A Review of Food Bioactives That Can Modulate miRNA Profiles for Management of Colorectal Cancer
Abstract
:1. Introduction
2. Methodology
3. Colorectal Cancer and miRNAs
3.1. Colorectal Cancer
3.2. Effect of miRNAs on Colorectal Cancer
3.2.1. Drug Resistance
3.2.2. Apoptotic Mechanism
3.2.3. Stability of Chromosomes
3.2.4. Cell Cycle Modulation
3.2.5. Tumor Microenvironment Regulation
Proliferation
Angiogenesis
Epithelial–Mesenchymal Transition
3.2.6. Chemotherapy Sensitivity
4. Potential of Food Bioactive Ingredients in Colorectal Cancer Management
4.1. Cell Models
4.2. Animal Models
Model | Ingredients | Classification | Administration | miRNA | Related Protein or Pathways | Effects on Colon Cancer | References |
---|---|---|---|---|---|---|---|
6-week-old female nude mice were injected with SW480 | Curcumin | Curcuminoids | Intraperitoneal injection, 200 mg/kg, once a day for 5 d | miR-130a↓ | Wnt/β-catenin↓; Nkd2↑; TCF4↓ | Inhibition of CRC cell proliferation | [51] |
6-week-old male nude mice (HT-29) | Baicalin | Flavonoids | Intraperitoneal injection, 50 mg/kg and 100 mg/kg, once a day for 21 d | Multiple apoptosis related oncomiRNAs (miR-10a, miR-23a, miR-30, miR-31, miR-151a, miR-205)↓ | c-Myc↓; Cleaved Caspase3↑ | Inhibition of CRC cell proliferation, induction of apoptosis in tumor cells | [53] |
4–6-week-old female BALB/c nude mice were injected with HCT116 | Melatonin | Indoleamine neurohormone | Intraperitoneal injection, 25 mg/kg, once a day for 23 d | miR-34a/449a cluster↑ | B-cell lymphoma 2 (Bcl-2), Notch1↓; cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase 1 (PARP)↑ | Inhibition of CRC cell proliferation and induction of apoptosis in tumor cells | [54] |
Human CRC cell lines (HCT8, HCT8-R), human normal colorectal mucosal cell (FHC) | Kaempferol | Flavonoids | Added, IC50 values: 70.39 ± 1.15 μM, 48 h | miR-326↑ | PKM2↓; the three splicing factors of the PKM gene (PTBP1, hnRNPA1, and hnRNPA2)↓ | Inhibition of colon cancer HCT8-R cells proliferation, induction of apoptosis in tumor cells, overcoming resistance of 5-FU therapy | [55] |
25 ± 20 g immunodeficient mice were injected with HCT116 | Deoxyelephantopin | Sesquiterpene lactone | Intraperitoneal injection, 30 mg/kg, once every two days for 15 d | miR-205↑ | Bcl2↓ change in protein levels associated with cell cycle arrest and apoptosis (CDK1, CyclinB1, C-caspase3, C-PARP) | Promotion of apoptosis in colon cancer cells, a synergistic effect with 5-FU, enhancement in chemosensitivity of colon cancer to 5-FU | [56] |
Human CRC cell lines (HCT116, Caco-2) | Cordycepin | Nucleoside analogue | Diluted with dimethyl sulfoxide (DMSO) followed by adding 100 μM for 72 h | miR-26a↑ | MYC gene↓ | Inhibition of CRC cell proliferation | [57] |
Human CRC cell lines (HCT-116, Caco-2) | Quercetin | Flavonoids | The IC50 values: HCT-116: Quercetin = 12.36 µg/mL, 5 FU = 125 µg/mL, Caco-2: Quercetin = 15 µg/mL, 5-FU = 133 µg/mL for 48 h | miR-27a↓ | Wnt/β-catenin↓; cyclin D1↓; secreted frizzled-related protein 1 (SFRP1)↑ | Promotion of apoptosis in colon cancer cells, a synergistic effect with 5-FU, enhancement in chemosensitivity of colon cancer to 5-FU | [58] |
Female BALB/c nude mice were injected with DLD1 | Epigallocatechin Gallate (EGCG) | Flavan-3-ols | Subcutaneous injection, EGCG: 25 mg/kg, 5-FU: 20 mg/kg for 14 d | miR-155-5p↑ | GRP78↓; nuclear factor-kappa B (NF-κB) ↑; MDR1 ↓; 5-FU accumulation↑ | Enhancement in chemosensitivity of colon cancer to 5-FU, promotion of cancer cell apoptosis and DNA damage | [59] |
C57BL/6 mice (8 weeks old, weighing 18–22 g), chemical induction | Clostridium butyricum | Clostridium | Oral gavage, 109 CFU of Clostridium butyricum in 500 μL PBS, once a day | miR-200c↑ | Proteins involved in EMT (ZEB, p53) and metastasis (HMGB1, VEGFR, ZNF217)↓ | Inhibition of CRC cell proliferation, regulation of intestinal barrier function, direct anti-inflammatory actions, inhibition of CRC cell metastasis | [60] |
BALB/c female nude mice (5 weeks old) were injected with HCT116 | Polyphenols from Hippophae rhamnoides (HPs60) | Flavonoids, phenolic acids | Oral gavage, 50 mg/kg for 21 d | hsa-miR-195-5p, hsa-miR-497-5p↑ hsa-miR-1247-3p↓ | cyclinD1, cyclinD2, cyclinD3, cyclinE1, Bcl-2↓; caspase-2↑ | Inhibition of tumor growth in vivo, induction of cell cycle arrest and apoptosis | [61] |
6- to 8-week-old male nude mice were injected with HT-29 and HCT-116 | Calcitriol | Secosteroid | Intraperitoneal injection: 0.1 mg and 0.4 mg; Irinotecan: 50 mg/kg for 2 d | miR-627↑ | CYP3A4↓ | Enhancement of the efficacy of irinotecan in growth inhibition and apoptosis induction | [62] |
Human CRC cell lines (Caco-2) | Coffee (Colombian Arabica) and its constituents (caffeine, caffeic acid, chlorogenic acid, trigonelline) | Phenolic acids | Cell culture exposure, 3.75%, caffeine, caffeic acid, chlorogenic acid, trigonelline: 100 µM each | miR-30c, miR-96↑ | KRAS↓ | Inhibition of Caco-2 cell proliferation, reduction in KRAS activity | [63] |
3-week-old male Wistar rats (chemical induction) | Catalpol | Iridoid glycosides | AOM: intraperitoneal injection, 15 mg/kg, once a week for 14 d; catalpol: intragastric, once a day from week 5 to 25 | miR-34a↑ | SIRT1↓ | Suppression of autophagy and promotion of apoptosis in CRC cells | [64] |
Human CRC cell line (HCT-116) | Celastrol | Triterpenoids | Dissolved in DMSO to a final concentration of 50 mM for 72 h | miR-21↓ | PCNA, p-Akt, p-GSK3β↓ | Inhibition of CRC cell proliferation, induction of apoptosis in tumor cells | [65] |
Human CRC cell lines (HepG2, HT-29) | Diterpenoid anthraquinones: Cryptotanshinone (CPT) and Dihydrotanshinone (DHT) | Terpenoid–anthraquinone hybrid compounds | Addition of CPT (5 μM) or DHT (5 μM) in DMEM containing 1% FBS for 72 h | miR-15a-5p, miR-100-5p, miR-200a-5p, miR-210-5p↓ | Apoptosis-associated proteins (caspase 3, caspase 7, caspase 9)↑; PARP↓ | Inhibition of CRC cell proliferation, induction of apoptosis in tumor cells | [66] |
Human CRC cell line (HCT-8) | Ethanol extract of Spica Prunellae (EESP) | Phenolic acids | Added. IC50 values: 0.77 mg/mL for 48 h | miR-34a↑ | target genes Notch1, Notch2, and Bcl-2↓ | Induction of apoptosis in tumor cells | [67] |
Male BALB/c nude mice (6–8 weeks old, weighing approximately 20–24 g), were injected with SW1116 | Formononetin | Flavonoids | Intragastric administration, 15 mg/kg, once a day for 14 d | miR-149↑ | EphB3, cyclin D1, matrix metalloproteinases 2 and 9↓ | Inhibition of CRC cell proliferation, inhibition of the invasive capacity of colon carcinoma cells, cell cycle arrest at the G0-G1 phase | [68] |
Human CRC cell line HCT-8 and its multidrug-resistant variant HCT-8/Fu | Bound polyphenol from foxtail millet bran (BPIS) | Phenolic acids | Dissolved in DMSO, IC50 values: 0.77 mg/mL for 24 h | miR-149↑ | DNA methyltransferases (DNMT3a, DNMT3b), MECP2, AKT, Cyclin B1, and CDK1↓ | Cell cycle arrest at the G0-G1 phase, enhancement in the chemosensitivity of HCT-8/Fu cells to chemotherapeutic drugs | [69] |
Human CRC cell lines (SW480, SW620) | Matrine (MAT) | Alkaloids | Added. IC50 values: 1 mM for 24 h | miR-22↑ | β-catenin, MEK, ERK↓; cell cycle related proteins CyclinD1, CDK6↓ | Inhibition of CRC cell proliferation, induction of apoptosis in tumor cells, cell cycle arrest at the G0-G1 phase | [70] |
8-week-old Balb/c nude mice were injected with 5-FU-resistant DLD-1 cells | 5-FU, erlotinib | Drug | Intraperitoneal injection, 5-FU, erlotinib: 40 mg/kg each, twice a week, 5-FU: 9 weeks, erlotinib: 10 weeks | miR-330-3p↑ | EGFR Protein, FGD5-AS1, HK2 Protein↓ | Inhibition of CRC cell proliferation, enhancement in chemosensitivity of colon cancer to 5-FU, regulation of the tumor microenvironment | [71] |
4-week-old female BALB/c nude mice were injected with SW620 and HCT-116 | Ginsenoside Rh2 | Triterpenoid saponins | Intraperitoneal administration, 50 nM every other day for 42 d | miR-150-3p↑ | The pro-apoptotic genes Bax and cleaved caspase-3↑; PCNA, survivin, cyclin D1, Myc, β-catenin and SRCIN1↓ | Inhibition of colon cancer cell proliferation, migration, invasion, and induction of apoptosis in tumor cells | [72] |
Human CRC cell lines (COLO205 and SW480) | Estradiol | Steroid hormone | Added in different concentrations for 48 h | miR-31, miR-155, miR-135b↓ | ER-β, hMLH1, hMSH2, apoptotic cells (Annexin-V+/PI-)↑ | Inhibition of the colon cancer cell proliferation, invasion, and induction of apoptosis in tumor cells | [73] |
Human CRC cell line (Caco-2) | Exopolysaccharides (EPSs) | Polysaccharides | Added in different concentrations (200 μg/mL, 400 μg/mL, 600 μg/mL, 800 μg/mL, and 1000 μg/mL) for 48 h | miR-155↓ | TP53, AIFM1, Rb1↑; Bcl2, KI-67, c-myc, K-Ras, β-catenin, mTOR, LC3A↓ | Inhibition of CRC cell proliferation, induction of apoptosis in tumor cells, cell cycle arrest at the G1-S phase | [74] |
Human CRC cell line (HCT-116) | Butyrate | Organic acids | Added, 1–2 mM for 24–48 h | miR-106b family↓ | p21 protein↑ | Inhibition of CRC cell proliferation | [75] |
6-week-old C57BL/6J mice (chemical induction) | Cucurbitacin E (CE) | Triterpenoids | Oral gavage,1 mg/kg, once a day for 7 d | miR-371b-5p↑ | Impact on cell cycle proteins; senescence-associated proteins such as p53, p27, and p21↑; TFAP4↓ | Inhibition of CRC cell proliferation and induction of cell senescence | [76] |
Human CRC cell line (DLD-1) | Three main propolis cinnamic acid derivatives: Artepilin C, Baccharin, and Drupanin | Phenolic acids | Added and dissolved in DMSO for 48 h | miR-143↑ | Activation of apoptosis-related proteins and apoptotic signaling pathways; impact on cell cycle and cell survival-related proteins; Erk5 and c-Myc↓ | Inhibition of CRC cell proliferation, induction of apoptosis in tumor cells, synergistic effect of Baccharin and Drupanin | [77] |
6-week-old male C57BL/6J mice (chemical induction) | Avenanthramide A (AVN A) | Phenolic amides | Oral gavage, 30 mg/kg, once a day for 7 d | miR-129-3p↑ | Regulation of cell cycle proteins; p53 protein levels, p21 protein↑; Pirh2 protein, IGF2BP3, and CDK6↓ | Inhibition of CRC cell proliferation, induction of cell senescence, cell cycle arrest | [78] |
Human CRC cell lines (HCT116, LOVO, and DLD-1) | A hexane extract of American ginseng (HAG) | Organic acids | Added at 260 mg/mL for 24 h | miR-29b↑ | MMP-2↓ | Inhibition of CRC cell proliferation and migration, induction of cell senescence | [79] |
Human colon-derived CCD-18Co myofibroblast cells | A polyphenolic extract (WE) from red wine made with Lenoir grapes (Vitis aestivalis hybrid) | Proanthocyanidins, anthocyanins | Added. WE was diluted to 25–100 mg/mL for 24 h–72 h | miR-126↑ | NF-kB Protein↓; cell adhesion molecules ICAM-1, VCAM-1, and PECAM-1 induced by LPS↓; VCAM-1 protein↓ | Anti-inflammatory effects, antioxidant effects | [80] |
5-week-old male Balb/c nude mice were injected with HCT 116 | Metformin | Drug | Oral gavage at 25 mg/kg, once a day for 14 d | miR-361-5p↑ | MYC↓; Sonic Hedgehog signaling pathway↓ | Inhibition of CRC cell proliferation, enhancement in chemosensitivity of colon cancer to 5-FU and oxaliplatin, reduction in stem cell marker expression | [81] |
4.3. Human Models
4.4. Methodological Considerations and Limitations
5. Proposed Mechanisms
5.1. Wnt/β-Catenin Signaling Pathway
5.2. NF-κB Signaling Pathway
5.3. p53
5.4. Bcl-2
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Colorectal Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (accessed on 12 March 2024).
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from GLOBOCAN. Gut 2023, 72, 338. [Google Scholar] [CrossRef] [PubMed]
- Calderon Novoa, F.; Ardiles, V.; de Santibañes, E.; Pekolj, J.; Goransky, J.; Mazza, O.; Sánchez Claria, R.; de Santibañes, M. Pushing the Limits of Surgical Resection in Colorectal Liver Metastasis: How Far Can We Go? Cancers 2023, 15, 2113. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022, 27, 8367. [Google Scholar] [CrossRef]
- Hill, M.; Tran, N. miRNA Interplay: Mechanisms and Consequences in Cancer. Dis. Models Mech. 2021, 14, dmm047662. [Google Scholar] [CrossRef]
- Menon, A.; Abd-Aziz, N.; Khalid, K.; Poh, C.L.; Naidu, R. miRNA: A Promising Therapeutic Target in Cancer. Int. J. Mol. Sci. 2022, 23, 11502. [Google Scholar] [CrossRef]
- Wang, S.-T.; Cui, W.-Q.; Pan, D.; Jiang, M.; Chang, B.; Sang, L.-X. Tea Polyphenols and Their Chemopreventive and Therapeutic Effects on Colorectal Cancer. World J. Gastroenterol. 2020, 26, 562. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Ren, Q.; Tian, J.; Chen, J. Calycosin Induces Apoptosis in Colorectal Cancer Cells, through Modulating the ERβ/MiR-95 and IGF-1R, PI3K/Akt Signaling Pathways. Gene 2016, 591, 123. [Google Scholar] [CrossRef]
- Zhang, C.; Stampfl-Mattersberger, M.; Ruckser, R.; Sebesta, C. Kolorektales Karzinom. Wien. Med. Wochenschr. 2022, 173, 216. [Google Scholar] [CrossRef]
- Pretzsch, E.; Nieß, H.; Bösch, F.; Westphalen, C.B.; Jacob, S.; Neumann, J.; Werner, J.; Heinemann, V.; Angele, M.K. Age and Metastasis—How Age Influences Metastatic Spread in Cancer. Colorectal Cancer as A Model. Cancer Epidemiol. 2022, 77, 102112. [Google Scholar] [CrossRef]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467. [Google Scholar] [CrossRef]
- Seppälä, T.T.; Burkhart, R.A.; Katona, B.W. Hereditary Colorectal, Gastric, and Pancreatic Cancer: Comprehensive Review. BJS Open 2023, 7, zrad023. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, V.A.; Gheorghe, G.; Bacalbasa, N.; Chiotoroiu, A.L.; Diaconu, C. Colorectal Cancer: From Risk Factors to Oncogenesis. Medicina 2023, 59, 1646. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Wang, Z.; Luo, M.; Li, B.; Ding, N.; Li, L.; He, B.; Wang, H.; Cao, J.; Huang, C.; et al. Metastasis Organotropism in Colorectal Cancer: Advancing Toward Innovative Therapies. J. Transl. Med. 2023, 21, 612. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in Cancer (Review of Literature). Int. J. Mol. Sci. 2022, 23, 2805. [Google Scholar] [CrossRef]
- Aghabozorgi, A.S.; Sharif, S.; Jafarzadeh-Esfehani, R.; Vakili, S.; Abbaszadegan, M.R. Role of miRNA Gene Variants in the Susceptibility and Pharmacogenetics of Colorectal Cancer. Pharmacogenomics 2021, 22, 303. [Google Scholar] [CrossRef]
- Marima, R.; Francies, F.Z.; Hull, R.; Molefi, T.; Oyomno, M.; Khanyile, R.; Mbatha, S.; Mabongo, M.; Owen Bates, D.; Dlamini, Z. MicroRNA and Alternative mRNA Splicing Events in Cancer Drug Response/Resistance: Potent Therapeutic Targets. Biomedicines 2021, 9, 1818. [Google Scholar] [CrossRef]
- Crudele, F.; Bianchi, N.; Astolfi, A.; Grassilli, S.; Brugnoli, F.; Terrazzan, A.; Bertagnolo, V.; Negrini, M.; Frassoldati, A.; Volinia, S. The Molecular Networks of microRNAs and Their Targets in the Drug Resistance of Colon Carcinoma. Cancers 2021, 13, 4355. [Google Scholar] [CrossRef]
- Liang, G.; Zhu, Y.; Ali, D.J.; Tian, T.; Xu, H.; Si, K.; Sun, B.; Chen, B.; Xiao, Z. Engineered Exosomes for Targeted Co-delivery of miR-21 Inhibitor and Chemotherapeutics to Reverse Drug Resistance in Colon Cancer. J. Nanobiotechnol. 2020, 18, 10. [Google Scholar] [CrossRef]
- Han, Y.-H.; Mun, J.-G.; Jeon, H.D.; Kee, J.-Y.; Hong, S.-H. Betulin Inhibits Lung Metastasis by Inducing Cell Cycle Arrest, Autophagy, and Apoptosis of Metastatic Colorectal Cancer Cells. Nutrients 2019, 12, 66. [Google Scholar] [CrossRef]
- Wang, H. MicroRNAs and Apoptosis in Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 5353. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Winkle, M.; Ton, A.N.; Nguyen, D.; Calin, G.A. The Role of Non-Coding RNAs in Chromosomal Instability in Cancer. J. Pharmacol. Exp. Ther. 2023, 384, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, F.; Wang, Z.; Zheng, S.; Zhang, S.; Wang, C.; He, B.; Wang, J.B.; Wang, H. METTL16-Mediated N6-Methyladenosine Modification of SOGA1 Enables Proper Chromosome Segregation and Chromosomal Stability in Colorectal Cancer. Cell Prolif. 2023, 57, e13590. [Google Scholar] [CrossRef] [PubMed]
- Shademan, B.; Karamad, V.; Nourazarian, A.; Masjedi, S.; Isazadeh, A.; Sogutlu, F.; Avcı, C.B. MicroRNAs as Targets for Cancer Diagnosis: Interests and Limitations. Adv. Pharm. Bull. 2022, 13, 435. [Google Scholar] [CrossRef]
- Lulla, A.R.; Slifker, M.J.; Zhou, Y.; Lev, A.; Einarson, M.B.; Dicker, D.T.; El-Deiry, W.S. miR-6883 Family miRNAs Target CDK4/6 to Induce G1 Phase Cell-Cycle Arrest in Colon Cancer Cells. Cancer Res. 2017, 77, 6902. [Google Scholar] [CrossRef]
- Farzaneh, S.; Bandad, S.; Shaban, F.; Heshmati, M.; Barikrow, N.; Pashapour, S. The Expression of miR-34c-5p Induces G0/G1 Cell Cycle Arrest and Apoptosis in SW480 Colon Cancer Cell. Iran. J. Pharm. Res. 2023, 22, e135501. [Google Scholar] [CrossRef]
- Morimoto, Y.; Mizushima, T.; Wu, X.; Okuzaki, D.; Yokoyama, Y.; Inoue, A.; Hata, T.; Hirose, H.; Qian, Y.; Wang, J.; et al. miR-4711-5p Regulates Cancer Stemness and Cell Cycle Progression via KLF5, MDM2 and TFDP1 in Colon Cancer Cells. Br. J. Cancer 2020, 122, 1037. [Google Scholar] [CrossRef]
- Xiao, Y.; Yu, D. Tumor Microenvironment as A Therapeutic Target in Cancer. Pharmacol. Ther. 2021, 221, 107753. [Google Scholar] [CrossRef]
- Arneth, B. Tumor Microenvironment. Medicina 2019, 56, 15. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Calin, G.A.; Lopez-Berestein, G.; Sood, A.K. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov. 2016, 6, 235. [Google Scholar] [CrossRef]
- Pérez-González, A.; Bévant, K.; Blanpain, C. Cancer Cell Plasticity During Tumor Progression, Metastasis and Response to Therapy. Nat. Cancer 2023, 4, 1063. [Google Scholar] [CrossRef] [PubMed]
- Dorraki, N.; Ghale-Noie, Z.N.; Ahmadi, N.S.; Keyvani, V.; Bahadori, R.A.; Nejad, A.S.; Aschner, M.; Pourghadamyari, H.; Mollazadeh, S.; Mirzaei, H. MiRNA-148b and Its Role in Various Cancers. Epigenomics 2021, 13, 1939. [Google Scholar] [CrossRef] [PubMed]
- Sanuki, R.; Yamamura, T. Tumor Suppressive Effects of miR-124 and Its Function in Neuronal Development. Int. J. Mol. Sci. 2021, 22, 5919. [Google Scholar] [CrossRef]
- Ellakwa, D.E.-S.; Mushtaq, N.; Khan, S.; Jabbar, A.; Abdelmalek, M.A.; Wadan, A.-H.S.; Ellakwa, T.E.; Raza, A. Molecular Functions of MicroRNAs in Colorectal Cancer: Recent Roles in Proliferation, Angiogenesis, Apoptosis, and Chemoresistance. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 5617. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Wei, H.; Liu, Y.; Li, N. Mast cells in Colorectal Cancer Tumour Progression, Angiogenesis, and lymphangiogenesis. Front. Immunol. 2023, 14, 1209056. [Google Scholar] [CrossRef]
- Zhong, M.; Li, N.; Qiu, X.; Ye, Y.; Chen, H.; Hua, J.; Yin, P.; Zhuang, G. TIPE Regulates VEGFR2 Expression and Promotes Angiogenesis in Colorectal Cancer. Int. J. Biol. Sci. 2020, 16, 272. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Zhu, Y.; Li, Z.; Yao, L.; Zhang, L.; Yuan, L.; Shang, Y.; Liu, J.; Li, C. miR-524-5p Inhibits Angiogenesis through Targeting WNK1 in Colon Cancer Cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2020, 318, G827. [Google Scholar] [CrossRef]
- Sun, A.; Li, Y.; Jiang, X. CCL26 Silence Represses Colon Cancer by Inhibiting the EMT Signaling Pathway. Tissue Cell 2022, 79, 101937. [Google Scholar] [CrossRef]
- Zhu, W.; Luo, X.; Fu, H.; Liu, L.; Sun, P.; Wang, Z. miR-3653 Inhibits the Metastasis and Epithelial-Mesenchymal Transition of Colon Cancer by Targeting ZEB2. Pathol.—Res. Pract. 2019, 215, 152577. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, K. miR-205 Suppresses Cell Migration, Invasion and EMT of Colon Cancer by Targeting Mouse Double Minute 4. Mol. Med. Rep. 2020, 22, 633. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Wang, Y.; Gao, J.; Wu, X.; Li, H. miR-194-3p Represses Docetaxel Resistance in Colon Cancer by Targeting KLK10. Pathol.—Res. Pract. 2022, 236, 153962. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Luo, X.; Song, Z.; Jiang, S.; Long, X.; Gao, X.; Xie, X.; Zheng, L.; Wang, H. miR-188-5p Promotes Oxaliplatin Resistance by Targeting RASA1 in Colon Cancer Cells. Oncol. Lett. 2021, 21, 481. [Google Scholar] [CrossRef] [PubMed]
- Maleki, M.; Golchin, A.; Javadi, S.; Khelghati, N.; Morovat, P.; Asemi, Z.; Alemi, F.; Vaghari-Tabari, M.; Yousefi, B.; Majidinia, M. Role of Exosomal miRNA in Chemotherapy Resistance of Colorectal Cancer: A Systematic Review. Chem. Biol. Drug Des. 2021, 101, 1096. [Google Scholar] [CrossRef]
- He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; et al. miRNA-Based Biomarkers, Therapies, and Resistance in Cancer. Int. J. Biol. Sci. 2020, 16, 2628. [Google Scholar] [CrossRef]
- Masdor, N.A.; Mohammed Nawi, A.; Hod, R.; Wong, Z.; Makpol, S.; Chin, S.-F. The Link between Food Environment and Colorectal Cancer: A Systematic Review. Nutrients 2022, 14, 3954. [Google Scholar] [CrossRef]
- Yammine, A.; Namsi, A.; Vervandier-Fasseur, D.; Mackrill, J.J.; Lizard, G.; Latruffe, N. Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer. Molecules 2021, 26, 3483. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Emerging Applications of Nanotechnologies to Probiotics and Prebiotics. Int. J. Food Sci. Technol. 2021, 56, 3719. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, N.; Ashaolu, T.J. Prebiotic and Modulatory Evidence of Lactoferrin on Gut Health and Function. J. Funct. Foods 2023, 108, 105741. [Google Scholar] [CrossRef]
- Fong, W.; Li, Q.; Yu, J. Gut Microbiota Modulation: A Novel Strategy for Prevention and Treatment of Colorectal Cancer. Oncogene 2020, 39, 4925. [Google Scholar] [CrossRef]
- Dou, H.; Shen, R.; Tao, J.; Huang, L.; Shi, H.; Chen, H.; Wang, Y.; Wang, T. Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a. Front. Pharmacol. 2017, 8, 877. [Google Scholar] [CrossRef]
- Chen, G.; Han, Y.; Feng, Y.; Wang, A.; Li, X.; Deng, S.; Zhang, L.; Xiao, J.; Li, Y.; Li, N. Extract of Ilex Rotunda Thunb Alleviates Experimental Colitis-Associated Cancer via Suppressing Inflammation-Induced miR-31-5p/YAP Overexpression. Phytomedicine 2019, 62, 152941. [Google Scholar] [CrossRef] [PubMed]
- Illescas, O.; Ferrero, G.; Belfiore, A.; Pardini, B.; Tarallo, S.; Ciniselli, C.M.; Noci, S.; Daveri, E.; Signoroni, S.; Cattaneo, L.; et al. Modulation of Fecal miRNAs Highlights the Preventive Effects of a Mediterranean Low-Inflammatory Dietary Intervention. Clin. Nutr. 2024, 43, 951. [Google Scholar] [CrossRef] [PubMed]
- Naschberger, E.; Fuchs, M.; Dickel, N.; Kunz, M.; Popp, B.; Anchang, C.G.; Demmler, R.; Lyu, Y.; Uebe, S.; Ekici, A.B.; et al. Tumor Microenvironment-Dependent Epigenetic Imprinting in the Vasculature Predicts Colon Cancer Outcome. Cancer Commun. 2023, 43, 1280. [Google Scholar] [CrossRef]
- Chen, X.; Ding, Y.; Yi, Y.; Chen, Z.; Fu, J.; Chang, Y. Review of Animal Models of Colorectal Cancer in Different Carcinogenesis Pathways. Dig. Dis. Sci. 2024, 69, 1583. [Google Scholar] [CrossRef]
- Li, C.; Lau, H.C.-H.; Zhang, X.; Yu, J. Mouse Models for Application in Colorectal Cancer: Understanding the Pathogenesis and Relevance to the Human Condition. Biomedicines 2022, 10, 1710. [Google Scholar] [CrossRef]
- Nuñez-Sánchez, M.A.; Dávalos, A.; González-Sarrías, A.; Casas-Agustench, P.; Visioli, F.; Monedero-Saiz, T.; García-Talavera, N.V.; Gómez-Sánchez, M.B.; Sánchez-Álvarez, C.; García-Albert, A.M.; et al. MicroRNA Expression in Normal and Malignant Colon Tissues as Biomarkers of Colorectal Cancer and in Response to Pomegranate Extracts Consumption: Critical Issues to Discern Between Modulatory Effects and Potential Artifacts. Mol. Nutr. Food Res. 2015, 59, 1973. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, L.; Guo, S.; Li, Y. Baicalin Induces Colon Cancer Cell Apoptosis Through miR-217/DKK1-Mediated Inhibition of the Wnt Signaling Pathway. Mol. Biol. Rep. 2019, 46, 1693. [Google Scholar] [CrossRef]
- Ji, G.; Zhou, W.; Li, X.; Du, J.; Li, X.; Hao, H. Melatonin Inhibits Proliferation and Viability and Promotes Apoptosis in Colon Cancer Cells via Upregulation of the microRNA-34a/449a Cluster. Mol. Med. Rep. 2021, 23, 187. [Google Scholar] [CrossRef]
- Wu, H.; Du, J.e.; Li, C.; Li, H.; Guo, H.; Li, Z. Kaempferol Can Reverse the 5-Fu Resistance of Colorectal Cancer Cells by Inhibiting PKM2-Mediated Glycolysis. Int. J. Mol. Sci. 2022, 23, 3544. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, K.; Pan, G.; Li, C.; Li, C.; Hu, X.; Yang, L.; Cui, H. Deoxyelephantopin Induces Apoptosis and Enhances Chemosensitivity of Colon Cancer via miR-205/Bcl2 Axis. Int. J. Mol. Sci. 2022, 23, 5051. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, K.; Zheng, Z.; Liu, Y. Cordycepin Inhibits Colon Cancer Proliferation by Suppressing MYC Expression. BMC Pharmacol. Toxicol. 2022, 23, 12. [Google Scholar] [CrossRef] [PubMed]
- Terana, G.; Abd-Alhaseeb, M.; Omran, G.; Okda, T.M. Quercetin Potentiates 5-Fluorouracil Effects in Human Colon Cancer Cells Through Targeting the Wnt/β-Catenin Signaling Pathway: The Role of miR-27a. Współczesna Onkol. 2022, 26, 229. [Google Scholar] [CrossRef]
- La, X.; Zhang, L.; Li, Z.; Li, H.; Yang, Y. (−)-Epigallocatechin Gallate (EGCG) Enhances the Sensitivity of Colorectal Cancer Cells to 5-FU by Inhibiting GRP78/NF-κB/miR-155-5p/MDR1 Pathway. J. Agric. Food Chem. 2019, 67, 2510. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Dai, X.; Li, K.; Gui, G.; Liu, J.; Yang, H. Clostridium Butyricum Partially Regulates the Development of Colitis-associated Cancer through miR-200c. Cell. Mol. Biol. 2017, 63, 59. [Google Scholar] [CrossRef]
- Wu, H.; Li, C.; Cui, M.; Guo, H.; Chen, S.; Du, J.E.; Li, H.; Li, Z. Polyphenols from Hippophae Rhamnoides Suppress Colon Cancer Growth by Regulating miRNA-Mediated Cell Cycle Arrest and Apoptosis in Vitro and in Vivo. J. Funct. Foods 2021, 87, 104780. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Q.; Yang, X.; Qian, S.Y.; Guo, B. Vitamin D Enhances the Efficacy of Irinotecan through miR-627–Mediated Inhibition of Intratumoral Drug Metabolism. Mol. Cancer Ther. 2016, 15, 2086. [Google Scholar] [CrossRef]
- Nakayama, T.; Funakoshi-Tago, M.; Tamura, H. Coffee Reduces KRAS Expression in Caco-2 Human Colon Carcinoma Cells via Regulation of miRNAs. Oncol. Lett. 2017, 14, 1109. [Google Scholar] [CrossRef]
- Qiao, P.F.; Yao, L.; Zeng, Z.L. Catalpol-Mediated microRNA-34a Suppresses Autophagy and Malignancy by Regulating SIRT1 in Colorectal Cancer. Oncol. Rep. 2020, 43, 1053. [Google Scholar] [CrossRef]
- Ni, H.; Han, Y.; Jin, X. Celastrol Inhibits Colon Cancer Cell Proliferation by Downregulating miR-21 and PI3K/AKT/GSK-3β Pathway. Int. J. Clin. Exp. Pathol. 2019, 12, 808. [Google Scholar]
- Su, Y.-S.; Kuo, M.Z.; Kuo, Y.T.; Huang, S.-W.; Lee, C.-J.; Su, Z.-Y.; Ni, Y.-H.; Li, D.-K.; Wu, T.-Y. Diterpenoid Anthraquinones as Chemopreventive Agents Altered microRNA and Transcriptome Expressions in Cancer Cells. Biomed. Pharmacother. 2021, 136, 111260. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, L.; Feng, J.; Lin, W.; Cai, Q.; Peng, J. Spica Prunellae Extract Suppresses the Growth of Human Colon Carcinoma Cells by Targeting Multiple Oncogenes via Activating miR-34a. Oncol. Rep. 2017, 38, 1895. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.L.; Li, Y.; Zhao, Q.; Fan, L.Q. Formononetin Inhibits Colon Carcinoma Cell Growth and Invasion by microRNA-149-Mediated EphB3 Downregulation and Inhibition of PI3K/AKT and STAT3 Signaling Pathways. Mol. Med. Rep. 2018, 17, 7721. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Lu, Y.; Zhang, X.; Shi, J.; Li, H.; Li, Z. Inhibitory Effect of Bound Polyphenol from Foxtail Millet Bran on miR-149 Methylation Increases the Chemosensitivity of Human Colorectal Cancer HCT-8/Fu Cells. Mol. Cell. Biochem. 2020, 476, 513. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, Y.; Cao, J. Matrine Triggers Colon Cancer Cell Apoptosis and G0/G1 Cell Cycle Arrest via Mediation of microRNA-22. Phytother. Res. 2020, 34, 1619. [Google Scholar] [CrossRef]
- Gao, S.-J.; Ren, S.-N.; Liu, Y.-T.; Yan, H.-W.; Chen, X.-B. Targeting EGFR Sensitizes 5-Fu-resistant Colon Cancer Cells Through Modification of the lncRNA-FGD5-AS1-miR-330-3p-Hexokinase 2 Axis. Mol. Ther.–Oncolytics 2021, 23, 14. [Google Scholar] [CrossRef]
- Li, S.; Han, W.; He, Q.; Wang, Y.; Jin, G.; Zhang, Y. Ginsenoside Rh2 Suppresses Colon Cancer Growth by Targeting the miR-150-3p/SRCIN1/Wnt axis. Acta Biochim. Biophys. Sin. 2023, 55, 633. [Google Scholar] [CrossRef]
- He, Y.-q.; Sheng, J.-q.; Ling, X.-l.; Fu, L.; Jin, P.; Yen, L.; Rao, J. Estradiol Regulates miR-135b and Mismatch Repair Gene Expressions via Estrogen Receptor-β in Colorectal Cells. Exp. Mol. Med. 2012, 44, 723. [Google Scholar] [CrossRef]
- Emam, A.A.; Abo-Elkhair, S.M.; Sobh, M.; El-Sokkary, A.M.A. Role of Exopolysaccharides (EPSs) as Anti-mir-155 in Cancer Cells. Heliyon 2021, 7, e06698. [Google Scholar] [CrossRef]
- Navarro, A.; Hu, S.; Dong, T.S.; Dalal, S.R.; Wu, F.; Bissonnette, M.; Kwon, J.H.; Chang, E.B. The Microbe-Derived Short Chain Fatty Acid Butyrate Targets miRNA-Dependent p21 Gene Expression in Human Colon Cancer. PLoS ONE 2011, 6, e16221. [Google Scholar] [CrossRef]
- Yang, P.; Lian, Q.; Fu, R.; Ding, G.-b.; Amin, S.; Li, Z.; Li, Z. Cucurbitacin E Triggers Cellular Senescence in Colon Cancer Cells via Regulating the miR-371b-5p/TFAP4 Signaling Pathway. J. Agric. Food Chem. 2022, 70, 2936. [Google Scholar] [CrossRef]
- Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Yamada, N.; Ohta, S.; Ichihara, K.; Akao, Y. Propolis Cinnamic Acid Derivatives Induce Apoptosis Through Both Extrinsic and Intrinsic Apoptosis Signaling Pathways and Modulate miRNA Expression. Phytomedicine 2014, 21, 1070. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Yang, P.; Sajid, A.; Li, Z. Avenanthramide A Induces Cellular Senescence via miR-129-3p/Pirh2/p53 Signaling Pathway To Suppress Colon Cancer Growth. J. Agric. Food Chem. 2019, 67, 4808. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.R.M.R.; Poudyal, D.; Cui, X.; Le, P.M.; Hofseth, A.B.; Windust, A.; Nagarkatti, M.; Nagarkatti, P.S.; Schetter, A.J.; Harris, C.C.; et al. A Key Role of microRNA-29b for the Suppression of Colon Cancer Cell Migration by American Ginseng. PLoS ONE 2013, 8, e75034. [Google Scholar] [CrossRef]
- Angel-Morales, G.; Noratto, G.; Mertens-Talcott, S. Red Wine Polyphenolics Reduce the Expression of Inflammation Markers in Human Colon-derived CCD-18Co Myofibroblast Cells: Potential Role Of microRNA-126. Food Funct. 2012, 3, 745. [Google Scholar] [CrossRef]
- Hong, X.-L.; Yu, T.-C.; Huang, X.-W.; Wang, J.-L.; Sun, T.-T.; Yan, T.-T.; Zhou, C.-B.; Chen, H.-M.; Su, W.-Y.; Du, W.; et al. Metformin Abrogates Fusobacterium Nucleatum-Induced Chemoresistance in Colorectal Cancer by Inhibiting miR-361-5p/Sonic Hedgehog Signaling-Regulated Stemness. Br. J. Cancer 2022, 128, 363. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Bian, J.; Dannappel, M.; Wan, C.; Firestein, R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020, 9, 2125. [Google Scholar] [CrossRef]
- Das, R.; Mehta, D.K.; Dhanawat, M. Medicinal Plants in Cancer Treatment: Contribution of Nuclear Factor- Kappa B (NF-kB) Inhibitors. Mini-Rev. Med. Chem. 2022, 22, 1938. [Google Scholar] [CrossRef]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef]
- Alipourgivi, F.; Motolani, A.; Qiu, A.Y.; Qiang, W.; Yang, G.-Y.; Chen, S.; Lu, T. Genetic Alterations of NF-κB and Its Regulators: A Rich Platform to Advance Colorectal Cancer Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 25, 154. [Google Scholar] [CrossRef]
- Liebl, M.C.; Hofmann, T.G. The Role of p53 Signaling in Colorectal Cancer. Cancers 2021, 13, 2125. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. p53 Signaling in Cancer Progression and Therapy. Cancer Cell Int. 2021, 21, 703. [Google Scholar] [CrossRef] [PubMed]
- Merlin, J.P.J.; Rupasinghe, H.P.V.; Dellaire, G.; Murphy, K.; Gil, G. Role of Dietary Antioxidants in p53-Mediated Cancer Chemoprevention and Tumor Suppression. Oxidative Med. Cell. Longev. 2021, 2021, 9924328. [Google Scholar] [CrossRef]
- Ramesh, P.; Medema, J.P. BCL-2 Family Deregulation in Colorectal Cancer: Potential for BH3 Mimetics in Therapy. Apoptosis 2020, 25, 305. [Google Scholar] [CrossRef]
- Lim, R.K.; Rhee, J.; Hoang, M.; Qureshi, A.A.; Cho, E. Consumption of Red Versus White Wine and Cancer Risk: A Meta-Analysis of Observational Studies. Nutrients 2025, 17, 534. [Google Scholar] [CrossRef]
- Johdi, N.A.; Sukor, N.F. Colorectal Cancer Immunotherapy: Options and Strategies. Front. Immunol. 2020, 11, 1624. [Google Scholar] [CrossRef]
- Maria, L.A.D.; Lestari, G.I. Chapter Three–Curcumin. Profiles Drug Subst. Excip. Relat. Methodol. 2014, 39, 113. [Google Scholar] [CrossRef]
- Wang, L.; Hao, L.; Hou, H.; Wang, L.; Liu, S.; Tang, R.; Mao, J.; Zhou, Q.; Deng, Q.; Yan, L.; et al. Carboxymethylpachymaran-Coated Zein Nanoparticles for Oral Delivery of Curcumin: Formation, Characterization, Physicochemical Stability, and Controlled Release Properties. ACS Food Sci. Technol. 2023, 3, 170. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Li, C.-X.; Kakar, M.U.; Khan, M.S.; Wu, P.-F.; Amir, R.M.; Dai, D.-F.; Naveed, M.; Li, Q.-Y.; Saeed, M.; et al. Resveratrol (RV): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, X.; Ashaolu, T.J.; Sun, M.-C.; Zhao, C. A Review of Food Bioactives That Can Modulate miRNA Profiles for Management of Colorectal Cancer. Foods 2025, 14, 1352. https://doi.org/10.3390/foods14081352
Wan X, Ashaolu TJ, Sun M-C, Zhao C. A Review of Food Bioactives That Can Modulate miRNA Profiles for Management of Colorectal Cancer. Foods. 2025; 14(8):1352. https://doi.org/10.3390/foods14081352
Chicago/Turabian StyleWan, Xiaoqin, Tolulope Joshua Ashaolu, Mao-Cheng Sun, and Changhui Zhao. 2025. "A Review of Food Bioactives That Can Modulate miRNA Profiles for Management of Colorectal Cancer" Foods 14, no. 8: 1352. https://doi.org/10.3390/foods14081352
APA StyleWan, X., Ashaolu, T. J., Sun, M.-C., & Zhao, C. (2025). A Review of Food Bioactives That Can Modulate miRNA Profiles for Management of Colorectal Cancer. Foods, 14(8), 1352. https://doi.org/10.3390/foods14081352