Shelf Life Prediction of Longan with Intermediate Moisture Using Osmotic Dehydration, Combined with Different Packaging and Storage Temperatures
Abstract
1. Introduction
2. Materials and Methods
2.1. Intermediate Moisture Longan Preparation
2.2. Physicochemical Properties
2.3. Microbial Analysis
2.4. Consumer Acceptance
2.5. Accelerated Shelf Life Testing Procedure and Kinetics Calculations
2.6. Water Vapor Permeability of Bags
2.7. Statistical Analysis
3. Results and Discussion
3.1. Quality Changes in IML During Storage Time
3.1.1. Water Activity (aw) and Moisture Contents (MCs)
3.1.2. Microbial Analysis
3.1.3. Color Analysis
3.1.4. Textural Analysis
3.1.5. Consumer Acceptance
3.2. Shelf Life Prediction of Intermediate Moisture Longan
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Al | Aluminum |
| aw | Water activity |
| BLGBB | Brilliant Green Lactose Bile Broth |
| IML | Intermediate Moisture Longan |
| MAP | Modified Atmosphere Packaging |
| MC | Moisture Content |
| OD | Osmotic Dehydration |
| PCA | Plate Count Agar |
| PDA | Potato Dextrose Agar |
| LSB | Lactose Broth |
| TBC | Total Bacterial Count |
| YMC | Yeast and Mold Count |
References
- Boyer, R.R.; Huff, K. Using Dehydration to Preserve Fruits, Vegetables, and Meats; Virginia Tech: Blacksburg, VA, USA; Virginia State University: Petersburg, VA, USA, 2009; pp. 348–597. [Google Scholar]
- Asghari, A.; Zongo, P.A.; Osse, E.F.; Aghajanzadeh, S.; Raghavan, V.; Khalloufi, S. Review of osmotic dehydration: Promising technologies for enhancing products’ attributes, opportunities, and challenges for the food industries. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13346. [Google Scholar] [CrossRef]
- Mari, A.; Parisouli, D.N.; Krokida, M. Exploring osmotic dehydration for food preservation: Methods, modelling, and modern applications. Foods 2024, 13, 2783. [Google Scholar] [CrossRef]
- Saha, S. IMF: To enhance the shelf-life of food. Int. J. Mod. Trends Sci. Technol. 2020, 6, 103–108. [Google Scholar] [CrossRef]
- Silva, K.S.; Fernandes, M.A.; Mauro, M.A. Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. J. Food Eng. 2014, 134, 37–44. [Google Scholar] [CrossRef]
- Chavan, U.; Amarowicz, R. Osmotic dehydration process for preservation of fruits and vegetables. J. Food Res. 2012, 1, 202–220. [Google Scholar] [CrossRef]
- Achariyaviriya, A.; Somchart, S.; Tiansuwan, J. Study of longan flesh drying. Dry. Technol. 2001, 19, 2315–2329. [Google Scholar] [CrossRef]
- Ahmed, I.; Qazi, I.M.; Jamal, S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov. Food Sci. Emerg. Technol. 2016, 34, 29–43. [Google Scholar] [CrossRef]
- Pavkov, I.; Radojčin, M.; Stamenković, Z.; Kešelj, K.; Tylewicz, U.; Sipos, P.; Ponjičan, O.; Sedlar, A. Effects of Osmotic Dehydration on the Hot Air Drying of Apricot Halves: Drying Kinetics, Mass Transfer, and Shrinkage. Processes 2021, 9, 202. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gowda, I.D. Development of intermediate-moisture slices of papaya (Carica papaya L.) by hurdle technology. J. Hortic. Sci. 2016, 11, 67–71. [Google Scholar] [CrossRef]
- Awulachew, M.T. Understanding to the shelf-life and product stability of foods. J. Food Technol. 2021, 5, 1–5. [Google Scholar]
- Chung, Y.; Green, W.H. New modified Arrhenius equation to describe the temperature dependence of liquid phase reaction rates. Chem. Eng. J. 2025, 516, 163300. [Google Scholar] [CrossRef]
- Lai, D.J.; Heldman, D.R. Analysis of kinetics of quality change in frozen foods 1. J. Food Process Eng. 1982, 6, 179–200. [Google Scholar] [CrossRef]
- Dak, M.; Sagar, V.; Jha, S. Shelf-life and kinetics of quality change of dried pomegranate arils in flexible packaging. Food Packag. Shelf Life 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Deng, Y.; Lai, C.; Zhang, Y.; Zhou, P.; Liu, G.; Tang, X.; Li, P.; Zhao, Z.; Zhang, M.; Wei, Z. Effects of pretreatment methods on the physicochemical properties of dried longan (Dimocarpus longan Lour.) pulps. J. Food Sci. 2023, 88, 3474–3493. [Google Scholar] [CrossRef]
- Ganje, M.; Jafari, S.M.; Dusti, A.; Dehnad, D.; Amanjani, M.; Ghanbari, V. Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing. Food Bioprod. Process. 2016, 97, 12–19. [Google Scholar] [CrossRef]
- Kohli, D.; Loushigam, G.; Richa, R.; Bajad, R. Recent Advances in Food Packaging for Shelf Life of Food. In Food Production, Diversity, and Safety Under Climate Change; Chakraborty, R., Mathur, P., Roy, S., Eds.; Advances in Science, Technology & Innovation; Springer Nature: Cham, Switzerland, 2024; pp. 273–284. [Google Scholar]
- Ma, L.; Zhang, M.; Bhandari, B.; Gao, Z. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci. Technol. 2017, 64, 23–38. [Google Scholar] [CrossRef]
- Astuti, S.D.; Lestari, S.; Widarni, S.; Wijanarko, G.; Wibawa, F.N. Shelf life prediction of carica seeds pow-der using accelerated method. IOP Conf. Ser. Earth Environ. Sci. 2020, 653, 012055. [Google Scholar] [CrossRef]
- Jena, S.; Das, H. Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder. J. Food Eng. 2012, 108, 135–142. [Google Scholar] [CrossRef]
- Man, C.; Jones, A. Shelf Life Evaluation of Foods; Chapman and Hall: London, UK, 1994. [Google Scholar] [CrossRef]
- Prasad, K.; Neha, P.; Lal, M.K. Cultivation and post-harvest handling techniques of potential future crop ‘longan’(Dimocarpus longan Lour) in Asia pacific region-A review. Res. Crops 2017, 18, 384–392. [Google Scholar] [CrossRef]
- Saengnil, K.; Chumyam, A.; Faiyue, B.; Uthaibutra, J. Use of chlorine dioxide fumigation to alleviate enzymatic browning of harvested ‘Daw’ longan pericarp during storage under ambient conditions. Postharvest Biol. Technol. 2014, 91, 49–56. [Google Scholar] [CrossRef]
- Shi, S.; Wang, W.; Liu, L.; Shu, B.; Wei, Y.; Jue, D.; Fu, J.; Xie, J.; Liu, C. Physico-chemical properties of longan fruit during development and ripening. Sci. Hortic. 2016, 207, 160–167. [Google Scholar] [CrossRef]
- Serrato-Diaz, L.M.; Rivera-Vargas, L.I.; Goenaga, R.; French-Monar, R.D. First report of Lasiodiplodia theobromae causing inflorescence blight and fruit rot of longan (Dimocarpus longan L.) in Puerto Rico. Plant Dis. 2014, 98, 279. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, T.; Xu, J.; Zhu, D.; Han, D.; Wu, Z. Comprehensive evaluation of the ‘Shixia’ longan quality under postharvest ambient storage: The volatile compounds played a critical part. Horticulturae 2024, 10, 585. [Google Scholar] [CrossRef]
- Hough, G.; Garita, L. Methodology for sensory shelf-life estimation: A review. J. Sens. Studies 2012, 27, 137–147. [Google Scholar] [CrossRef]
- Layeghinia, N.; Karimi, S.; Abbasi, H.; Silavi, K. Effect of osmotic dehydration on qualitative and nutritional characteristics and kinetics of microwave drying of Iranian Quince slices. J. Agric. Food Res. 2025, 20, 101749. [Google Scholar] [CrossRef]
- Le, V.H.P.; Chokumnoyporn, N.; Sriwattana, S. Using osmotic dehydration for the production of intermediate moisture Longan. In Proceedings of the 6th International Graduate Research Conference, Chiang Mai, Thailand, 10 February 2017. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Association of Analytical Communities: Rockville, Maryland, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 19th ed.; Association of Analytical Communities: Rockville, Maryland, USA, 2012. [Google Scholar]
- Bacteriological Analytical Manual. Available online: https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam (accessed on 3 September 2025).
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. J. Food Sci. 1957, 11, 9–14. [Google Scholar]
- Panwar, S.; Gehlot, R.; Siddiqui, S. Effect of osmotic agents on intermediate moisture Aonla segments during storage. Int. J. Agric. Food Technol. 2013, 4, 537–542. [Google Scholar]
- Centre for Food Safety. Microbiological Guidelines for Food (For Ready-to-Eat Food in General and Specific Food Items); Centre for Food Safety, Food and Environmental Hygiene Department: Hong Kong, China, 2014. [Google Scholar]
- Qiu, L.; Zhang, M.; Tang, J.; Adhikari, B.; Cao, P. Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Res. Int. 2019, 116, 90–102. [Google Scholar] [CrossRef]
- Saxena, S.; Mishra, B.B.; Chander, R.; Sharma, A. Shelf stable intermediate moisture pineapple (Ananas comosus) slices using hurdle technology. LWT 2009, 42, 1681–1687. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Sujatha, V.; Ramesh, C.; Dilip Babu, J. Development of shelf stable intermediate moisture carrot (Daucus carota) shreds using radiation as hurdle technology. Int. Food Res. J. 2013, 20, 775–781. [Google Scholar]
- Homhuan, K. Color and texture improvement of dried longan by Vacuum Impregnation Technology. Master’s Thesis, Graduate Admission Chiang Mai University, Chiang Mai, Thailand, August 2013. [Google Scholar]
- Arvanitoyannis, I. Modified Atmosphere and Active Packaging Technologies; CRC Press: Boca Raton, Florida, United States, 2012. [Google Scholar]
- Muzaffar, K.; Kumar, P. Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technol. 2016, 291, 322–327. [Google Scholar] [CrossRef]
- El Hosry, L.; Elias, V.; Chamoun, V.; Halawi, M.; Cayot, P.; Nehme, A.; Bou-Maroun, E. Maillard Reaction: Mechanism, Influencing Parameters, Advantages, Disadvantages, and Food Industrial Applications: A Review. Foods 2025, 14, 1881. [Google Scholar] [CrossRef]
- Somjai, C.; Siriwoharn, T.; Kulprachakarn, K.; Chaipoot, S.; Phongphisutthinant, R.; Chaiyana, W.; Wiriyacharee, P. Effect of drying process and long-term storage on characterization of Longan pulps and their biological aspects: Antioxidant and cholinesterase inhibition activities. LWT 2022, 154, 112692. [Google Scholar] [CrossRef]
- Somjai, T.; Siriwoharn, K.; Kulprachakarn, S.; Chaipoot, R.; Phongphisutthinant, P. Utilization of Maillard reaction in moist-dry-heating system to enhance physicochemical and antioxidative properties of dried whole longan fruit. Heliyon 2021, 7, e07094. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Huang, J.; Hu, J.; Zhang, Y.; Wang, S.; Li, C.; Marcone, M.; Xie, M. Effect of pH, temperature and heating time on the formation of furan in sugar–glycine model systems. Food Sci. Hum. Well 2013, 2, 87–92. [Google Scholar] [CrossRef]
- Wangcharoen, W.; Morasuk, W. Antioxidant capacity changes of bird chili (Capsicum frutescens Linn.) during hot air drying. ANRES 2009, 43, 12–20. [Google Scholar]
- Robertson, G.L. Food Packaging Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 317–318. [Google Scholar]
- Kashiwakura, Y.; Sogabe, T.; Anantawittayanon, S.; Mochizuki, T.; Kawai, K. Water Sorption Isotherm and Critical Water Activity of Amorphous Water-Soluble Carbohydrates Characterized by the Glass Transition Temperature. J. Appl. Glycosci. 2024, 71, 15–21. [Google Scholar] [CrossRef]
- Hancock, B.C.; Zografi, G. The relationship between the glass transition temperature and water content in amorphous pharmaceuticals. Pharm. Res. 1994, 11, 471–477. [Google Scholar] [CrossRef]
- Roos, Y.H.; Drusch, S. Phase Transitions in Foods; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Sablani, S.S.; Syamaladevi, R.M.; Swanson, B.G. Evaluating water activity and glass transition concepts for food stability. J. Food Eng. 2007, 83, 266–271. [Google Scholar] [CrossRef]
- Chaikham, P.; Kreungngern, D.; Apichartsrangkoon, A. Combined microwave and hot air convective dehydration on physical and biochemical qualities of dried longan flesh. Int. Food Res. J. 2013, 20, 2145. [Google Scholar]
- Tipwichai, B.; Sriwattana, S. Optimization of strawberry-longan bar formulation using response surface methodology. J. Nat. Sci. 2012, 11, 171–180. [Google Scholar]
- Grosso, N.R.; Resurreccion, A.V.A. Predicting consumer acceptance ratings of cracker-coated and roasted peanuts from descriptive analysis and hexanal measurements. J. Food Sci. 2002, 67, 1530–1537. [Google Scholar] [CrossRef]
- Chandra, S.; Kumari, D. Recent development in osmotic dehydration of fruit and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 552–561. [Google Scholar] [CrossRef]
- Akharume, F.; Singh, K.; Jacyznski, J.; Sivanandan, L. Microbial shelf stability assessment of osmotically dehydrated smoky apples. LWT 2017, 90, 61–69. [Google Scholar] [CrossRef]
- Jimeno, B.; Rosales, A.; Domingo, C.J. Shelf-life prediction for Indian mango roll using accelerated shelf-life testing (ASLT) shelf-life plot approach. Food Res. 2020, 4, 839–845. [Google Scholar] [CrossRef] [PubMed]





| Storage (Weeks) | Al Bag with Nitrogen | Al Bag without Nitrogen | Clear Plastic Bag | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 °C | 25 °C | 35 °C | 45 °C | 4 °C | 25 °C | 35 °C | 45 °C | 4 °C | 25 °C | 35 °C | 45 °C | ||
| Total Bacterial Count (cfu/g) | 0 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 |
| 4 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | |
| 8 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | |
| 12 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | 40 ± 4 | 40 ± 6 | <2.5 × 10−1 | <2.5 × 10−1 | |
| 16 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | 55 ± 4 | 25 ± 3 | 20 ± 2 | 20 ± 4 | 30 ± 5 | 20 ± 4 | 45 ± 6 | 50 ± 10 | |
| 20 | <2.5 × 10−1 | <2.5 × 10−1 | - | - | 55 ± 2 | 60 ± 4 | - | - | 45 ± 3 | 30 ± 2 | - | - | |
| 24 | 65 ± 2 | 65 ± 8 | - | - | 75 ± 11 | 85± 9 | - | - | 50 ± 5 | 55 ± 5 | - | - | |
| Yeast and Mold Count (cfu/g) | 0 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 |
| 4 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | |
| 8 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | |
| 12 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | |
| 16 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | <2.5 × 10−1 | |
| 20 | <2.5 × 10−1 | <2.5 × 10−1 | − | − | <2.5 × 10−1 | <2.5 × 10−1 | − | − | <2.5 × 10−1 | <2.5 × 10−1 | − | − | |
| 24 | <2.5 × 10−1 | <2.5 × 10−1 | − | − | <2.5 × 10−1 | <2.5 × 10−1 | − | − | <2.5 × 10−1 | <2.5 × 10−1 | − | − | |
| Storage (Weeks) | Al Bag with Nitrogen | Al Bag Without Nitrogen | Clear Plastic Bag | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 °C | 25 °C | 35 °C | 45 °C | 4 °C | 25 °C | 35 °C | 45 °C | 4 °C | 25 °C | 35 °C | 45 °C | ||
| Overall acceptance | 3 | 6.4 ± 1.3 | 6.2 ± 1.5 | 5.9 ± 1.5 | 5.7 ± 1.5 | 6.3 ± 1.4 | 5.9 ± 1.4 | 4.8 ± 1.4 | 4.1 ± 1.5 | 6.4 ± 1.3 | 5.7 ± 1.6 | 5.2 ± 1.4 | 4.5 ± 1.6 |
| 6 | 6.5 ± 1.5 | 6.3 ± 1.6 | 5.7 ± 1.6 | 5.0 ± 1.6 | 6.5 ± 1.3 | 5.7 ± 1.3 | 4.5 ± 1.7 | 3.9 ± 1.9 | 6.4 ± 1.3 | 5.7 ± 1.3 | 4.8 ± 1.6 | 4.1 ± 1.9 | |
| 9 | 6.2 ± 1.6 | 5.8 ± 1.3 | 5.4 ± 1.5 | 4.3 ± 1.9 | 6.2 ± 1.5 | 5.4 ± 1.2 | - | - | 6.2 ± 1.4 | 5.4 ± 1.3 | 4.3 ± 1.7 | - | |
| 12 | 6.3 ± 1.5 | 5.8 ± 1.4 | 5.1 ± 1.6 | 4.0 ± 1.7 | 6.1 ± 1.5 | 5.6 ± 1.3 | - | - | 6.2 ± 1.6 | 4.9 ± 1.3 | - | - | |
| 15 | 6.3 ± 1.5 | 5.3 ± 1.4 | 4.1 ± 1.8 | - | 6.2 ± 1.4 | 5.1 ± 1.5 | - | - | 6.4 ± 1.5 | 4.8 ± 1.5 | - | - | |
| 18 | 6.3 ± 1.5 | 4.9 ± 1.3 | - | - | 5.4 ± 1.2 | 4.7 ± 1.1 | - | - | 5.7 ± 1.4 | - | - | - | |
| 21 | 6.1 ± 1.3 | - 2 | - | - | 5.3 ± 1.1 | - | - | - | 5.5 ± 1.2 | - | - | - | |
| 24 | 5.6 ± 1.3 | - | - | - | 4.9 ± 1.1 | - | - | - | 4.6 ± 1.3 | - | - | - | |
| Color | 3 | 6.6 ± 1.3 | 6.2 ± 1.4 | 6.1 ± 1.6 | 5.6 ± 1.7 | 6.4 ± 1.3 | 6.0 ± 1.3 | 4.8 ± 1.6 | 3.5 ± 1.8 | 6.6 ± 1.6 | 5.9 ± 1.6 | 4.5 ± 1.5 | 3.6 ± 1.8 |
| 6 | 6.5 ± 1.3 | 6.2 ± 1.2 | 5.9 ± 1.6 | 4.9 ± 1.7 | 6.5 ± 1.4 | 5.8 ± 1.4 | 4.4 ± 1.9 | 3.3 ± 1.9 | 6.6 ± 1.5 | 5.2 ± 1.5 | 4.6 ± 1.5 | 3.3 ± 1.6 | |
| 9 | 6.5 ± 1.6 | 6.1 ± 1.4 | 5.4 ± 1.5 | 4.1 ± 1.7 | 6.1 ± 1.5 | 5.5 ± 1.2 | - | - | 6.2 ± 1.6 | 5.5 ± 1.4 | 4.3 ± 1.7 | - | |
| 12 | 6.2 ± 1.1 | 6.1 ± 1.5 | 5.1 ± 1.8 | - | 6.5 ± 1.6 | 5.6 ± 1.4. | - | - | 6.5 ± 1.5 | 4.9 ± 1.2 | - | - | |
| 15 | 6.3 ± 1.0 | 5.6 ± 1.4 | 4.1 ± 1.9 | - | 6.3 ± 1.4 | 5.2 ± 1.6 | - | - | 6.6 ± 1.5 | 4.8 ± 1.5 | - | - | |
| 18 | 6.1 ± 1.1 | 4.7 ± 1.2 | - | - | 5.8 ± 1.2 | 4.8 ± 1.3 | - | - | 5.9 ± 1.3 | - | - | - | |
| 21 | 6.0 ± 1.0 | - | - | - | 5.7 ± 1.2 | - | - | - | 5.6 ± 1.1 | - | - | - | |
| 24 | 5.8 ± 1.1 | - | - | - | 5.0 ± 1.2 | - | - | - | 4.7 ± 1.3 | - | - | - | |
| Flavor | 3 | 6.0 ± 1.6 | 6.0 ± 1.7 | 5.8 ± 1.5 | 5.5 ± 1.7 | 6.1 ± 1.5 | 6.1 ± 1.5 | 4.8 ± 1.6 | 4.5 ± 1.8 | 6.0 ± 1.5 | 5.6 ± 1.5 | 5.2 ± 1.7 | 4.6 ± 1.5 |
| 6 | 6.1 ± 1.6 | 5.8 ± 1.7 | 5.6 ± 1.6 | 5.1 ± 1.6 | 6.0 ± 1.5 | 5.8 ± 1.7 | 4.7 ± 1.7 | 4.2 ± 1.7 | 6.0 ± 1.4 | 5.5 ± 1.5 | 5.0 ± 1.7 | 4.5 ± 1.8 | |
| 9 | 6.0 ± 1.8 | 5.4 ± 1.4 | 5.1 ± 1.4 | 4.4 ± 1.8 | 5.7 ± 1.4 | 5.2 ± 1.3 | - | - | 5.9 ± 1.3 | 5.4 ± 1.4 | 4.7 ± 1.7 | - | |
| 12 | 6.0 ± 1.5 | 5.5 ± 1.6 | 4.8 ± 1.6 | 4.1 ± 1.7 | 5.8 ± 1.5 | 5.5 ± 1.5 | - | - | 5.9 ± 1.5 | 5.1 ± 1.2 | 4.5 ± 1.6 | - | |
| 15 | 6.0 ± 1.6 | 5.2 ± 1.5 | 3.9 ± 1.7 | - | 6.1 ± 1.6 | 5.0 ± 1.6 | - | - | 6.1 ± 1.5 | 4.7 ± 1.4 | - | - | |
| 18 | 5.9 ± 1.7 | 4.9 ± 1.5 | - | - | 5.6 ± 1.4 | 4.7 ± 1.3 | - | - | 5.7 ± 1.3 | 4.6 ± 1.3 | - | - | |
| 21 | 5.8 ± 1.5 | - | - | - | 5.4 ± 1.2 | - | - | - | 5.5 ± 1.2 | - | - | - | |
| 24 | 5.4 ± 1.3 | - | - | - | - | - | - | - | 4.8 ± 1.4 | - | - | - | |
| Reaction Order | °C | Al Bag with Nitrogen | Al Bag Without Nitrogen | Clear Plastic Bag | |||
|---|---|---|---|---|---|---|---|
| Constant Rate (k) | R2 | Constant Rate (k) | R2 | Constant Rate (k) | R2 | ||
| Zero order | 4 | 4.5 × 10−1 | 0.864 | 4.3 × 10−1 | 0.782 | 4.6 × 10−1 | 0.878 |
| 25 | 3.7 × 10−1 | 0.529 | 4.3 × 10−1 | 0.831 | 3.4 × 10−1 | 0.482 | |
| 35 | 0.1 × 101 | 0.764 | 7.9 × 10−1 | 0.813 | 6.9 × 10−1 | 0.525 | |
| 45 | 8.1 × 10−1 | 0.452 | 7.2 × 10−1 | 0.444 | 8.7 × 10−1 | 0.648 | |
| First-order | 4 | 1.3 × 10−2 | 0.868 | 1.7 × 10−2 | 0.982 | 1.5 × 10−2 | 0.939 |
| 25 | 1.7 × 10−2 | 0.768 | 1.8 × 10−2 | 0.946 | 1.9 × 10−2 | 0.904 | |
| 35 | 4.5 × 10−2 | 0.980 | 3.2 × 10−2 | 0.976 | 3.3 × 10−2 | 0.835 | |
| 45 | 4.9 × 10−2 | 0.972 | 4.2 × 10−2 | 0.955 | 3.5 × 10−2 | 0.755 | |
| Reaction Order | °C | Al Bag with Nitrogen | Al Bag Without Nitrogen | Clear Plastic Bag | |||
|---|---|---|---|---|---|---|---|
| Constant Rate (k) | R2 | Constant Rate (k) | R2 | Constant Rate (k) | R2 | ||
| Zero order | 4 | 2.7 × 10−2 | 0.708 | 5.0 × 10−2 | 0.810 | 5.8 × 10−2 | 0.747 |
| 25 | 7.6 × 10−2 | 0.682 | 8.6 × 10−1 | 0.900 | 9.7 × 10−2 | 0.868 | |
| 35 | 1.5 × 10−1 | 0.908 | 3.2 × 10−1 | 0.899 | 1.9 × 10−1 | 0.678 | |
| 45 | 2.4 × 10−1 | 0.999 | 5.0 × 10−1 | 0.799 | 5.0 × 10−1 | 0.824 | |
| First-order | 4 | 0.5 × 10−2 | 0.808 | 0.9 × 10−2 | 0.844 | 1.2 × 10−2 | 0.716 |
| 25 | 0.2 × 10−2 | 0.922 | 1.6 × 10−2 | 0.928 | 2.8 × 10−2 | 0.873 | |
| 35 | 3.2 × 10−2 | 0.950 | 8.0 × 10−2 | 0.919 | 7.5 × 10−2 | 0.972 | |
| 45 | 4.7 × 10−2 | 0.991 | 1.1 × 10−1 | 0.818 | 1.1 × 10−1 | 0.859 | |
| Packaging | Shelf Life, Weeks | 4 °C | 25 °C | 35 °C | 45 °C |
|---|---|---|---|---|---|
| Al bag with nitrogen | Actual | >24 | 15 | 12 | 3 |
| Predicted | 58 | 14 | 7 | 4 | |
| Al bag without nitrogen | Actual | >24 | 15 | <3 | <3 |
| Predicted | 23 | 14 | 3 | 2 | |
| Clear plastic bag | Actual | 21 | 9 | <3 | <3 |
| Predicted | 19 | 8 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Le, H.P.V.; Chokumnoyporn, N.; Sangsuwan, J.; Prinyawiwatkul, W.; Sriwattana, S. Shelf Life Prediction of Longan with Intermediate Moisture Using Osmotic Dehydration, Combined with Different Packaging and Storage Temperatures. Foods 2026, 15, 40. https://doi.org/10.3390/foods15010040
Le HPV, Chokumnoyporn N, Sangsuwan J, Prinyawiwatkul W, Sriwattana S. Shelf Life Prediction of Longan with Intermediate Moisture Using Osmotic Dehydration, Combined with Different Packaging and Storage Temperatures. Foods. 2026; 15(1):40. https://doi.org/10.3390/foods15010040
Chicago/Turabian StyleLe, Hong Phuc Vu, Napapan Chokumnoyporn, Jurmkwan Sangsuwan, Witoon Prinyawiwatkul, and Sujinda Sriwattana. 2026. "Shelf Life Prediction of Longan with Intermediate Moisture Using Osmotic Dehydration, Combined with Different Packaging and Storage Temperatures" Foods 15, no. 1: 40. https://doi.org/10.3390/foods15010040
APA StyleLe, H. P. V., Chokumnoyporn, N., Sangsuwan, J., Prinyawiwatkul, W., & Sriwattana, S. (2026). Shelf Life Prediction of Longan with Intermediate Moisture Using Osmotic Dehydration, Combined with Different Packaging and Storage Temperatures. Foods, 15(1), 40. https://doi.org/10.3390/foods15010040

