Non-Alcoholic Wines: Sensory Pleasantness and Health Benefits
Abstract
:1. Introduction
Definition of Low- (Or No)-Alcohol Wines and Legislation
2. Dealcoholization Techniques
2.1. Viticultural Methods
2.1.1. Early Harvesting of Grapes
2.1.2. Reduction in Leaf Area
2.1.3. Late Pruning
2.2. Physical Methods
2.2.1. Membrane Dealcoholization Processes
2.2.2. Thermal Process
2.3. Enzymatic and Microbiological Methods
2.3.1. Addition of Enzymes (Glucose Oxidase)
2.3.2. Microbiological Methods
3. The Effect of Dealcoholization on the Sensory Profile of Wine
3.1. Visual Attributes
3.2. Aroma and Olfactory Memory
3.3. Taste, Flavor, Mouthfeel, and Palatability
4. Consumer Acceptance and Willingness to Pay
5. Health Benefits of Low- (Or No)-Alcohol Wines
5.1. Antioxidant Properties
5.2. Cardiovascular Health
5.3. Anti-Diabetic Activity
5.4. Gut Barrier Integrity and Polyphenolic Interactions
5.5. Impact on Psychological Health
6. Food Pairing, the Gourmet Experience, and Low- (Or No)-Alcohol Wines
7. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, K. The emergence of lower-alcohol beverages: The case of beer. J. Wine Econ. 2023, 18, 66–86. [Google Scholar] [CrossRef]
- Myles, C.; Weil, B.; Wiley, D.; Watson, B. Representations of Low(er) Alcohol (Craft) Beer in the United States. Nutrients 2022, 14, 4952. [Google Scholar] [CrossRef]
- Bucher, T.; Deroover, K.; Stocley, C. Low-alcohol wine: A narrative review on consumer perception and behaviour. Beverages 2018, 4, 82. [Google Scholar] [CrossRef]
- Schienkiewitz, A.; Haftenberger, M.; Mensink, G. Time trends of non-alcoholic beverage consumption among adults in Germany, 1990–2011. Nutr. J. 2020, 19, 28. [Google Scholar] [CrossRef]
- Mesirow, M.; Welsh, J. Changing beverage consumption patterns have resulted in fewer liquid calories in the diets of US children: National Health and Nutrition Examination Survey 2001–2010. J. Acad. Nutr. Diet. 2015, 115, 559–566.e4. [Google Scholar] [CrossRef]
- Jones, A.; Kirkpatrick, S.; Hammond, D. Beverage consumption and energy intake among Canadians: Analyses of 2004 and 2015 national dietary intake data. Nutr. J. 2019, 18, 60. [Google Scholar] [CrossRef]
- Silva, P. Low-Alcohol and Nonalcoholic Wines: From Production to Cardiovascular Health, Along with Their Economic Effects. Beverages 2024, 10, 49. [Google Scholar] [CrossRef]
- Okaru, A.; Lachenmeier, D. Defining No and Low (NoLo) Alcohol Products. Nutrients 2022, 14, 3873. [Google Scholar] [CrossRef]
- OIV (2025) 2 Months, 12 Resolutions: Dealcoholisation of Wines. OIV-OENO 394A-2012. Available online: https://www.oiv.int/press/12-months-12-resolutions-dealcoholisation-wines (accessed on 4 March 2025).
- Saliba, A.; Ovington, L.; Moran, C. Consumer demand for low-alcohol wine in an Australian sample. Int. J. Wine Res. 2013, 5, 1–8. [Google Scholar] [CrossRef]
- Anderson, P.; Kokole, D.; Llopis, E. Production, Consumption, and Potential Public Health Impact of Low- and No-Alcohol Products: Results of a Scoping Review. Nutrients 2021, 13, 3153. [Google Scholar] [CrossRef]
- Vasiljevic, M.; Couturier, D.; Marteau, T. Impact of low alcohol verbal descriptors on perceived strength: An experimental study. Br. J. Health Psychol. 2017, 23, 38–67. [Google Scholar] [CrossRef]
- Bindon, K.; Varela, C.; Kennedy, J.; Holt, H.; Herderich, M. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chem. 2013, 138, 1696–1705. [Google Scholar] [CrossRef]
- Asproudi, A.; Ferrandino, A.; Bonello, F.; Vaudano, E.; Pollon, M.; Petrozziello, M. Key norisoprenoid compounds in wines from early-harvested grapes in view of climate change. Food Chem. 2018, 268, 143–152. [Google Scholar] [CrossRef]
- de Toda, F.M.; Balda, P. Decreasing the alcohol level in quality red wines by the “double harvest” technique. In Proceedings of the 17th International Symposium Giesco, Asti, Italy, 29 August–2 September 2011. [Google Scholar]
- Piccardo, D.; Favre, G.; Pascual, O.; Canals, J.M.; Zamora, F.; González-Neves, G. Influence of the use of unripe grapes to reduce ethanol content and pH on the color, polyphenol and polysaccharide composition of conventional and hot macerated Pinot Noir and Tannat wines. Eur. Food Res. Technol. 2019, 245, 1321–1335. [Google Scholar] [CrossRef]
- Kontoudakis, N.; Esteruelas, M.; Fort, F.; Canals, J.M.; Zamora, F. Use of unripe grapes harvested during cluster thinning as a method for reducing alcohol content and pH of wine. Aust. J. Grape Wine Res. 2011, 17, 230–238. [Google Scholar] [CrossRef]
- Sam, F.E.; Ma, T.; Liang, Y.; Qiang, W.; Atuna, R.A.; Amagloh, F.K.; Han, S. Comparison between membrane and thermal dealcoholization methods: Their impact on the chemical parameters, volatile composition, and sensory characteristics of wines. Membranes 2021, 11, 957. [Google Scholar] [CrossRef]
- Herrera, J.; Bucchetti, B.; Sabbatini, P.; Comuzzo, P.; Zulini, L.; Vecchione, A.; Peterlunger, E.; Castellarin, S. Effect of water deficit and severe shoot trimming on the composition of Vitis vinifera L. Merlot grapes and wines. Aust. J. Grape Wine Res. 2015, 21, 254–265. [Google Scholar] [CrossRef]
- Caccavello, G.; Giaccone, M.; Scognamiglio, P.; Forlani, M.; Basile, B. Influence of intensity of post-veraison defoliation or shoot trimming on vine physiology, yield components, berry and wine composition in Aglianico grapevines. Aust. J. Grape Wine Res. 2017, 23, 226–239. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; De Toda, M. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Cincotta, F.; Verzera, A.; Prestia, O.; Tripodi, G.; Lechhab, W.; Sparacio, A.; Condurso, C. Influence of leaf removal on grape, wine and aroma compounds of Vitis vinifera L. cv. Merlot under Mediterranean climate. Eur. Food Res. Technol. 2022, 248, 403–413. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, X.; Needs, S.; Liu, D.; Fuentes, S.; Howell, K. The Influence of Apical and Basal Defoliation on the Canopy Structure and Biochemical Composition of Vitis vinifera cv. Shiraz Grapes and Wine. Front. Chem. 2017, 5, 48. [Google Scholar] [CrossRef]
- Poni, S.; Casalini, L.; Bernizzoni, F.; Civardi, S.; Intrieri, C. Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. Am. J. Enol. Vitic. 2006, 57, 397–407. [Google Scholar] [CrossRef]
- Sun, Q.; Sacks, G.L.; Lerch, S.D.; Heuvel, J.E.V. Impact of shoot and cluster thinning on yield, fruit composition, and wine quality of Corot noir. Am. J. Enol. Vitic. 2012, 63, 49–56. [Google Scholar] [CrossRef]
- Torres, N.; Martínez-Lüscher, J.; Porte, E.; Yu, R.; Kurtural, S.K. Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (Vitis vinifera L.) berry and wine chemistry in warm climates. Food Chem. 2021, 343, 128447. [Google Scholar] [CrossRef]
- Silveira, J.M.; Rombaldi, C.V.; del Aguila, J.S.; Gabbardo, M.; Cunha, W.M.d. Agronomic and physicochemical parameters of must and wine as a function of changes in ‘Cabernet Sauvignon’ grapevine canopy. Acta Sci. Agron. 2022, 45, e56441. [Google Scholar] [CrossRef]
- Afonso, S.M.; Inês, A.; Vilela, A. Bio-Dealcoholization of Wines: Can Yeast Make Lighter Wines? Fermentation 2024, 10, 36. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Mattii, G.B. Effect of agronomic techniques on aroma composition of white grapevines: A review. Agronomy 2021, 11, 2027. [Google Scholar] [CrossRef]
- Osrečak, M.; Karoglan, M.; Kozina, B.; Preiner, D. Influence of leaf removal and reflective mulch on phenolic composition of white wines. OENO One 2015, 49, 183–193. [Google Scholar] [CrossRef]
- Meyers, J.M.; Sacks, G.L.; Heuvel, J.E.V. Glycosylated aroma compound responses in ‘Riesling’ wine grapes to cluster exposure and vine yield. Hort. Technol. 2013, 23, 581–588. [Google Scholar] [CrossRef]
- Mosetti, D.; Herrera, J.C.; Sabbatini, P.; Green, A.; Alberti, G.; Peterlunger, E.; Lisjak, K.; Castellarin, S.D. Impact of leaf removal after berry set on fruit composition and bunch rot in ‘Sauvignon blanc’. J. Grapevine Res. 2016, 55, 57–64. [Google Scholar] [CrossRef]
- Bureau, S.M.; Razungles, A.J.; Baumes, R.L. The aroma of Muscat of Frontignan grapes: Effect of the light environment of vine or bunch on volatiles and glycoconjugates. J. Sci. Food Agric. 2000, 80, 2012–2020. [Google Scholar] [CrossRef]
- Bubola, M.; Lukić, I.; Radeka, S.; Sivilotti, P.; Grozić, K.; Vanzo, A.; Bavčar, D.; Lisjak, K. Enhancement of Istrian Malvasia wine aroma and hydroxycinnamate composition by hand and mechanical leaf removal. J. Sci. Food Agric. 2019, 99, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Palliotti, A.; Tombesi, S.; Frioni, T.; Silvestroni, O.; Bellincontro, A.; Poni, S. Contenimento della produttività e dell’alcolicità potenziale di vini Sangiovese mediante posticipo della potatura invernale. In Acta Italus Hortus—Atti del V Convegno Nazionale di Viticoltura, Foggia, Italy, 1–3 July 2014; SOI: Firenze, Italy, 2014; pp. 163–164. Available online: http://hdl.handle.net/10807/77934 (accessed on 15 March 2025).
- Moran, M.A.; Sadras, V.O.; Petrie, P.R. Late pruning and carry-over effects on phenology, yield components and berry traits in Shiraz. Aust. J. Grape Wine Res. 2017, 23, 390–398. [Google Scholar] [CrossRef]
- Lanari, V.; Lattanzi, T.; Di Lena, B.; Palliotti, A.; Silvestroni, O. Vite: Maturazione posticipata con la potatura tardiva. L’Informatore Agrario 2019, 3/2019, 55–57. Available online: https://www.viten.net/files/663/6631141853f4d86efeffb48c0e4697f4.pdf (accessed on 15 March 2025).
- Palliotti, A.; Frioni, T.; Tombesi, S.; Sabbatini, P.; Cruz-Castillo, J.; Lanari, V.; Silvestroni, O.; Gatti, M.; Poni, S. Double-Pruning Grapevines as a Management Tool to Delay Berry Ripening and Control Yield. Am. J. Enol. Vitic. 2017, 68, 412–421. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Sanz, F.; Yeves, A.; Gil-Muñoz, R.; Martínez, V.; Intrigliolo, D.; Buesa, I. Forcing bud growth by double-pruning as a technique to improve grape composition of Vitis vinifera L. cv. Tempranillo in a semi-arid Mediterranean climate. Sci. Hortic. 2019, 256, 108614. [Google Scholar] [CrossRef]
- Moran, M.; Bastian, S.; Petrie, P.; Sadras, V. Late pruning impacts on chemical and sensory attributes of Shiraz wine. Aust. J. Grape Wine Res. 2018, 24, 469–477. [Google Scholar] [CrossRef]
- Perin, C.; Verma, P.; Harari, G.; Suued, Y.; Harel, M.; Ferman-Mintz, D.; Drori, E.; Netzer, Y.; Fait, A. Influence of late pruning practice on two red skin grapevine cultivars in a semi-desert climate. Front. Plant Sci. 2023, 14, 1114696. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Drioli, E. A comprehensive review of membrane distillation and osmotic distillation in agro-food applications. J. Membr. Sci. Res. 2020, 6, 304–318. [Google Scholar] [CrossRef]
- Motta, M. Introdução aos processos de separação por membranas. In Material Didático da Disciplina de Processos Químicos de Tratamento de Efluentes; Departamento de Engenharia Química, Centro de Tecnologia e Geociências/Universidade Federal de Pernambuco: Recife, Brazil, 2005. [Google Scholar]
- Lemperle, T.J. Evaluation of Nanofiltration Membranes for the Production of a Dealcoholized Beverage at 0.5% vol. Master’s Thesis, Instituto Superior de Agronomia, Lisboa, Portugal, 2010. [Google Scholar]
- Takács, L.; Vatai, G.; Korány, K. Production of alcohol free wine by pervaporation. J. Food Eng. 2007, 78, 118–125. [Google Scholar] [CrossRef]
- Vane, L. A review of pervaporation for product recovery from biomass fermentation processes. J. Chem. Technol. Biotechnol 2005, 80, 603–625. [Google Scholar] [CrossRef]
- Sun, X.; Dang, G.; Ding, X.; Shen, C.; Liu, G.; Zuo, C.; Chen, X.; Xing, W.; Jin, W. Production of alcohol-free wine and grape spirit by pervaporation membrane technology. Food Bioprod. Process. 2020, 123, 262–273. [Google Scholar] [CrossRef]
- Labanda, J.; Vichi, S.; Llorens, L.; López-Tamames, L. Membrane separation technology for the reduction of alcoholic degree of a white model wine. Food Sci. Technol. 2009, 42, 1390–1395. [Google Scholar] [CrossRef]
- Ma, T.Z.; Sam, F.E.; Zhang, B. Low-Alcohol and nonalcoholic wines: Production methods, compositional changes, and aroma improvement. In Recent Advances in Grapes and Wine Production-New Perspectives for Quality Improvement; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Diban, N.; Athes, V.; Bes, M.; Souchon, I. Ethanol and aroma compounds transfer study for partial dealcoholization of wine using membrane contactor. J. Membr. Sci. 2008, 311, 136–146. [Google Scholar] [CrossRef]
- Bes, M.; Aguera, E.; Athes, V.; Cadiere, A.; Cottereau, P.; Dequin, S.; Escudier, J.L. Les différentes stratégies microbiologiques et technologiques de production de vin à teneur réduite en alcool. Rev. Anol. Tech. Vitivinic. Anol. 2010, 135, 9–11. Available online: https://hal.science/hal-01195430 (accessed on 15 March 2025).
- Mangindaan, D.; Khoiruddin, K.; Wenten, I.G. Beverage dealcoholization processes: Past, present, and future. Trends Food Sci. Technol. 2018, 71, 36–45. [Google Scholar] [CrossRef]
- Banvolgyi, S.; Savaş Bahçeci, K.; Vatai, G.; Bekassy, S.; Bekassy-Molnar, E. Partial dealcoholization of red wine by nanofiltration and its effect on anthocyanin and resveratrol levels. Food Sci. Technol. Int. 2016, 22, 677–687. [Google Scholar] [CrossRef]
- Massot, A.; Mietton-Peuchot, M.; Peuchot, C.; Milisic, V. Nanofiltration and reverse osmosis in winemaking. Desalination 2008, 231, 283–289. [Google Scholar] [CrossRef]
- Ivić, I.; Kopjar, M.; Jakobek, L.; Jukić, V.; Korbar, S.; Marić, B.; Mesić, J.; Pichler, A. Influence of processing parameters on phenolic compounds and color of cabernet sauvignon red wine concentrates obtained by reverse osmosis and nanofiltration. Processes 2021, 9, 89. [Google Scholar] [CrossRef]
- Wright, A.J.; Pyle, D.L. An investigation into the use of the Spinning Cone Column for in situ ethanol removal from yeast broth. Process Biochem. 1996, 31, 651–658. [Google Scholar] [CrossRef]
- Grainger, K.; Tattersall, H. Wine Production: Vine to Bottle; Blackwell Publishing Ltd.: Oxford, UK, 2005. [Google Scholar]
- Filimon, V.R.; Tudose Sandu Ville, Ș.; Bora, F.D.; Tudor, G.; Filimon, R.; Nechita, A.; Damian, D. Methods for Producing Low-Alcohol Wine I. Viticultural and Pre-Fermentation Strategies. 2020. Available online: https://www.uaiasi.ro/revista_horti/files/Nr1_2020/vol%2063_1_2020%20(15).pdf (accessed on 13 February 2025).
- Mermelstein, N. Removing alcohol from wine. Food Technol. Mag. 2000, 54, 89–92. [Google Scholar]
- Pickering, G.J. Low and Reduce-alcohol wine: A review. J. Wine Res. 2000, 11, 129–144. [Google Scholar] [CrossRef]
- Lea, A.G.; Piggott, J. Fermented Beverage Production, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003; p. 52. [Google Scholar]
- Motta, S.; Guaita, M.; Petrozziello, M.; Ciambotti, A.; Panero, L.; Solomita, M.; Bosso, A. Comparison of the physicochemical and volatile composition of wine fractions obtained by two different dealcoholization techniques. Food Chem. 2017, 221, 1–10. [Google Scholar] [CrossRef]
- Jackson, R. Wine Science, 3rd ed.; Academic Press: Burlington, MA, USA, 2008. [Google Scholar]
- Aguera, E.; Bes, M.; Roy, A.; Camarasa, C.; Sablayrolles, J.M. Partial removal of ethanol during fermentation to obtain reduced-alcohol wines. Am. J. Enol. Vitic. 2010, 61, 53–60. [Google Scholar] [CrossRef]
- Espejo, F. Role of commercial enzymes in wine production: A critical review of recent research. J. Food Sci. Technol. 2021, 58, 9–21. [Google Scholar] [CrossRef]
- Pickering, G. The Production of Reduced-Alcohol Wine Using Glucose Oxidase. Ph.D. Thesis, Lincoln University, Lincoln, UK, 1997. [Google Scholar]
- Pickering, G.J.; Heatherbell, D.A.; Barnes, M.F. Optimising Glucose Conversion in the Production of Reduced Alcohol Wine Using Glucose Oxidase. Food Res. Int. 1998, 31, 685–692. [Google Scholar] [CrossRef]
- Pickering, G.J.; Heatherbell, D.A.; Barnes, M.F. The Production of Reduced-Alcohol Wine Using Glucose Oxidase-Treated Juice. Part III. Sensory. Am. J. Enol. Vitic. 1999, 50, 307–316. [Google Scholar] [CrossRef]
- Biyela, B.N.E.; du Toit, W.J.; Divol, B.; Malherbe, D.F.; van Rensburg, P. The Production of Reduced-Alcohol Wines Using Gluzyme Mono® 10.000 BG-Treated Grape Juice. S. Afr. J. Enol. Vitic. 2009, 30, 124–132. [Google Scholar] [CrossRef]
- Motta, J.F.G.; Freitas, B.C.B.D.; Almeida, A.F.D.; Martins, G.A.D.S.; Borges, S.V. Use of enzymes in the food industry: A review. Food Sci. Technol. 2023, 43, e106222. [Google Scholar] [CrossRef]
- Khatami, S.H.; Vakili, O.; Ahmadi, N.; Soltani Fard, E.; Mousavi, P.; Khalvati, B.; Maleksa-bet, A.; Savardashtaki, A.; Taheri-Anganeh, M.; Movahedpour, A. Glucose oxidase: Applications, sources, and recombinant production. Biotechnol. Appl. Biochem. 2022, 69, 939–950. [Google Scholar] [CrossRef]
- Röcker, J.; Schmitt, M.; Pasch, L.; Ebert, K.; Grossmann, M. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine. Food Chem. 2016, 210, 660–670. [Google Scholar] [CrossRef]
- Mangas, R.; González, M.R.; Martín, P.; Rodríguez-Nogales, J.M. Impact of glucose oxidase treatment in high sugar and pH musts on volatile composition of white wines. LWT 2023, 184, 114975. [Google Scholar] [CrossRef]
- Ferraro, L.; Fatichenti, F.; Ciani, M. Pilot Scale Vinification Process Using Immobilized Candida stellata Cells and Saccharomyces cerevisiae. Process Biochem. 2000, 35, 1125–1129. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F.; Mannazzu, I.; Domizio, P. Controlled Mixed Culture Fermentation: A New Perspective on the Use of Non-Saccharomyces Yeasts in Winemaking. FEMS Yeast Res. 2010, 10, 123–133. [Google Scholar] [CrossRef]
- Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected Non-Saccharomyces Wine Yeasts in Controlled Multistarter Fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882. [Google Scholar] [CrossRef]
- Magyar, I.; Tóth, T. Comparative Evaluation of Some Oenological Properties in Wine Strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 94–100. [Google Scholar] [CrossRef]
- Di Maio, S.; Genna, G.; Gandolfo, V.; Amore, G.; Ciaccio, M.; Oliva, D. Presence of Candida zemplinina in Sicilian Musts and Selection of a Strain for Wine Mixed Fermentations. S. Afr. J. Enol. Vitic. 2012, 33, 80–87. [Google Scholar] [CrossRef]
- Tofalo, R.; Schirone, M.; Torriani, S.; Rantsiou, K.; Cocolin, L.; Perpetuini, G.; Suzzi, G. Diversity of Candida zemplinina Strains from Grapes and Italian Wines. Food Microbiol. 2012, 29, 18–26. [Google Scholar] [CrossRef]
- Quirós, M.; Rojas, V.; Gonzalez, R.; Morales, P. Selection of Non-Saccharomyces Yeast Strains for Reducing Alcohol Levels in Wine by Sugar Respiration. Int. J. Food Microbiol. 2014, 181, 85–91. [Google Scholar] [CrossRef]
- Wang, C.; Mas, A.; Esteve-Zarzoso, B. Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during Alcoholic Fermentation. Int. J. Food Microbiol. 2015, 206, 67–74. [Google Scholar] [CrossRef]
- Canonico, L.; Comitini, F.; Oro, L.; Ciani, M. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine. Front. Microbiol. 2016, 7, 278. [Google Scholar] [CrossRef]
- Englezos, V.; Rantsiou, K.; Cravero, F.; Torchio, F.; Ortiz-julien, A.; Gerbi, V.; Rolle, L.; Co-colin, L. Starmerella bacillaris and Saccharomyces cerevisiae Mixed Fermentations to Reduce Ethanol Content in Wine. Appl. Microbiol. Biotechnol. 2016, 100, 5515–5526. [Google Scholar] [CrossRef]
- Varela, C.; Sengler, F.; Solomon, M.; Curtin, C. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem. 2016, 209, 57–64. [Google Scholar] [CrossRef]
- Ciani, M.; Morales, P.; Comitini, F.; Tronchoni, J.; Canonico, L.; Curiel, J.; Oro, L.; Rodrigues, A.; Gonzalez, R. Non-conventional Yeast Species for Lowering Ethanol Content of Wines. Front. Microbiol. 2016, 7, 642. [Google Scholar] [CrossRef]
- Lemos, W.J.F., Jr.; Nadai, C.; Tamara, L.; Sales, V.; Oliveira, D.; Dupas, A.; Matos, D.; Giacomini, A.; Corich, V. Potential Use of Starmerella bacillaris as Fermentation Starter for the Production of Low-Alcohol Beverages Obtained from Unripe Grapes. Int. J. Food Microbiol. 2019, 303, 1–8. [Google Scholar] [CrossRef]
- Milanovic, V.; Ciani, M.; Oro, L.; Comitini, F. Starmerella bombicola Influences the Metabolism of Saccharomyces cerevisiae at Pyruvate Decarboxylase and Alcohol Dehydrogenase Level during Mixed Wine Fermentation. Microb. Cell Factories 2020, 11, 10–13. [Google Scholar] [CrossRef]
- Kutyna, D.; Varela, C.; Henschke, P.; Chambers, P.; Stanley, G. Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci. Technol. 2010, 21, 293–302. [Google Scholar] [CrossRef]
- Contreras, A.; Hidalgo, C.; Schmidt, S.; Henschke, P.; Curtin, C.; Varela, C. The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content. Int. J. Food Microbiol. 2015, 205, 7–15. [Google Scholar] [CrossRef]
- Canonico, L.; Solomon, M.; Comitini, F.; Ciani, M.; Varela, C. Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions. Food Microbiol. 2019, 84, 103247. [Google Scholar] [CrossRef]
- Jolly, N.; Mehlomakulu, N.; Nortje, S.; Beukes, L.; Hoff, J.; Booyse, M.; Erten, H. Non-Saccharomyces yeast for lowering wine alcohol levels: Partial aeration versus standard conditions. FEMS Yeast Res. 2022, 22, foac002. [Google Scholar] [CrossRef]
- Klimczak, K.; Cioch-Skoneczny, M.; Ciosek, A.; Poreda, A. Application of Non-Saccharomyces Yeast for the Production of Low-Alcohol Beer. Foods 2024, 13, 3214. [Google Scholar] [CrossRef]
- Contreras, A.; Hidalgo, C.; Henschke, P.; Chambers, P.; Curtin, C.; Varela, C. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine. Appl. Environ. Microbiol. 2013, 80, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Esteve-Zarzoso, B.; Cabellos, J.; Arroyo, T. Sequential Non-Saccharomyces and Saccharomyces cerevisiae Fermentations to Reduce the Alcohol Content in Wine. Fermentation 2020, 6, 60. [Google Scholar] [CrossRef]
- Vilela, A. Modulating Wine Pleasantness Throughout Wine-Yeast Co-Inoculation or Sequential Inoculation. Fermentation 2020, 6, 22. [Google Scholar] [CrossRef]
- Vicente, J.; Baran, Y.; Navascués, E.; Santos, A.; Calderón, F.; Marquina, D.; Rauhut, D.; Benito, S. Biological management of acidity in wine industry: A review. Int. J. Food Microbiol. 2022, 375, 109726. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Comitini, F. Use of Non-Saccharomyces Yeasts in Red Winemaking. In Red Wine Technology; Academic Press: Cambridge, MA, USA, 2019; pp. 51–68. [Google Scholar]
- Hagman, A.; Piškur, J. A Study on the Fundamental Mechanism and the Evolutionary Driving Forces behind Aerobic Fermentation in Yeast. PLoS ONE 2015, 10, e0116942. [Google Scholar] [CrossRef]
- Šoštarić, N.; Arslan, A.; Carvalho, B.; Plech, M.; Voordeckers, K.; Verstrepen, K.; Van Noort, V. Integrated Multi-Omics Analysis of Mechanisms Underlying Yeast Ethanol Tolerance. J. Prot. Res. 2021, 20, 3840–3852. [Google Scholar] [CrossRef] [PubMed]
- Vilela-Moura, A.; Schuller, D.; Mendes-Faia, A.; Côrte-Real, M. Reduction of volatile acidity of wines by selected yeast strains. Appl. Microbiol. Biotechnol. 2008, 80, 881–890. [Google Scholar] [CrossRef]
- Vilela, A.; Schuller, D.; Mendes-Faia, A.; Côrte-Real, M. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells. Appl. Microbiol. Biotechnol. 2013, 97, 4991–5000. [Google Scholar] [CrossRef]
- Cuello, R.; Montero, K.; Mercado, L.; Combina, M.; Ciklic, I. Construction of low-ethanol–wine yeasts through partial deletion of the Saccharomyces cerevisiae PDC2 gene. AMB Express 2017, 7, 67. [Google Scholar] [CrossRef]
- Puškaš, V.; Miljić, U.; Djuran, J.; Vučurović, V. The aptitude of commercial yeast strains for lowering the ethanol content of wine. Food Sci Nut. 2020, 8, 1489–1498. [Google Scholar] [CrossRef]
- Nogueira, A.; Mongruel, C.; Rosana, D.; Simões, S. Effect of Biomass Reduction on the Fermentation of Cider. Braz. Arch. Biol. Technol. 2007, 50, 1083–1092. [Google Scholar] [CrossRef]
- Nogueira, A.; Le Quéré, J.M.; Gestin, P.; Michel, A.; Wosiacki, G.; Drilleau, J.F.; Brew, J.I. Slow Fermentation in French Cider Processing Due to Partial Biomass Reduction. J. Inst. Brew. 2008, 114, 102–110. [Google Scholar] [CrossRef]
- Malfeito-Ferreira, M. Yeasts and Wine Off-Flavours: A Technological Perspective. Ann. Microbiol. 2011, 61, 95–102. [Google Scholar] [CrossRef]
- Guo, F.; Tang, S.; Wang, R.; Liu, Q.; Zhang, J.; Yang, X.; Li, Y. Fermentation process of low-alcohol cider by biomass reduction. China Brew 2012, 31, 186–190. [Google Scholar]
- Liszkowska, W.; Berlowska, J. Yeast Fermentation at Low Temperatures: Adaptation to Changing Environmental Conditions and Formation of Volatile Compounds. Molecules 2021, 26, 1035. [Google Scholar] [CrossRef]
- OECD. Preventing Harmful Alcohol Use; OECD Health Policy Studies; OECD Publishing: Paris, UK, 2021. [Google Scholar] [CrossRef]
- de-la-Fuente-Blanco, A.; Arias-Pérez, I.; Escudero, A.; Sáenz-Navajas, M.-P.; Ferreira, V. The relevant and complex role of ethanol in the sensory properties of model wines. OENO One 2024, 58. [Google Scholar] [CrossRef]
- Kumar, Y.; Ricci, A.; Parpinello, G.P.; Versari, A. Dealcoholized wine: A scoping review of volatile and non-volatile profiles, consumer perception, and health benefits. Food Bioproc. Technol. 2024, 17, 3525–3545. [Google Scholar] [CrossRef]
- Branco, Z.; Baptista, F.; Paié-Ribeiro, J.; Gouvinhas, I.; Barros, A.N. Impact of Winemaking Techniques on the Phenolic Composition and Antioxidant Properties of Touriga Nacional Wines. Molecules 2025, 30, 1601. [Google Scholar] [CrossRef]
- Meillon, S.; Viala, D.; Medel, M.; Urbano, C.; Guillot, G.; Schlich, P. Impact of Partial Alcohol Reduction in Syrah Wine on Perceived Complexity and Temporality of Sensations and Link with Preference. Food Qual. Prefer. 2010, 21, 732–740. [Google Scholar] [CrossRef]
- Fedrizzi, B.; Nicolis, E.; Camin, F.; Bocca, E.; Carbognin, C.; Scholz, M.; Barbieri, P.; Finato, F.; Ferrarini, R. Stable isotope ratios and aroma profile changes induced due to innovative wine dealcoholisation approaches. Food Bioprocess Technol. 2014, 7, 62–70. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Changes in volatile composition and sensory attributes of wines during alcohol content reduction. J. Sci. Food Agric. 2017, 97, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Sam, F.E.; Didi, D.A.; Atuna, R.A.; Amagloh, F.K.; Zhang, B. Contribution of edible flowers on the aroma profile of dealcoholized pinot noir rose wine. LWT—Food Sci. Technol. 2022, 170, 114034. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Gambuti, A.; Genovese, A.; Piombino, P.; Moio, L. Partial dealcoholization of red wines by membrane contactor technique: Effect on sensory characteristics and volatile composition. Food Bioprocess Technol. 2013, 6, 2289–2305. [Google Scholar] [CrossRef]
- Corona, O.; Liguori, L.; Albanese, D.; di Matteo, M.; Cinquanta, L.; Russo, P. Quality and volatile compounds in red wine at different degrees of dealcoholization by membrane process. Eur. Food Res. Technol. 2019, 245, 2601–2611. [Google Scholar] [CrossRef]
- Pham, D.T.; Stockdale, V.J.; Jeffery, D.W.; Tuke, J.; Wilkinson, K.L. Investigating alcohol sweetspot phenomena in reduced alcohol red wines. Foods 2019, 8, 491. [Google Scholar] [CrossRef]
- Pham, D.T.; Ristic, R.; Stockdale, V.J.; Jeffery, D.W.; Tuke, J.; Wilkinson, K. Influence of partial dealcoholization on the composition and sensory properties of Cabernet Sauvignon wines. Food Chem. 2020, 325, 126869. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Antalick, G.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Volatile and sensory profiling of Shiraz wine in response to alcohol management: Comparison of harvest timing versus technological approaches. Food Res. Int. 2018, 109, 561–571. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Antalick, G.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. A comparative study of partial dealcoholisation versus early harvest: Effects on wine volatile and sensory profiles. Food Chem. 2018, 261, 21–29. [Google Scholar] [CrossRef]
- Puglisi, C.; Ristic, R.; Saint, J.; Wilkinson, K. Evaluation of spinning cone column distillation as a strategy for remediation of smoke taint in juice and wine. Molecules 2022, 27, 8096. [Google Scholar] [CrossRef]
- Ju, Y.; Xu, X.; Yu, Y.; Liu, M.; Wang, W.; Wu, J.; Liu, B.; Zhang, Y.; Fang, Y. Effects of winemaking techniques on the phenolics, organic acids, and volatile compounds of Muscat wines. Food Biosci. 2023, 54, 102937. [Google Scholar] [CrossRef]
- Alises, M.O.; Sánchez-Palomo, E.; González Viñas, M.A. Enhancing the Aroma of Dealcoholized La Mancha Tempranillo Rosé Wines with Their Aromatic Distillates. Beverages 2024, 10, 123. [Google Scholar] [CrossRef]
- Ivić, I.; Kopjar, M.; Buljeta, I.; Pichler, D.; Mesić, J.; Pichler, A. Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine. Membranes 2022, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, C.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayón, M.Á. Impact of the nonvolatile wine matrix composition on the in vivo aroma release from wines. J. Agric. Food Chem. 2014, 62, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, C.; Sémon, E.; Martín-Álvarez, P.; Guichard, E.; Moreno-Arribas, M.; Feron, G.; Pozo-Bayón, M. Wine matrix composition affects temporal aroma release as measured by proton transfer reaction—Time-of-flight—Mass spectrometry. Aust. J. Grape Wine Res. 2015, 21, 367–375. [Google Scholar] [CrossRef]
- Meillon, S.; Urbano, C.; Schlich, P. Contribution of the Temporal Dominance of Sensations (TDS) Method to the Sensory Description of Subtle Differences in Partially Dealcoholized Red Wines. Food Qual. Prefer. 2009, 20, 490–499. [Google Scholar] [CrossRef]
- Sam, F.E.; Ma, T.; Wang, J.; Liang, Y.; Sheng, W.; Li, J.; Jiang, Y.; Zhang, B. Aroma improvement of dealcoholized Merlot red wine using edible flowers. Food Chem. 2023, 404, 134711. [Google Scholar] [CrossRef]
- Bucher, T.; Deroover, K.; Stockley, C. Production and Marketing of Low-Alcohol Wine. In Advances in Grape and Wine Biotechnology Advances in Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Bucher, T.; Frey, E.; Wilczynska, M.; Deroover, K.; Dohle, S. Consumer perception and behavior related to low-alcohol wine: Do people overcompensate? Public Health Nutr. 2020, 23, 1939–1947. [Google Scholar] [CrossRef]
- Bisson, L.F.; Waterhouse, A.L.; Ebeler, S.E.; Walker, M.A.; Lapsley, J.T. The present and future of the international wine industry. Nature 2002, 418, 696–699. [Google Scholar] [CrossRef]
- Naspetti, S.; Alberti, F.; Mozzon, M.; Zingaretti, S.; Zanoli, R. Effect of information on consumer preferences and willingness-to-pay for sparkling mock wines. Br. Food J. 2019, 122, 2621–2638. [Google Scholar] [CrossRef]
- D’hauteville, F. Consumer Acceptance of Low Alcohol Wines. Int. J. Wine Mark. 1994, 6, 35–48. [Google Scholar] [CrossRef]
- Day, I.; Deroover, K.; Kavanagh, M.; Beckett, E.; Akanbi, T.; Pirinen, M.; Bucher, T. Australian consumer perception of non-alcoholic beer, white wine, red wine, and spirits. Int. J. Gastrom. Food Sci. 2024, 35, 100886. [Google Scholar] [CrossRef]
- Bruwer, J.; Jiranek, V.; Halstead, L.; Saliba, A. Lower alcohol wines in the UK market: Some baseline consumer behaviour metrics. Br. Food J. 2014, 116, 1143–1161. [Google Scholar] [CrossRef]
- Danner, L.; Ristic, R.; Johnson, T.E.; Meiselman, H.L.; Hoek, A.C.; Jeffery, D.W.; Bastian, S.E.P. Context and wine quality effects on consumers’ mood, emotions, liking and willingness to pay for Australian Shiraz wines. Food Res. Int. 2017, 100, 228–244. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parlker, A.; de Reséguier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Haseeb, S.; Alexander, B.; Baranchuk, A. Wine and cardiovascular health. Circulation 2017, 136, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Jordão, A.M.; Vilela, A.; Cosme, F. From Sugar of Grape to Alcohol of Wine: Sensorial Impact of Alcohol in Wine. Beverages 2015, 1, 292–310. [Google Scholar] [CrossRef]
- Rehm, J.; Neufeld, M.; Room, R.; Sornpaisarn, B.; Štelemėkas, M.; Swahn, M.H.; Lachenmeier, D.W. The impact of alcohol taxation changes on unrecorded alcohol consumption: A review and recommendations. Int. J. Drug Policy 2022, 99, 103420. [Google Scholar] [CrossRef]
- World Health Organization. Harmful Use of Alcohol. 2025. Available online: https://www.who.int/health-topics/alcohol#tab=tab_1 (accessed on 2 March 2023).
- Hay, J.L.; Kiviniemi, M.T.; Orom, H.; Waters, E.A. Moving beyond the “Health Halo” of alcohol: What will it take to achieve population awareness of the cancer risks of alcohol? Cancer Epidemiol. Biomark. Prev. 2023, 32, 9–11. [Google Scholar] [CrossRef]
- Hrelia, S.; Di Renzo, L.; Bavaresco, L.; Bernardi, E.; Malaguti, M.; Giacosa, A. Moderate wine consumption and health: A narrative review. Nutrients 2022, 15, 175. [Google Scholar] [CrossRef]
- Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Beneficial effects of red wine polyphenols on human health: Comprehensive review. Curr. Issues Mol. Biol. 2023, 45, 782–798. [Google Scholar] [CrossRef] [PubMed]
- Noguer, M.A.; Cerezo, A.B.; Donoso Navarro, E.; Garcia-Parrilla, M.C. Intake of alcohol-free red wine modulates antioxidant enzyme activities in a human intervention study. Pharmacol. Res. 2012, 65, 609–614. [Google Scholar] [CrossRef]
- Mihailovic-Stanojevic, N.; Savikin, K.; Zivkovic, J.; Zdunic, G.; Miloradovic, Z.; Ivanov, M.; Karanovic, D.; Vajic, U.-J.; Jovovic, D.; Grujic-Milanovic, J. Moderate consumption of alcohol-free red wine provides more beneficial effects on systemic hemodynamics, lipid profile, and oxidative stress in spontaneously hypertensive rats than red wine. J. Funct. Foods 2016, 26, 719–730. [Google Scholar] [CrossRef]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [PubMed]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Ros, E.; Arranz, S.; Valderas-Martínez, P.; Casas, R.; Estruch, R. Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide. Circ. Res. 2012, 111, 1065–1068. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Ros, E.; Valderas-Martinez, P.; Casas, R.; Arranz, S.; Estruch, R. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clin. Nutr. 2013, 32, 200–206. [Google Scholar] [CrossRef]
- Blalock, D.V.; Berlin, S.A.; Young, J.R.; Blakey, S.M.; Calhoun, P.S.; Dedert, E.A. Effects of alcohol reduction interventions on blood pressure. Curr. Hypertens. Rep. 2022, 24, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Lamont, K.; Blackhurst, D.; Albertyn, Z.; Marais, D.; Lecour, S. Lowering the alcohol content of red wine does not alter its cardioprotective properties. SAMJ S. Afr. Med. J. 2012, 102, 565–567. [Google Scholar] [CrossRef]
- da Luz, P.L.; Serrano, C.V.; Chacra, A.P.; Monteiro, H.P.; Yoshida, V.M.; Furtado, M.; Ferreira, S.; Gutierrez, P.; Pileggi, F. The effect of red wine on experimental atherosclerosis: Lipid-independent protection. Exp. Mol. Pathol. 1999, 65, 150–159. [Google Scholar] [CrossRef]
- Mori, T.A.; Burke, V.; Zilkens, R.R.; Hodgson, J.M.; Beilin, L.J.; Puddey, I.B. The effects of alcohol on ambulatory blood pressure and other cardiovascular risk factors in type 2 diabetes: A randomized intervention. J. Hypertens. 2016, 34, 421–428. [Google Scholar] [CrossRef]
- Kabayama, M.; Akagi, Y.; Wada, N.; Higuchi, A.; Tamatani, M.; Tomita, J.; Kamide, K. A randomized trial of home blood-pressure reduction by alcohol guidance during outpatient visits: OSAKE study. Am. J. Hypertens. 2021, 34, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Sabadashka, M.; Hertsyk, D.; Strugała-Danak, P.; Dudek, A.; Kanyuka, O.; Kucharska, A.Z.; Sybirna, N. Anti-diabetic and antioxidant activities of red wine concentrate enriched with polyphenol compounds under experimental diabetes in rats. Antioxidants 2021, 10, 1399. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.A.; Goya, L.; Ramos, S. Protective effects of tea, red wine and cocoa in diabetes. Evidences from human studies. Food Chem. Toxicol. 2017, 109, 302–314. [Google Scholar] [CrossRef]
- Xia, X.; Sun, B.; Li, W.; Zhang, X.; Zhao, Y. Anti-diabetic activity phenolic constituents from red wine against α-glucosidase and α-amylase. J. Food Process. Preserv. 2017, 41, e12942. [Google Scholar] [CrossRef]
- Belda, I.; Cueva, C.; Tamargo, A.; Ravarani, C.N.; Acedo, A.; Bartolomé, B.; Moreno-Arribas, V. A multi-omics approach for understanding the effects of moderate wine consumption on human intestinal health. Food Funct. 2021, 12, 4152–4164. [Google Scholar] [CrossRef] [PubMed]
- Queipo-Ortuño, M.I.; Boto-Ordóñez, M.; Murri, M.; Gomez-Zumaquero, J.M.; Clemente-Postigo, M.; Estruch, R.; Diaz, F.D.; Andrés-Lacueva, C.; Tinahones, F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers1234. Am. J. Clin. Nutr. 2012, 95, 1323–1334. [Google Scholar] [CrossRef]
- Moreno-Indias, I.; Sánchez-Alcoholado, L.; Pérez-Martínez, P.; Andrés-Lacueva, C.; Cardona, F.; Tinahones, F.; Queipo-Ortuño, M.I. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct. 2016, 7, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.; Figueiredo, R.; Laranjinha, J.; da Silva, G.J. Intestinal cytotoxicity induced by Escherichia coli is fully prevented by red wine polyphenol extract: Mechanistic insights in epithelial cells. Chem. Biol. Interact. 2019, 310, 108711. [Google Scholar] [CrossRef]
- Lucerón-Lucas-Torres, M.; Cavero-Redondo, I.; Martínez-Vizcaíno, V.; Saz-Lara, A.; Pascual-Morena, C.; Álvarez-Bueno, C. Association Between Wine Consumption and Cognitive Decline in Older People: A Systematic Review and Meta-Analysis of Longitudinal Studies. Front. Nutr. 2022, 9, 863059. [Google Scholar] [CrossRef]
- Gea, A.; Beunza, J.J.; Estruch, R.; Sánchez-Villegas, A.; Salas-Salvadó, J.; Buil-Cosiales, P.; Gómez-Gracia, E.; Covas, M.-I.; Corella, D.; Fiol, M.; et al. Alcohol intake, wine consumption and the development of depression: The PREDIMED study. BMC Med. 2013, 11, 192. [Google Scholar] [CrossRef]
- Rogers, P.; Giannasio, M. On Wine and Food, Together. Drinks and Restaurants. In Proceedings of the 2020 Dublin Gastronomy Symposium, Dublin, Ireland, 28 May 2020. [Google Scholar] [CrossRef]
- Nikolaou, A.; Santarmaki, V.; Mitropoulou, G.; Sgouros, G.; Kourkoutas, Y. Novel Low-Alcohol Sangria-Type Wine Products with Immobilized Kefir Cultures and Essential Oils. Microbiol. Res. 2023, 14, 543–558. [Google Scholar] [CrossRef]
- Kustos, M.; Heymann, H.; Jeffery, D.; Goodman, S.; Bastian, S. Intertwined: What makes food and wine pairings appropriate? Food Res. Int. 2020, 136, 109463. [Google Scholar] [CrossRef] [PubMed]
- Kustos, M.; Goodman, S.; Jeffery, D.; Bastian, S. Appropriate food and wine pairings and wine provenance information: Potential tools for developing memorable dining experiences. Food Qual. Pref. 2021, 94, 104297. [Google Scholar] [CrossRef]
- Serra, M.; António, N.; Henriques, C.; Afonso, C. Promoting Sustainability through Regional Food and Wine Pairing. Sustainability 2021, 13, 13759. [Google Scholar] [CrossRef]
- Takahashi, T.; Nakano, K.; Yamashita, M.; Yamazaki, H.; Fushiki, T. Pairing of white wine made with shade-grown grapes and Japanese cuisine. NPJ Sci. Food 2021, 5, 5. [Google Scholar] [CrossRef]
- Wang, S. When Chinese cuisine meets western wine. Int. J. Gastron. Food Sci. 2017, 7, 32–40. [Google Scholar] [CrossRef]
- Kim, C.; Lecat, B. An Exploratory Study to Develop Korean Food and Wine Pairing Criteria. Beverages 2017, 3, 40. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Vilela, A. Oenology in the Kitchen: The Sensory Experience Offered by Culinary Dishes Cooked with Alcoholic Drinks, Grapes and Grape Leaves. Beverages 2017, 3, 42. [Google Scholar] [CrossRef]
- Spence, C. Food and beverage flavour pairing: A critical review of the literature. Food Res. Int. 2020, 133, 109124. [Google Scholar] [CrossRef]
- Gawrysiak, Z.; Żywot, A.; Ławrynowicz, A. WineGraph: A Graph Representation for Food-Wine Pairing. In International Conference on Neural-Symbolic Learning and Reasoning; Springer Nature: Cham, Switzerland, 2024; pp. 24–31. [Google Scholar] [CrossRef]
- Eschevins, A.; Giboreau, A.; Julien, P.; Dacremont, C. From expert knowledge and sensory science to a general model of food and beverage pairing with wine and beer. Int. J. Gastron. Food Sci. 2019, 17, 100144. [Google Scholar] [CrossRef]
- Harrington, R.J. Food and Wine Pairing; A Sensory Experience; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; p. 336. ISBN 978-0-471-79407-3. [Google Scholar]
- Harrington, R.J. The Wine and Food Pairing Process. J. Culin. Sci. Technol. 2008, 4, 101–112. [Google Scholar] [CrossRef]
- Joachim, D.; Schloss, A. Alcohol’s Role in Cooking. Fine Cook 2017, 104, 28–29. [Google Scholar]
- López, R.; Wen, Y.; Ferreira, V. The remarkable effects of the non-volatile matrix of wine on the release of volatile compounds evaluated by analyzing their release to the headspaces. OENO One 2024, 202, 58. [Google Scholar] [CrossRef]
- Villamor, R.; Ross, C. Wine matrix compounds affect perception of wine aromas. Ann. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.; Campo, E.; Culleré, L.; Fernández-Zurbano, P.; Valentin, D.; Ferreira, V. Effects of the non-volatile matrix on the aroma perception of wine. J. Agric. Food Chem. 2010, 58, 5574–5585. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.; Ebeler, S.; Heymann, H.; Boss, P.; Solomon, P.; Trengove, R. Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. J. Agric. Food Chem. 2009, 57, 10313–10322. [Google Scholar] [CrossRef]
- ISO 3591; Sensory Analysis—Apparatus—Wine-Tasting Glass. ISO: Geneva, Switzerland, 1977.
- Pittari, E.; Moio, L.; Piombino, P. Interactions between Polyphenols and Volatile Compounds in Wine: A Literature Review on Physicochemical and Sensory Insights. Appl. Sci. 2021, 11, 1157. [Google Scholar] [CrossRef]
- González-Muñoz, B.; Garrido-Vargas, F.; Pavez, C.; Osorio, F.; Chen, J.; Bordeu, E.; O’Brien, J.; Brossard, N. Wine Astringency: More Than Just Tannin-Protein Interactions. J. Sci. Food Agric. 2021, 102, 1771–1781. [Google Scholar] [CrossRef]
- Medel-Marabolí, M.; Romero, J.; Obreque-Slier, E.; Contreras, A.; Peña-Neira, Á. Effect of a commercial tannin on the sensorial temporality of astringency. Food Res. Int. 2017, 102, 341–347. [Google Scholar] [CrossRef]
- Varela, C.; Barker, A.; Tran, T.; Borneman, A.; Curtin, C. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Int. J. Food Microbiol. 2017, 252, 1–9. [Google Scholar] [CrossRef]
- Vilela, A.; Inês, A.; Cosme, F. Is wine savory? Umami taste in wine. SDRP J. Food Sci. Technol. 2016, 1, 100–105. Available online: https://hdl.handle.net/10348/5661 (accessed on 15 March 2025).
- Vilela, A.; Jordão, A.; Cosme, F. Wine phenolics: Looking for a smooth mouthfeel. SDRP J. Food Sci. Technol. 2016, 1, 20–28. [Google Scholar] [CrossRef]
- Snitkjær, P.; Risbo, J.; Skibsted, L.H.; Ebeler, S.; Heymann, H.; Harmon, K.; Frøst, M.B. Beef stock reduction with red wine—Effects of preparation method and wine characteristics. Food Chem. 2011, 126, 183–196. [Google Scholar] [CrossRef]
Wine Dealcoholization Techniques | Fundamentals | Advantages | Disadvantages | References | |
---|---|---|---|---|---|
Viticultural practices | Early harvesting of grapes | Harvest grapes earlier than usual or mix early- and fully ripened grapes to reduce sugar content and thus lower the alcohol content. | Reduces alcohol by up to 3% v/v; maintains acceptable acidity and sensory properties in some varieties. | It may cause unripe flavors, higher acidity, and incomplete development of aroma precursors. | [13,14,15,16,17] |
Reduction in leaf area | Limits sugar accumulation in grapes by reducing photosynthetic activity through strategic leaf removal or pruning. | Reduces alcohol content while preserving flavor and phenolic compounds; enhances certain aroma compounds in some varieties. | Effectiveness is variety-dependent and may lead to yield reductions or altered aromatic balance if not appropriately managed. | [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34] | |
Late pruning | Delays winter pruning to postpone ripening, reducing sugar accumulation and enhancing phenolic maturity. | It improves acidity and phenolic content, lowers alcohol content, and enhances the sensory profile. | Reduces yield; variable effects depending on grape variety; may impact economic viability. | [19,20,35,36,37,38,39,40,41] |
Wine Dealcoholization Techniques | Fundamentals | Advantages | Disadvantages | References | |
---|---|---|---|---|---|
Physical Methods | Membrane processes | Use of selective membranes to separate ethanol from wine via physical processes such as pervaporation (PV), osmotic distillation (OD), nanofiltration, or reverse osmosis (RO). | It can be applied at low temperatures, is energy-efficient, and is scalable; some methods also preserve wine quality. | Aroma losses, especially with PV and OD, may require adding water (RO), which has varying impacts on sensory quality. | [18,42,43,44,45,46,47,48,49,50,51,52,53,54,55] |
Thermal processes | Heat can be used under a vacuum or via spinning cone columns to remove volatile compounds, including ethanol. | High efficiency, low-temperature damage, and potential for complete dealcoholization, making it applicable to viscous wines. | Removes desirable aromas, resulting in quality loss, and requires specialized equipment and monitoring. | [7,18,56,57,58,59,60,61,62,63,64] |
Wine Dealcoholization Techniques | Fundamentals | Advantages | Disadvantages | References | |
---|---|---|---|---|---|
Enzymatic Methods (Glucose Oxidase) | Enzymatic oxidation of glucose before fermentation to limit ethanol formation using glucose oxidase. | Effective ethanol reduction (up to 4.3% v/v); pre-fermentation use; controlled enzymatic action. | Possible off-flavor development; reduction in desirable aromatic compounds. | [65,66,67,68,69,70,71,72,73] | |
Microbiological Methods | Non-Saccharomyces yeasts | Use non-Saccharomyces yeasts in pure, mixed, or sequential fermentations to reduce ethanol through altered metabolic pathways. | Reduction of up to 2% v/v ethanol; enhanced sensory complexity; increased aroma diversity. | Risk of volatile acidity or ethyl acetate formation; strain-dependent performance; strict fermentation management needs. | [28,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97] |
S. cerevisiae ethanol respiration | Use ethanol respiration and metabolic versatility in S. cerevisiae to consume ethanol under aerobic or limited-aerobic conditions. | Ethanol reductions of up to 37.5% under aerobic conditions; improved acetic acid levels; potential post-fermentation application. | Strain-specific; requires oxygenation; immobilized forms less effective; practical application still experimental. | [28,98,99,100,101] | |
Genetically modified yeasts | Use of GMO yeast strains modified to downregulate ethanol production pathways or overexpress alternative metabolite pathways. | Reductions of up to 15% ethanol maintained fermentation performance and regional characteristics in some strains. | Consumer acceptance of GMOs is limited. Preserving wine sensory quality is essential, and regulatory issues must be addressed. | [28,88,102,103] | |
Biomass reduction and arrested fermentation | Periodic removal of yeasts or sudden fermentation arrest (cooling, filtration) to limit ethanol production. | Can produce sweet wines with lower alcohol; simple physical intervention; avoids complete fermentation. | Risk of spoilage due to residual sugars; loss of key aroma compounds; quality may suffer if poorly controlled. | [49,104,105,106,107,108] |
Dealcoholization Process | Wine Type and Percentage of Alcohol Reduction | Findings on Olfactory Characteristics | Ref. |
---|---|---|---|
RO and VD | Merlot (red)—94.9% Pinot Noir (rosé)—94.3% | The perception of red fruit notes, aroma intensity, and overall acceptability decreased. Wine body, hotness, and bitterness also decreased. Color intensity, astringency, and acidity perception increased. | [18] |
RO | Pinot Noir (rosé)—94.3% | The perception of red fruit notes, aroma intensity, and overall acceptability decreased. Decrease in acidity, wine body, and astringency perception (mouthfeel). There was no effect on color intensity and sweetness. | [49,116] |
OD | Aglianico (red) 32.3% (A)—36.1% (B) | Cherry and red fruit notes decreased (A). Decrease in cherry, red fruits, and flower notes (B). Astringency and acidity increased (A and B). | [117] |
Montepulciano d’Abruzzo (red)—78.8% | Spicy notes and red fruit notes decreased. There is no significant effect on color intensity. Overall acceptability and acidity increased. | [118] | |
Verdicchio (red)—2.0 to 4.0% | The honey scent was depleted. There is no significant effect on acidity, saltiness, and bitterness. Wine body and persistence decreased. | [114] | |
RO-EP/OD/MC | Cabernet Sauvignon (red)—14.7 to 9.0% | There was no effect on the overall intensity. There was a slight decrease in the flavor of dried fruit and chocolate. | [119,120] |
Shiraz red (7 months after bottling) Middle harvest—22.2% Late harvest—18.2 to 36.4% | No significant differences were found in eucalyptus, red fruit, nutty/almonds, green olive, floral, and plum aromas. There was a decrease in dark fruit, raisin/prune, black pepper, and herbaceous aromas, with overall aroma density. Increase in acidity and decrease astringency. | [121] | |
Verdelho red (late harvest)—48.1% | No significant differences in buttery/nutty, citrus, apple/pear aroma, and acidity Decrease in tropical fruit, hay, peach/apricot, herbaceous, floral, overall aroma density, bitterness taste | [122] | |
Petit Verdot—19.2% | There are no significant differences in eucalyptus, green paper, floral, dark fruit, cooked aroma, and acidity. The presence of red fruit, raisins, and prunes decreased, as did the overall aroma intensity. | ||
PV | Cabernet Sauvignon (red)—96.0% | High retention of fruit aroma, producing wine with better smell and taste. | [47] |
SCC | Shiraz Sangiovese (red)—98.0% Petit Verdot Sangiovese—97.9% | There was a decrease in fruit aroma, flavor, and hotness but an increase in smoke and oxidized aromas. There were no significant changes in the woody aftertaste. | [123] |
Wine Type | Pairing Dish | Key Insights |
---|---|---|
Regional Wines | Regional Dishes (Algarve, Portugal) | Experts selected regional wines to pair with regional dishes, promoting sustainability and quality in tourism [170]. |
Australian Shiraz | Complex Food Samples | Pairings with Shiraz increased flavor intensity and were preferred by consumers for their sensory complexity [168]. |
Shade-Grown White Wine | Sashimi (Japanese Cuisine) | Shade-grown grapes enhanced the palatability of sashimi, similar to Japanese sake [171]. |
Riesling | Chinese Cuisines | Riesling was preferred for pairing with various Chinese dishes, showing significant interaction between wine and cuisine [172]. |
Tannic Red Wine | Spicy Korean Dishes | Tannic red wines pair well with spicy Korean dishes despite the challenges posed by spiciness and intense flavors [173]. |
Wines | Low or No | Suggested Pairing Dish | Notes |
---|---|---|---|
Muscadet (Loire) | No-alcohol wines | Seafood dishes, oysters or shellfish | Muscadet is known for its crisp and refreshing profile, making it an excellent match for seafood [166]. |
Rosé of Anjou | Light salads or grilled vegetables | The light and fruity nature of Rosé of Anjou complements fresh and light dishes [166]. | |
Piquette | Rustic, hearty meals | Piquette, a low-alcohol beverage, pairs well with simple, hearty meals, reflecting its origins as a drink for field workers [166]. | |
Chardonnay 1 | Low- alcohol wines | Creamy pasta dishes | Chardonnay, with reduced alcohol content, maintains a balance that complements creamy textures [84,189]. |
Shiraz 1 | Grilled meats or barbecue | The robust flavors of Shiraz, even with reduced alcohol, pair well with hearty, grilled dishes [84,189]. | |
Merlot 1 | Roasted chicken or turkey | The red fruit flavors in reduced-alcohol Merlot enhance the taste of roasted poultry [189]. | |
Low-Alcohol Sangria-Type Wine 2 | Tapas or spicy dishes | The aromatic profile of sangria-type wines with essential oils pairs well with flavorful, spicy foods [167]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, S.; Teixeira, A.L.; Escobar, E.; Inês, A.; Vilela, A. Non-Alcoholic Wines: Sensory Pleasantness and Health Benefits. Foods 2025, 14, 1356. https://doi.org/10.3390/foods14081356
Afonso S, Teixeira AL, Escobar E, Inês A, Vilela A. Non-Alcoholic Wines: Sensory Pleasantness and Health Benefits. Foods. 2025; 14(8):1356. https://doi.org/10.3390/foods14081356
Chicago/Turabian StyleAfonso, Sílvia, Ana Luísa Teixeira, Elza Escobar, António Inês, and Alice Vilela. 2025. "Non-Alcoholic Wines: Sensory Pleasantness and Health Benefits" Foods 14, no. 8: 1356. https://doi.org/10.3390/foods14081356
APA StyleAfonso, S., Teixeira, A. L., Escobar, E., Inês, A., & Vilela, A. (2025). Non-Alcoholic Wines: Sensory Pleasantness and Health Benefits. Foods, 14(8), 1356. https://doi.org/10.3390/foods14081356