 0.17 ± 0.25 aA | 1.08 ± 0.38 aB | 0.56 ± 0.58 aAB | 1.83 ± 0.46 aC |
| b* Values | |||||
| Storage day | Treatments | ||||
| GFPC | GFP1 | GFP2 | GFP3 | GFP4 | |
| 0 | 8.46 ± 2.09 abA | 8.28 ± 1.03 aA | 8.06 ± 0.74 aA | 8.60 ± 1.00 aA | 9.12 ± 0.87 aA |
| 1 | 9.37 ± 2.08 abA | 15.61 ± 6.67 bB | 8.32 ± 2.29 aA | 9.78 ± 1.95 aA | 10.35 ± 1.28 aA |
| 2 | 6.95 ± 2.95 aB | 8.55 ± 1.31 aAB | 10.23 ± 1.32 bA | 8.49 ± 1.95 aAB | 10.47 ± 1.24 aA |
| 3 | 11.31 ± 0.72 bAB | 10.11 ± 1.14 aA | 12.61 ± 0.54 cB | 10.37 ± 2.68 aA | 12.47 ± 1.06 bB |
| ΔΕ Values | |||||
| Storage day | Treatments | ||||
| GFPC | GFP1 | GFP2 | GFP3 | GFP4 | |
| 0 | - | 8.79 ± 0.95 bC | 1.57 ± 0.67 bAB | 2.33 ± 2.34 aA | 2.58 ± 0.81 aA |
| 1 | - | 9.26 ± 8.18 bB | 3.48 ± 1.68 aA | 3.06 ± 1.02 bA | 3.80 ± 1.18 abAB |
| 2 | - | 2.72 ± 0.50 aA | 3.34 ± 0.46 aA | 4.75 ± 0.33 abAB | 3.33 ± 1.90 abA |
| 3 | - | 3.01 ± 0.38 aA | 4.88 ± 0.75 cC | 3.55 ± 0.39 abAB | 4.28 ± 1.00 bCB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Šojić, B.; Zavadlav, S.; Bursać Kovačević, D.; Seratlić, N.; Vojvodić, S.; Ikonić, P.; Peulić, T.; Teslić, N.; Županjac, M.; Pavlić, B. Basil as a Green Alternative to Synthetic Additives in Clean Label Gilthead Sea Bream Patties. Foods 2026, 15, 198. https://doi.org/10.3390/foods15020198
Šojić B, Zavadlav S, Bursać Kovačević D, Seratlić N, Vojvodić S, Ikonić P, Peulić T, Teslić N, Županjac M, Pavlić B. Basil as a Green Alternative to Synthetic Additives in Clean Label Gilthead Sea Bream Patties. Foods. 2026; 15(2):198. https://doi.org/10.3390/foods15020198
Chicago/Turabian StyleŠojić, Branislav, Sandra Zavadlav, Danijela Bursać Kovačević, Nadežda Seratlić, Sanja Vojvodić, Predrag Ikonić, Tatjana Peulić, Nemanja Teslić, Miloš Županjac, and Branimir Pavlić. 2026. "Basil as a Green Alternative to Synthetic Additives in Clean Label Gilthead Sea Bream Patties" Foods 15, no. 2: 198. https://doi.org/10.3390/foods15020198
APA StyleŠojić, B., Zavadlav, S., Bursać Kovačević, D., Seratlić, N., Vojvodić, S., Ikonić, P., Peulić, T., Teslić, N., Županjac, M., & Pavlić, B. (2026). Basil as a Green Alternative to Synthetic Additives in Clean Label Gilthead Sea Bream Patties. Foods, 15(2), 198. https://doi.org/10.3390/foods15020198

