The Impacts of Global Climate Change and Environmental Security on Fruits and Vegetables—A Policy–Technology Nexus Perspective
Abstract
1. Introduction
2. Methodology
2.1. Literature Search and Source Identification
2.2. Study Selection and Screening Criteria
2.3. Data Extraction and Synthesis
2.4. Acknowledgment of Scope and Limitations
3. Impacts of Global Climate Change on Fruit and Vegetable Industry
3.1. Impacts of Global Climate Change on Fruit and Vegetable Yield
3.1.1. Temperature
3.1.2. CO2
3.1.3. Water
3.1.4. Soil pH and Salinity
3.1.5. Wind
3.1.6. UV Radiation
3.1.7. Ozone
3.1.8. Ocean Acidification
3.2. Impacts of Global Climate Change on Fruit and Vegetable Quality
3.2.1. Temperature
3.2.2. CO2
3.2.3. Rainfall
3.2.4. pH and Salinity
3.2.5. Wind
3.2.6. UV Radiation
3.2.7. Ozone
3.2.8. Ocean Acidification
3.3. Impacts of Global Climate Change on Diseases and Pests of Fruits and Vegetables
3.3.1. Temperature
3.3.2. CO2
3.3.3. Rainfall
3.3.4. pH and Salinity
3.3.5. Wind
3.3.6. UV Radiation
3.3.7. Ozone
3.3.8. Ocean Acidification
3.4. Impacts of Global Climate Change on Food Safety of Fruit and Vegetable Products
3.4.1. Temperature
3.4.2. CO2
3.4.3. Rainfall
3.4.4. pH and Salinity
3.4.5. Wind
3.4.6. UV Radiation
3.4.7. Ozone
3.4.8. Ocean Acidification
3.5. Discussion on the Systemic Impact of Climate Factors on the Fruit and Vegetable Industry
4. Impacts of Carbon Pricing Policies on the Fruit and Vegetable Industry
4.1. Impacts of Carbon Pricing Policies on the Supply Chain
4.1.1. Planting
4.1.2. Distribution
4.1.3. Impacts on Smallholder Farmers and Distributional Equity
4.2. Impacts of Carbon Pricing Policies on the Marketing
4.3. Main Countermeasures to Carbon Pricing Policies and Available Technologies
4.3.1. Main Countermeasures to Carbon Pricing Policies and Challenges
4.3.2. The Role of Multilevel Governance and Local Institutions in a Just Transition
4.3.3. Available Technologies for Low-Carbon Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCulloch, M.T.; Winter, A.; Sherman, C.E.; Trotter, J.A. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 °C. Nat. Clim. Change 2024, 14, 171–177. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H. Future Earth and Sustainable Developments. Innovation 2020, 1, 100055. [Google Scholar] [CrossRef]
- Semba, R.D.; Askari, S.; Gibson, S.; Bloem, M.W.; Kraemer, K. The Potential Impact of Climate Change on the Micronutrient-Rich Food Supply. Adv. Nutr. 2022, 13, 80–100. [Google Scholar] [CrossRef]
- Ou, L.; Zhang, Y.; Zhang, Z.; Chen, Y.; Wang, K.; Wen, Y.; Ao, Y. The relationship between canopy microclimate, fruit and seed yield, and quality in Xanthoceras sorbifolium. J. Plant Physiol. 2023, 284, 153975. [Google Scholar] [CrossRef]
- Springmann, M.; Sacks, G.; Ananthapavan, J.; Scarborough, P. Carbon pricing of food in Australia: An analysis of the health, environmental and public finance impacts. Aust. N. Z. J. Public Health 2018, 42, 523–529. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chiu, Y.-H.; Lin, Y.-N.; Chang, T.-H.; Lin, P.-Y. Greenhouse gas emission indicators, energy consumption efficiency, and optimal carbon emission allowance allocation of the EU countries in 2030. Gas Sci. Eng. 2023, 110, 204902. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Y.; Yan, R. Does carbon emission trading policy has emission reduction effect?—An empirical study based on quasi-natural experiment method. J. Environ. Manag. 2024, 351, 119791. [Google Scholar] [CrossRef]
- Jameel, S. Climate change, food systems and the Islamic perspective on alternative proteins. Trends Food Sci. Technol. 2023, 138, 480–490. [Google Scholar] [CrossRef]
- Wang, R.; Bai, Z.; Chang, J.; Li, Q.; Hristov, A.N.; Smith, P.; Yin, Y.; Tan, Z.; Wang, M. China’s low-emission pathways toward climate-neutral livestock production for animal-derived foods. Innovation 2022, 3, 100220. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, X.; Li, J. Environmental Affects of Plant-Based Beef Analog Production in 12 Countries and Consumer Response to Plant-Based Meat in China, A Case Study. J. Food Nutr. Res. 2025, 13, 315–329. [Google Scholar] [CrossRef]
- Pugnaire, F.I.; Morillo, J.A.; Peñuelas, J.; Reich, P.B.; Bardgett, R.D.; Gaxiola, A.; Wardle, D.A.; van der Putten, W.H. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 2019, 5, eaaz1834. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Medda, S.; Fadda, A.; Mulas, M. Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. Horticulturae 2022, 8, 273. [Google Scholar] [CrossRef]
- Carter, P.; Gray, L.J.; Talbot, D.; Morris, D.H.; Khunti, K.; Davies, M.J. Fruit and vegetable intake and the association with glucose parameters: A cross-sectional analysis of the Let’s Prevent Diabetes Study. Eur. J. Clin. Nutr. 2012, 67, 12–17. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Zhang, Z.; Qin, G.; Chen, T.; Tian, S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in Penicillium expansum. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3416–3438. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.D. Health effects of dietary risks in 195 countries, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Stratton, A.E.; Finley, J.W.; Gustafson, D.I.; Mitcham, E.J.; Myers, S.S.; Naylor, R.L.; Otten, J.J.; Palm, C.A. Mitigating sustainability tradeoffs as global fruit and vegetable systems expand to meet dietary recommendations. Environ. Res. Lett. 2021, 16, 055010. [Google Scholar] [CrossRef]
- Feng, S.; Lakshmanan, P.; Zhang, Y.; Zhang, T.; Liang, T.; Zhang, W.; Chen, X.; Wang, X. A comprehensive continental-scale analysis of carbon footprint of food production: Comparing continents around the world. J. Clean. Prod. 2023, 426, 138939. [Google Scholar] [CrossRef]
- Salinas, I.; Hueso, J.J.; Cuevas, J. Active Control of Greenhouse Climate Enhances Papaya Growth and Yield at an Affordable Cost. Agronomy 2021, 11, 378. [Google Scholar] [CrossRef]
- Schmitt, J.; Offermann, F.; Soeder, M.; Fruehauf, C.; Finger, R. Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy 2022, 112, 102359. [Google Scholar] [CrossRef]
- Haque, S.; Akbar, D.; Kinnear, S. The variable impacts of extreme weather events on fruit production in subtropical Australia. Sci. Hortic. 2020, 262, 109050. [Google Scholar] [CrossRef]
- Ro, S.; Chea, L.; Ngoun, S.; Stewart, Z.P.; Roeurn, S.; Theam, P.; Lim, S.; Sor, R.; Kosal, M.; Roeun, M.; et al. Response of Tomato Genotypes under Different High Temperatures in Field and Greenhouse Conditions. Plants 2021, 10, 449. [Google Scholar] [CrossRef]
- Maeda, T.; Hiraiwa, M.K.; Shimomura, Y.; Oe, T. Weather conditions affect pollinator activity, fruit set rate, and yield in Japanese apricot. Sci. Hortic. 2023, 307, 111522. [Google Scholar] [CrossRef]
- Vanalli, C.; Casagrandi, R.; Gatto, M.; Bevacqua, D. Shifts in the thermal niche of fruit trees under climate change: The case of peach cultivation in France. Agric. For. Meteorol. 2021, 300, 108327. [Google Scholar] [CrossRef]
- Ghrab, M.; Ben Mimoun, M.; Masmoudi, M.M.; Ben Mechlia, N. Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees. Sci. Hortic. 2014, 178, 87–94. [Google Scholar] [CrossRef]
- Akhlaq, M.; Chuan, Z.; Haofang, Y.; Shaowei, L.; Ni, Y.; Zhou, J.; Xue, R.; Li, J.; Hussain, Z.; Iqbal, S. Exploring adequate CO2 elevation for optimum tomato growth and yield under protected cultivation. J. Plant Physiol. 2023, 289, 154093. [Google Scholar] [CrossRef]
- Du, B.; Shukla, M.K.; Yang, X.; Du, T. Enhanced fruit yield and quality of tomato by photosynthetic bacteria and CO2 enrichment under reduced irrigation. Agric. Water Manag. 2023, 277, 108106. [Google Scholar] [CrossRef]
- Wakchaure, G.C.; Minhas, P.S.; Kumar, S.; Mane, P.; Suresh Kumar, P.; Rane, J.; Pathak, H. Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem. Saudi J. Biol. Sci. 2023, 30, 103497. [Google Scholar] [CrossRef]
- Freihat, N.M.; Al-Ghzawi, A.A.-M.; Zaitoun, S.; Alqudah, A. Fruit set and quality of loquats (Eriobotrya japonica) as effected by pollinations under sub-humid Mediterranean. Sci. Hortic. 2008, 117, 58–62. [Google Scholar] [CrossRef]
- Al-Dakheel, A.J.; Hussain, M.I.; Abdulrahman, A.; Abdullah, A. Long term assessment of salinity impact on fruit yield in eighteen date palm varieties. Agric. Water Manag. 2022, 269, 107683. [Google Scholar] [CrossRef]
- Lee, I.B.; Jung, D.H.; Kang, S.B.; Hong, S.S.; Yi, P.H.; Jeong, S.T.; Park, J.M. Changes in Growth, Fruit Quality, and Leaf Characteristics of Apple Tree (Malus domestica Borkh. ‘Fuji’) Grown under Elevated CO2 and Temperature Conditions. Hortic. Sci. Technol. 2023, 41, 113–124. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Guerra, C.A.; Cano-Díaz, C.; Egidi, E.; Wang, J.-T.; Eisenhauer, N.; Singh, B.K.; Maestre, F.T. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 2020, 10, 550–554. [Google Scholar] [CrossRef]
- Balasooriya, B.L.H.N.; Dassanayake, K.; Ajlouni, S. High temperature effects on strawberry fruit quality and antioxidant contents. Acta Hortic. 2020, 1278, 225–234. [Google Scholar] [CrossRef]
- Sikhandakasmita, P.; Kataoka, I.; Mochioka, R.; Beppu, K. Impact of Temperatures During Fruit Development on Fruit Growth Rate and Qualities of ‘KU-PP2’ Peach. Hortic. J. 2022, 91, 152–156. [Google Scholar] [CrossRef]
- Fischer, G.; Melgarejo, L.M. Ecophysiological aspects of guava (Psidium guajava L.). A review. Rev. Colomb. De Cienc. Hortícolas 2021, 15, e12355. [Google Scholar] [CrossRef]
- Chekanov, K.; Schastnaya, E.; Solovchenko, A.; Lobakova, E. Effects of CO2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis. J. Photochem. Photobiol. B-Biol. 2017, 171, 58–66. [Google Scholar] [CrossRef]
- Salto, L.; Maoz, I.; Goldenberg, L.; Carmi, N.; Porat, R. Effects of Rainfall and Harvest Time on Postharvest Storage Performance of ‘Redson’ Fruit: A New Red Pomelo x Grapefruit Hybrid. Agriculture 2024, 14, 1836. [Google Scholar] [CrossRef]
- Insausti, P.; Gorjón, S. Floods affect physiological and growth variables of peach trees (Prunus persica (L.) Batsch), as well as the postharvest behavior of fruits. Sci. Hortic. 2013, 152, 56–60. [Google Scholar] [CrossRef]
- Ye, X.; Li, Y.; Li, X.; Zhang, Q. Factors influencing water level changes in China’s largest freshwater lake, Poyang Lake, in the past 50 years. Water Int. 2014, 39, 983–999. [Google Scholar] [CrossRef]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.E.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water balance creates a threshold in soil pH at the global scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef]
- Jat Baloch, M.Y.; Zhang, W.; Sultana, T.; Akram, M.; Shoumik, B.A.A.; Khan, M.Z.; Farooq, M.A. Utilization of sewage sludge to manage saline–alkali soil and increase crop production: Is it safe or not? Environ. Technol. Innov. 2023, 32, 103266. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Murcia-Asensi, C.; Fita, A.; de Luis-Margarit, A.; Guijarro-Real, C.; Raigon, M.D.; Blanca-Gimenez, V.; Diez-Diaz, M.; Rodriguez-Burruezo, A. Grafting in Capsicum peppers as a strategy to mitigate the effects of climate change on yield and quality factors. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13653. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; Qureshi, J.A.; Wright, A.L.; Ritenour, M.A.; Macan, N.P.F. Citrus Production Under Screen as a Strategy to Protect Grapefruit Trees From Huanglongbing Disease. Front. Plant Sci. 2019, 10, 1598. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, G.S.; Shukla, S.; Roka, F.M.; Sishodia, R.P.; Obreza, T.A.; Hochmuth, G.J.; Colee, J. Economic and environmental consequences of overfertilization under extreme weather conditions. J. Soil Water Conserv. 2019, 74, 160–171. [Google Scholar] [CrossRef]
- Copaciu, F.; Faur, C.-A.; Bunea, A.; Leopold, L.; Sima, R.M.; Lacatus, M.A.; Lupitu, A.; Moisa, C.; Copolovici, D.M.; Copolovici, L. Enhancing UV-B Protection and Abiotic Stress Tolerance in Tomato Plants: The Role of Silicon Nanoparticles in Photosynthetic Parameters, Pigments, and Secondary Metabolite Production. Plants 2025, 14, 2599. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Zhu, J.; Yue, K.; Zhou, K. Characteristics of Mango Leaf Photosynthetic Inhibition by Enhanced UV-B Radiation. Horticulturae 2021, 7, 557. [Google Scholar] [CrossRef]
- Bhattarai, S.; Jha, D.K.; Balyan, S.; Zhen, S.; Pillai, S.S.; Patil, B.S. UV-B and blue light supplementation improves tomato quality and antioxidant dynamics: A novel approach for sustainable greenhouse production. J. Agric. Food Res. 2025, 22, 102054. [Google Scholar] [CrossRef]
- Sun, M.; Zhu, Y.; Jordan, B.; Wang, T. Changes in Physiological Indices, Amino Acids, and Volatile Compounds in Vitis vinifera L. cv. Pinot Noir under UV-B Radiation and Water Deficit Conditions. Foods 2024, 13, 508. [Google Scholar] [CrossRef]
- Kim, J.J.; Fan, R.; Allison, L.K.; Andrew, T.L. On-site identification of ozone damage in fruiting plants using vapor-deposited conducting polymer tattoos. Sci. Adv. 2020, 6, eabc3296. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.; Hao, X.; Wang, Y.-F.; Heng, Z.; Tang, M.-L.; Du, Y.-P. Ozone risk assessment of grapevine ‘Cabernet Sauvignon’ using open-top chambers. Sci. Hortic. 2020, 260, 108874. [Google Scholar] [CrossRef]
- Thwe, A.A.; Vercambre, G.; Gautier, H.; Pagès, L.; Jourdan, C.; Gay, F.; Kasemsap, P. Dynamic shoot and root growth at different developmental stages of tomato (Solanum lycopersicum Mill.) under acute ozone stress. Sci. Hortic. 2013, 150, 317–325. [Google Scholar] [CrossRef]
- Jian, Z.; Qi, L.; Xiaodong, Z. Ocean acidification increases copper accumulation and exacerbates copper toxicity in Amphioctopus fangsiao (Mollusca: Cephalopoda): A potential threat to seafood safety. Sci. Total Environ. 2023, 891, 164473. [Google Scholar] [CrossRef]
- Doney, S.C.; Busch, D.S.; Cooley, S.R.; Kroeker, K.J. The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. Annu. Rev. Environ. Resour. 2020, 45, 83–112. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Z.; Pei, Y.; Zhou, B. Adaptive responses of eelgrass (Zostera marina L.) to ocean warming and acidification. Plant Physiol. Biochem. 2024, 206, 108257. [Google Scholar] [CrossRef]
- Delgado-Vargas, V.A.; Ayala-Garay, O.J.; Arevalo-Galarza, M.d.L.; Gautier, H. Increased Temperature Affects Tomato Fruit Physicochemical Traits at Harvest Depending on Fruit Developmental Stage and Genotype. Horticulturae 2023, 9, 212. [Google Scholar] [CrossRef]
- Chuanhe, L.; Yan, L. Effects of elevated temperature postharvest on color aspect, physiochemical characteristics, and aroma components of pineapple fruits. J. Food Sci. 2014, 79, C2409–C2414. [Google Scholar] [CrossRef]
- Du Toit, A.; Mpemba, O.; De Wit, M.; Venter, S.L.; Hugo, A. The effect of size, cultivar and season on the edible qualities of nopalitos from South African cactus pear cultivars. S. Afr. J. Bot. 2021, 142, 459–466. [Google Scholar] [CrossRef]
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Fang, L.; Abdelhakim, L.O.A.; Hegelund, J.N.; Li, S.; Liu, J.; Peng, X.; Li, X.; Wei, Z.; Liu, F. ABA-mediated regulation of leaf and root hydraulic conductance in tomato grown at elevated CO2 is associated with altered gene expression of aquaporins. Hortic. Res. 2019, 6, 104. [Google Scholar] [CrossRef]
- Dong, J.; Xu, Q.; Gruda, N.; Chu, W.; Li, X.; Duan, Z. Elevated and super-elevated CO2 differ in their interactive effects with nitrogen availability on fruit yield and quality of cucumber. J. Sci. Food Agric. 2018, 98, 4509–4516. [Google Scholar] [CrossRef]
- Liu, J.; Hu, T.; Fang, L.; Peng, X.; Liu, F. CO2 elevation modulates the response of leaf gas exchange to progressive soil drying in tomato plants. Agric. For. Meteorol. 2019, 268, 181–188. [Google Scholar] [CrossRef]
- Modina, D.; Cola, G.; Bianchi, D.; Bolognini, M.; Mancini, S.; Foianini, I.; Cappelletti, A.; Failla, O.; Brancadoro, L. Alpine Viticulture and Climate Change: Environmental Resources and Limitations for Grapevine Ripening in Valtellina, Italy. Plants 2023, 12, 2068. [Google Scholar] [CrossRef] [PubMed]
- Kilic, N.; Burgut, A.; Gündesli, M.A.; Nogay, G.; Ercisli, S.; Kafkas, N.E.; Ekiert, H.; Elansary, H.O.; Szopa, A. The Effect of Organic, Inorganic Fertilizers and Their Combinations on Fruit Quality Parameters in Strawberry. Horticulturae 2021, 7, 354. [Google Scholar] [CrossRef]
- Verma, M.K. Climate change-Impact on Productivity and Quality of Temperate Fruits and Its Mitigation Strategies. In Proceedings of the National workshop on Climate Change Impact, Mitigation, and Adaptation for Sustainable Horticulture, Noida, India, 23–24 July 2015. [Google Scholar]
- Gullino, M.L.; Albajes, R.; Al-Jboory, I.; Angelotti, F.; Chakraborty, S.; Garrett, K.A.; Hurley, B.P.; Juroszek, P.; Lopian, R.; Makkouk, K.; et al. Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry. Sustainability 2022, 14, 12421. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Wang, H.; Zhang, Y.; Li, W.; Liu, J.; Cheng, Q.; Sun, L.; Shen, H. Identification of the Regulatory Genes of UV-B-Induced Anthocyanin Biosynthesis in Pepper Fruit. Int. J. Mol. Sci. 2022, 23, 1960. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Jordan, B.; Creasy, G.; Zhu, Y.-F. UV-B Radiation Induced the Changes in the Amount of Amino Acids, Phenolics and Aroma Compounds in Vitis vinifera cv. Pinot Noir Berry under Field Conditions. Foods 2023, 12, 2350. [Google Scholar] [CrossRef]
- Zhu, X.; Trouth, F.; Yang, T. Preharvest UV-B Treatment Improves Strawberry Quality and Extends Shelf Life. Horticulturae 2023, 9, 211. [Google Scholar] [CrossRef]
- Zardzewialy, M.; Matlok, N.; Piechowiak, T.; Balawejder, M. The Influence of Ozonation Carried Out during Vegetation on the Content of Selected Bioactive Phytochemicals and the Microbiological Load of Tubers of Raphanus sativus var. sativus. Agriculture 2023, 13, 2153. [Google Scholar] [CrossRef]
- Diaz-Lopez, M.; Galera, L.; Bastida, F.; Nicolas, E. Tomato growth and physiology as well as soil physicochemical and biological properties affected by ozonated water in a saline agroecosystem. Sci. Total Environ. 2024, 906, 167472. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, B.; Li, J.; Wang, X.; Ullah, S. Effects of elevated atmospheric ozone concentration on biomass and non-structural carbohydrates allocation of cherry radish. Front. Plant Sci. 2025, 16, 1547359. [Google Scholar] [CrossRef] [PubMed]
- Thor, P.; Perry, D. Impact of climate change driven freshening, warming, and ocean acidification on the cellular metabolism of Atlantic Cod (Gadus morhua). Sci. Rep. 2025, 15, 37155. [Google Scholar] [CrossRef]
- Ullah, I.; Toor, M.D.; Yerlikaya, B.A.; Mohamed, H.I.; Yerlikaya, S.; Basit, A.; Rehman, A.U. High-temperature stress in strawberry: Understanding physiological, biochemical and molecular responses. Planta 2024, 260, 118. [Google Scholar] [CrossRef]
- Lv, Y.; Fu, A.; Song, X.; Wang, Y.; Chen, G.; Jiang, Y. 1-Methylcyclopropene and UV-C Treatment Effect on Storage Quality and Antioxidant Activity of ‘Xiaobai’ Apricot Fruit. Foods 2023, 12, 1296. [Google Scholar] [CrossRef]
- Renforth, P.; Campbell, J.S. The role of soils in the regulation of ocean acidification. Philos. Trans. R. Soc. B-Biol. Sci. 2021, 376, 20200174. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Zhang, L.; He, S.Y. Plant-Microbe Interactions Facing Environmental Challenge. Cell Host Microbe 2019, 26, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Ciliberti, N.; Fermaud, M.; Roudet, J.; Rossi, V. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype. Phytopathology 2015, 105, 1090–1096. [Google Scholar] [CrossRef]
- Nicolas Nguyen Van, L.; Vasseur, V.; Coroller, L.; Dantigny, P.; Le Panse, S.; Weill, A.; Mounier, J.; Rigalma, K. Temperature, water activity and pH during conidia production affect the physiological state and germination time of Penicillium species. Int. J. Food Microbiol. 2017, 241, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Castro, G.; Perpiñá, G.; Esteras, C.; Armengol, J.; Picó, B.; Pérez-de-Castro, A. Resistance in melon to Monosporascus cannonballus and M. eutypoides: Fungal pathogens associated with Monosporascus root rot and vine decline. Ann. Appl. Biol. 2020, 177, 101–111. [Google Scholar] [CrossRef]
- War, A.R.; Taggar, G.K.; War, M.Y.; Hussain, B. Impact of climate change on insect pests, plant chemical ecology, tritrophic interactions and food production. Int. J. Clin. Biol. Sci. 2016, 1, 16–29. [Google Scholar]
- Geng, S.; Hou, H.; Wang, G.; Jung, C.; Yin, J.; Qiao, L. Temperature-dependent oviposition model of Scopula subpunctaria (Lepidoptera: Geometridae). J. Asia-Pac. Entomol. 2021, 24, 948–953. [Google Scholar] [CrossRef]
- Kos, J.; Anic, M.; Radic, B.; Zadravec, M.; Hajnal, E.J.; Pleadin, J. Climate Change-A Global Threat Resulting in Increasing Mycotoxin Occurrence. Foods 2023, 12, 2704. [Google Scholar] [CrossRef]
- Eastburn, D.M.; Degennaro, M.M.; Delucia, E.H.; Dermody, O.; Mcelrone, A.J. Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Glob. Change Biol. 2010, 16, 320–330. [Google Scholar] [CrossRef]
- Khan, M.R.; Rizvi, T.F. Effect of elevated levels of CO2 on powdery mildew development in five cucurbit species. Sci. Rep. 2020, 10, 4986. [Google Scholar] [CrossRef] [PubMed]
- Smet, D.; Depaepe, T.; Vandenbussche, F.; Callebert, P.; Nijs, I.; Ceulemans, R.; Van Der Straeten, D. The involvement of the phytohormone ethylene in the adaptation of Arabidopsis rosettes to enhanced atmospheric carbon dioxide concentrations. Environ. Exp. Bot. 2020, 177, 104128. [Google Scholar] [CrossRef]
- Yucheng, S.; Huijuan, G.; Feng, G. Plant–Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior. Front. Plant Sci. 2016, 7, 502. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Pajač Živković, I.; Lešić, V.; Lemić, D. Effect of Climate Change on Introduced and Native Agricultural Invasive Insect Pests in Europe. Insects 2021, 12, 985. [Google Scholar] [CrossRef]
- Romero, F.; Cazzato, S.; Walder, F.; Vogelgsang, S.; Bender, S.F.; van der Heijden, M.G.A. Humidity and high temperature are important for predicting fungal disease outbreaks worldwide. New Phytol. 2022, 234, 1553–1556. [Google Scholar] [CrossRef]
- Hull, R. Effect of environmental conditions, and more particularly of soil moisture upon the emergence of peas. Ann. Appl. Biol. 2010, 24, 681–689. [Google Scholar] [CrossRef]
- Cheng, T.; Tang, J.; Yang, R.; Xie, Y.; Chen, L.; Wang, S. Methods to obtain thermal inactivation data for pathogen control in low-moisture foods. Trends Food Sci. Technol. 2021, 112, 174–187. [Google Scholar] [CrossRef]
- Mamo, B.E.; Eriksen, R.L.; Adhikari, N.D.; Hayes, R.J.; Mou, B.; Simko, I. Epidemiological Characterization of Lettuce Drop (Sclerotinia spp.) and Biophysical Features of the Host Identify Soft Stem as a Susceptibility Factor. PhytoFrontiers 2021, 1, 182–204. [Google Scholar] [CrossRef]
- Wakelin, S.A.; Gomez-Gallego, M.; Jones, E.; Smaill, S.; Lear, G.; Lambie, S. Climate change induced drought impacts on plant diseases in New Zealand. Australas. Plant Pathol. 2018, 47, 101–114. [Google Scholar] [CrossRef]
- Farigoule, P.; Chartois, M.; Mesmin, X.; Lambert, M.; Rossi, J.-P.; Rasplus, J.-Y.; Cruaud, A. Vectors as Sentinels: Rising Temperatures Increase the Risk of Xylella fastidiosa Outbreaks. Biology 2022, 11, 1299. [Google Scholar] [CrossRef]
- Lundin, O.; Rundlöf, M.; Jonsson, M.; Bommarco, R.; Williams, N.M. Integrated pest and pollinator management–expanding the concept. Front. Ecol. Environ. 2021, 19, 283–291. [Google Scholar] [CrossRef]
- Tossi, V.E.; Regalado, J.J.; Martinez, J.; Galvan, A.; Tosar, L.J.M.; Pitta-Alvarez, S.I.; Rebolloso, M.M.; Jamilena, M. UV-B alleviates postharvest chilling injury of zucchini fruit associated with a reduction in oxidative stress. Postharvest Biol. Technol. 2024, 212, 112850. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, J.; Jiang, N.; Xiang, X.; Liu, W. Metabolome and Transcriptome Analysis Provide Insights into Flower Bud Color Variation in the Adaptation to UV-B Radiation of Litchi. Agronomy 2024, 14, 221. [Google Scholar] [CrossRef]
- Fu, S.; Xue, S.; Chen, J.; Shang, S.; Xiao, H.; Zang, Y.; Tang, X. Effects of Different Short-Term UV-B Radiation Intensities on Metabolic Characteristics of Porphyra haitanensis. Int. J. Mol. Sci. 2021, 22, 2180. [Google Scholar] [CrossRef]
- Migut, D.; Gorzelany, J.; Antos, P.; Balawejder, M. Postharvest Ozone Treatment of Cucumber as a Method for Prolonging the Suitability of the Fruit for Processing. Ozone-Sci. Eng. 2019, 41, 261–264. [Google Scholar] [CrossRef]
- Natalia, M.; Tomasz, P.; Malgorzata, S.; Maciej, K.; Pavel, N.; Ireneusz, K.; Maciej, B. Modification of Fungicide Treatment Needs and Antioxidant Content as a Result of Real-Time Ozonation of Raspberry Plants. Molecules 2024, 29, 3949. [Google Scholar] [CrossRef]
- Hashem, M.Y.; Ahmed, S.S.; Khalil, S.S.H.; El-Attar, A.B.; Abdelgawad, K.F. Application of Modified Atmospheres to Control Stegobium paniceum and Lasioderma serricorne Infestation of Stored Chamomile and Coriander and Its Effect On Product Quality. J. Crop Health 2024, 76, 49–63. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Yu, C.; Li, S.; Lin, T.; Han, S.; Zhu, T.; Li, S. Seasonal changes in the abundance Fusarium proliferatium, microbial endophytes and nutrient levels in the roots of hybrid bamboo Bambusa pervariabilis × Dendrocalamopsis grandis. Front. Plant Sci. 2023, 14, 1185449. [Google Scholar] [CrossRef]
- Ukhurebor, K.; Aigbe, U.; Olayinka, A.; Nwankwo, W.; Emegha, J. Climatic Change and Pesticides Usage: A Brief Review of Their Implicative Relationship. Assumpt. Univ.-Ejournal Interdiscip. Res. (AU-Ejir) 2020, 5, 44–49. [Google Scholar]
- van Munster, M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Zingales, V.; Taroncher, M.; Martino, P.A.; Ruiz, M.-J.; Caloni, F. Climate Change and Effects on Molds and Mycotoxins. Toxins 2022, 14, 445. [Google Scholar] [CrossRef] [PubMed]
- Bencze, S.; Puskás, K.; Vida, G.; Karsai, I.; Balla, K.; Komáromi, J.; Veisz, O. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains. Mycotoxin Res. 2017, 33, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, M.M.; Huffaker, A.; Schmelz, E.A.; Dafoe, N.J.; Christensen, S.; Sims, J.; Martins, V.F.; Swerbilow, J.; Romero, M.; Alborn, H.T.; et al. Effects of elevated [CO2] on maize defence against mycotoxigenic usarium verticillioides. Plant Cell Environ. 2014, 37, 2691–2706. [Google Scholar] [CrossRef]
- Pscheidt, J.W.; Heckert, S. Progression of Kernel Mold on Hazelnut. Plant Dis. 2021, 105, 1320–1327. [Google Scholar] [CrossRef]
- Aruna, C.; Das, I.K.; Reddy, P.S.; Ghorade, R.B.; Gulhane, A.R.; Kalpande, V.V.; Kajjidoni, S.T.; Hanamaratti, N.G.; Chattannavar, S.N.; Mehtre, S.; et al. Development of Sorghum Genotypes for Improved Yield and Resistance to Grain Mold Using Population Breeding Approach. Front. Plant Sci. 2021, 12, 687332. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.A.T.; Stridh, H.; Molin, M. Influence of weather conditions on the quality of ‘Ingrid Marie’ apples and their susceptibility to grey mould infection. J. Agric. Food Res. 2021, 3, 100104. [Google Scholar] [CrossRef]
- Kang’ethe, E.K.; Gatwiri, M.; Sirma, A.J.; Ouko, E.O.; Mburugu-Musoti, C.K.; Kitala, P.M.; Nduhiu, G.J.; Nderitu, J.G.; Mungatu, J.K.; Hietaniemi, V.; et al. Exposure of Kenyan population to aflatoxins in foods with special reference to Nandi and Makueni counties. Food Qual. Saf. 2017, 1, 131–137. [Google Scholar] [CrossRef]
- Cui, X.; Ailijiang, N.; Mamitimin, Y.; Zhong, N.; Cheng, W.; Li, N.; Zhang, Q.; Pu, M. Pollution levels, sources and risk assessment of polycyclic aromatic hydrocarbons in farmland soil and crops near Urumqi Industrial Park, Xinjiang, China. Stoch. Environ. Res. Risk Assess. 2023, 37, 361–374. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, R.; He, Q.; Liu, H.; Xu, P.; Wei, M. Characteristics of airborne bacteria over inland and coastal atmosphere influenced by systemic air mass in northern China. Environ. Pollut. 2025, 377, 126429. [Google Scholar] [CrossRef]
- Bigirimana, J.; Uzayisenga, B.; Gut, L.J. Population distribution and density of Antestiopsis thunbergii (Hemiptera: Pentatomidae) in the coffee growing regions of Rwanda in relation to climatic variables. Crop Prot. 2019, 122, 136–141. [Google Scholar] [CrossRef]
- Chengkun, Y.; Xiaowen, W.; Wencan, Z.; Zhongrui, W.; Feili, L.; Hongxia, W.; Kaibing, Z.; Ake, S.; Minjie, Q. Postharvest white light combined with different UV-B doses differently promotes anthocyanin accumulation and antioxidant capacity in mango peel. LWT-Food Sci. Technol. 2024, 203, 116385. [Google Scholar] [CrossRef]
- Santin, M.; Ranieri, A.; Hauser, M.-T.; Miras-Moreno, B.; Rocchetti, G.; Lucini, L.; Strid, A.; Castagna, A. The outer influences the inner: Postharvest UV-B irradiation modulates peach flesh metabolome although shielded by the skin. Food Chem. 2021, 338, 127782. [Google Scholar] [CrossRef] [PubMed]
- Rangel, K.; Cabral, F.O.; Lechuga, G.C.; Carvalho, J.P.R.S.; Villas-Bôas, M.H.S.; Midlej, V.; De-Simone, S.G. Detrimental Effect of Ozone on Pathogenic Bacteria. Microorganisms 2022, 10, 40. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Yu, Y.; Wu, Z.; Wang, H. Combination of ozone and ultrasonic-assisted aerosolization sanitizer as a sanitizing process to disinfect fresh-cut lettuce. Ultrason. Sonochem. 2021, 76, 105622. [Google Scholar] [CrossRef] [PubMed]
- Goffi, V.; Magri, A.; Botondi, R.; Petriccione, M. Response of antioxidant system to postharvest ozone treatment in ‘Soreli’ kiwifruit. J. Sci. Food Agric. 2020, 100, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, C.; Zhang, Y.; Jiang, A.; Hu, W. Aqueous ozone treatment inhibited degradation of cellwall polysaccharides in fresh-cut apple during cold storage. Innov. Food Sci. Emerg. Technol. 2021, 67, 102550. [Google Scholar] [CrossRef]
- Lozowicka, B.; Jankowska, M.; Hrynko, I.; Kaczynski, P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ. Monit. Assess. 2015, 188, 51. [Google Scholar] [CrossRef]
- Díaz-López, M.; Siles, J.A.; Ros, C.; Bastida, F.; Nicolás, E. The effects of ozone treatments on the agro-physiological parameters of tomato plants and the soil microbial community. Sci. Total Environ. 2022, 812, 151429. [Google Scholar] [CrossRef]
- Brodowska, A.J.; Nowak, A.; Śmigielski, K. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 2176–2201. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’Donnell, C.P.; Patras, A.; Brunton, N.; Cullen, P.J. Effect of ozone processing on anthocyanins and ascorbic acid degradation of strawberry juice. Food Chem. 2009, 113, 1119–1126. [Google Scholar] [CrossRef]
- Gao, W.; Qu, B.; Yuan, H.; Song, J.; Li, W. Heavy metal mobility in contaminated sediments under seawater acidification. Mar. Pollut. Bull. 2023, 192, 115062. [Google Scholar] [CrossRef]
- Umeoguaju, F.U.; Akaninwor, J.O.; Essien, E.B.; Amadi, B.A.; Igboekwe, C.O.; Ononamadu, C.J.; Ikimi, C.G. Heavy metals contamination of seafood from the crude oil-impacted Niger Delta Region of Nigeria: A systematic review and meta-analysis. Toxicol. Rep. 2023, 11, 58–82. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Yang, X.; Li, H.; Wang, H.; Wang, Y.; Xu, J.; Ding, K.; Zhu, Y.-G. Bacterial communities are more sensitive to ocean acidification than fungal communities in estuarine sediments. Fems Microbiol. Ecol. 2021, 97, fiab058. [Google Scholar] [CrossRef]
- Nan, M.; Xue, H.; Bi, Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins 2022, 14, 309. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Sun, Y.; Jin, M.; Ripp, S.A.; Sayler, G.S.; Zhuang, J. Domestic plant food loss and waste in the United States: Environmental footprints and mitigation strategies. Waste Manag. 2022, 150, 202–207. [Google Scholar] [CrossRef]
- Ju, K.; He, L.; Li, W.; Ye, Q.; Zhou, D.; Wei, X.; Xu, S. Put an eye on the future: Rethinking the theoretical price of fossil energy based on the perspective of intergenerational equity. Appl. Energy 2023, 347, 121432. [Google Scholar] [CrossRef]
- Chu, Q.; Li, H.; Cannon, N.; Chang, X.; Feng, J. An Evolutionary Game Analysis of Carbon Trading Mechanisms for Governments, Farmer Professional Cooperatives and Farmers. Systems 2025, 13, 413. [Google Scholar] [CrossRef]
- Gentil, C.; Basset-Mens, C.; Manteaux, S.; Mottes, C.; Maillard, E.; Biard, Y.; Fantke, P. Coupling pesticide emission and toxicity characterization models for LCA: Application to open-field tomato production in Martinique. J. Clean. Prod. 2020, 277, 124099. [Google Scholar] [CrossRef]
- Yan, M.; Cheng, K.; Yue, Q.; Yan, Y.; Rees, R.M.; Pan, G. Farm and product carbon footprints of China’s fruit production—Life cycle inventory of representative orchards of five major fruits. Environ. Sci. Pollut. Res. 2016, 23, 4681–4691. [Google Scholar] [CrossRef]
- Chatterjee, E. Towards an Energetics of Class: Comparing Energy Protests in India and the United States. Comp. Stud. Soc. Hist. 2024, 66, 528–556. [Google Scholar] [CrossRef]
- Ymeri, P.; Gyuricza, C.; Fogarassy, C. Farmers’ Attitudes Towards the Use of Biomass as Renewable Energy-A Case Study from Southeastern Europe. Sustainability 2020, 12, 4009. [Google Scholar] [CrossRef]
- Alkaabneh, F.M.; Lee, J.; Gómez, M.I.; Gao, H.O. A systems approach to carbon policy for fruit supply chains: Carbon tax, technology innovation, or land sparing? Sci. Total Environ. 2021, 767, 144211. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, B.; Liu, X. Rethinking the equity and efficiency of carbon tax: A novel perspective. Appl. Energy 2023, 346, 121347. [Google Scholar] [CrossRef]
- Saralegui-Diez, P.; Aguilera, E.; de Molina, M.G.; Guzman, G.I. From field to table through the long way. Analyzing the global supply chain of Spanish tomato. Sustain. Prod. Consum. 2023, 42, 268–280. [Google Scholar] [CrossRef]
- Hart, M.; Austin, W.; Acha, S.; Le Brun, N.; Markides, C.N.; Shah, N. A roadmap investment strategy to reduce carbon intensive refrigerants in the food retail industry. J. Clean. Prod. 2020, 275, 123039. [Google Scholar] [CrossRef]
- Shen, L.; Lin, F.; Cheng, T.C.E. Low-Carbon Transition Models of High Carbon Supply Chains under the Mixed Carbon Cap-and-Trade and Carbon Tax Policy in the Carbon Neutrality Era. Int. J. Environ. Res. Public Health 2022, 19, 11150. [Google Scholar] [CrossRef]
- du Plessis, M.; van Eeden, J.; Goedhals-Gerber, L. Carbon mapping frameworks for the distribution of fresh fruit: A systematic review. Glob. Food Secur. 2022, 32, 100607. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, J.; Zhang, Z.; Chen, W. Optimal decision-making and coordination of the shipping logistics service supply chain cooperation mode under the carbon quota and trading mechanism. Ocean Coast. Manag. 2024, 255, 107240. [Google Scholar] [CrossRef]
- Liu, G.; Hu, J.; Yang, Y.; Xia, S.; Lim, M.K. Vehicle routing problem in cold Chain logistics: A joint distribution model with carbon trading mechanisms. Resour. Conserv. Recycl. 2020, 156, 104715. [Google Scholar] [CrossRef]
- Mesrzade, P.; Dehghanian, F.; Ghiami, Y. A Bilevel Model for Carbon Pricing in a Green Supply Chain Considering Price and Carbon-Sensitive Demand. Sustainability 2023, 15, 16563. [Google Scholar] [CrossRef]
- Malmgren, E.; Brynolf, S.; Styhre, L.; van der Holst, J. Navigating unchartered waters: Overcoming barriers to low-emission fuels in Swedish maritime cargo transport. Energy Res. Soc. Sci. 2023, 106, 103321. [Google Scholar] [CrossRef]
- Moore, N.a.d.; Brehm, J.; Gruhl, H. Driving innovation? Carbon tax effects in the Swedish transport sector. J. Public Econ. 2025, 248, 105444. [Google Scholar] [CrossRef]
- Walden, P.; Ollikainen, M.; Kahiluoto, H. Carbon revenue in the profitability of agroforestry relative to monocultures. Agrofor. Syst. 2020, 94, 15–28. [Google Scholar] [CrossRef]
- Staton, T.; Breeze, T.D.; Walters, R.J.; Smith, J.; Girling, R.D. Productivity, biodiversity trade-offs, and farm income in an agroforestry versus an arable system. Ecol. Econ. 2022, 191, 107214. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.; Yang, M.; Gao, Y.; Shao, J.; Yang, W.; Ma, G.; Yu, F.; Yao, N.; Jiang, H. Exploring the complex trade-offs and synergies of global ecosystem services. Environ. Sci. Ecotechnol. 2024, 21, 100391. [Google Scholar] [CrossRef]
- Edwards, R.; Halimatussadiah, A.; Moeis, F.R.; Maulia, R.F. Agriculture, Development and Sustainability in the Covid-19 Era. Bull. Indones. Econ. Stud. 2022, 58, 1–30. [Google Scholar] [CrossRef]
- Gren, I.-M.; Hoglind, L.; Jansson, T. Refunding of a climate tax on food consumption in Sweden. Food Policy 2021, 100, 102021. [Google Scholar] [CrossRef]
- Sebatjane, M.; Cardenas-Barron, L.E.; Nobil, A.H. Sustainable inventory models fora three-echelon food supply chain with growing items and price- and carbon emissions-dependent demand under different emissions regulations. Clean. Logist. Supply Chain 2024, 13, 100192. [Google Scholar] [CrossRef]
- Sager, L. The global consumer incidence of carbon pricing: Evidence from trade. Energy Econ. 2023, 127, 107101. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.-Q.; Shang, W.-L.; Zhao, Y.-J.; Yang, Z.-L.; Zhao, Z. Precooling energy and carbon emission reduction technology investment model in a fresh food cold chain based on a differential game. Appl. Energy 2022, 326, 119945. [Google Scholar] [CrossRef]
- Yadav, S.; Khanna, A. Sustainable Inventory Model for Perishable Products with Expiration Date and Price Reliant Demand Under Carbon Tax Policy. Process Integr. Optim. Sustain. 2021, 5, 475–486. [Google Scholar] [CrossRef]
- Surya, K.S.; Fernandaz, C.C.; Karthikeyan, C.; Murugan, P.P.; Boomiraj, K.; Thamaraiselvi, S.P.; Manivasakan, S.; Rajashekar, B. Constructing an innovative theoretical framework for tea grower’s adoption of carbon sequestration practices using PLS-SEM. Curr. Sci. 2024, 127, 445–451. [Google Scholar] [CrossRef]
- Khan, Z.A.; Koondhar, M.A.; Khan, A.; Zhang, Z.; Ali, U.; Nurgazina, Z.; Liu, T. Exploring the impact of carbon emissions and co-macroeconomic determinants on China’s sustainable apple export. Environ. Sci. Pollut. Res. 2023, 30, 104603–104619. [Google Scholar] [CrossRef]
- Pu, Z.; He, H.; Ma, C.; Bo, X.; Yuan, T.; Chen, P. The Impact of Consumer Utility on Duopoly Competition Markets Decision-Making Under Constraints of Carbon Cap Policies. Econ. Comput. Econ. Cybern. Stud. Res. 2024, 58, 323–340. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, C. Analysis on the shadow price of carbon emissions from China’s forestry fruit industry-taking peaches as an example. Environ. Sci. Pollut. Res. 2023, 30, 85545–85557. [Google Scholar] [CrossRef] [PubMed]
- Koiwanit, J.; Riensuwarn, F.; Palungpaiboon, P.; Pornchaloempong, P. Business viability and carbon footprint of Thai-grown Nam Dok Mai mango powdered drink mix. J. Clean. Prod. 2020, 254, 119991. [Google Scholar] [CrossRef]
- Quiñónez Camarillo, A.L.; Schuhmann, P.W.; Randhir, T.; Orellana, J. Coffee farmers willingness to accept payments for ecosystem services: Evidence from a choice experiment in Honduras. J. Environ. Manag. 2025, 378, 124787. [Google Scholar] [CrossRef] [PubMed]
- De Leijster, V.; Verburg, R.W.; Santos, M.J.; Wassen, M.J.; Martinez-Mena, M.; de Vente, J.; Verweij, P.A. Almond farm profitability under agroecological management in southeastern Spain: Accounting for externalities and opportunity costs. Agric. Syst. 2020, 183, 102878. [Google Scholar] [CrossRef]
- Luo, J.; Huang, M.; Bai, Y. Promoting green development of agriculture based on low-carbon policies and green preferences: An evolutionary game analysis. Environ. Dev. Sustain. 2024, 26, 6443–6470. [Google Scholar] [CrossRef]
- Yan, L.; Wu, Z.; Liu, J.; Teo, K.L. Pricing and Carbon Mitigation in a Dual-Channel Supply Chain: A Dynamic Game Approach. Emerg. Mark. Financ. Trade 2023, 59, 3999–4011. [Google Scholar] [CrossRef]
- Jiao, Z.H.; Duan, H.W.; Zhou, Y.J.; Xiang, X.W. Low-carbon multimodal vehicle logistics route optimization with timetable limit using Particle Swarm Optimization. Adv. Prod. Eng. Manag. 2025, 20, 173–190. [Google Scholar] [CrossRef]
- Dente, S.M.R.; Tavasszy, L. Policy oriented emission factors for road freight transport. Transp. Res. Part D-Transp. Environ. 2018, 61, 33–41. [Google Scholar] [CrossRef]
- Musavi, M.; Bozorgi-Amiri, A. A multi-objective sustainable hub location-scheduling problem for perishable food supply chain. Comput. Ind. Eng. 2017, 113, 766–778. [Google Scholar] [CrossRef]
- Stoessel, F.; Juraske, R.; Pfister, S.; Hellweg, S. Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables: Application to a Swiss Retailer. Environ. Sci. Technol. 2012, 46, 3253–3262. [Google Scholar] [CrossRef]
- Babagolzadeh, M.; Shrestha, A.; Abbasi, B.; Zhang, Y.; Woodhead, A.; Zhang, A. Sustainable cold supply chain management under demand uncertainty and carbon tax regulation. Transp. Res. Part D-Transp. Environ. 2020, 80, 102245. [Google Scholar] [CrossRef]
- Wu, R.; Zhu, L.; Jiang, M. Research on the evolution game of low-carbon operations in cold chain logistics considering environmental regulations and green credit. Heliyon 2024, 10, e30559. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.-B.; Liu, Y.; Zheng, X. Pass-through of diesel taxes and the effect on carbon emissions: Evidence from China. J. Environ. Manag. 2022, 321, 115857. [Google Scholar] [CrossRef] [PubMed]
- Hussain, J.; Pan, Y.; Ali, G.; Yue, X. Pricing behavior of monopoly market with the implementation of green technology decision under emission reduction subsidy policy. Sci. Total Environ. 2020, 709, 136110. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Guo, Z.; Zhang, J. Does the participation in global value chains promote interregional carbon emissions transferring via trade? Evidence from 39 major economies. Technol. Forecast. Soc. Change 2021, 169, 120806. [Google Scholar] [CrossRef]
- Said, Z.; Vigneshwaran, P.; Shaik, S.; Rauf, A.; Ahmad, Z. Climate and carbon policy pathways for sustainable food systems. Environ. Sustain. Indic. 2025, 27, 100730. [Google Scholar] [CrossRef]
- Torres, P.; Parvathikar, S.; Palys, M.J. Techno-economic analysis of low-carbon ammonia and urea production in select African countries. Int. J. Hydrogen Energy 2025, 178, 151549. [Google Scholar] [CrossRef]
- Steed, C.A.; Mercuur, B.S.; Mangaroo-Pilllay, M. A sustainable decarbonisation roadmap for South African priority agro-processing sub-sectors. Energy Sustain. Dev. 2025, 88, 101788. [Google Scholar] [CrossRef]
- Palatnik, R.R.; Davidovitch, A.; Krey, V.; Sussman, N.; Riahi, K.; Gidden, M. Accelerating emission reduction in Israel: Carbon pricing vs. policy standards. Energy Strategy Rev. 2023, 45, 101032. [Google Scholar] [CrossRef]
- He, L.; Han, R.; Hou, L.; Yue, X. Product Line Design and Channel Configuration in Low-Carbon Supply Chains. IEEE Trans. Eng. Manag. 2025, 72, 78–95. [Google Scholar] [CrossRef]
- Long, Q.; Wu, Q.; Jiang, Y. On Short-term and Long-term Repeated Game Behavior- A Case Study of Oligopolistic Transportation Enterprises with Government Intervention under Fuzzy Environment. Appl. Artif. Intell. 2024, 38, 2413813. [Google Scholar] [CrossRef]
- Alkahtani, M.; Khalid, Q.S.; Jalees, M.; Omair, M.; Hussain, G.; Pruncu, C.I. E-Agricultural Supply Chain Management Coupled with Blockchain Effect and Cooperative Strategies. Sustainability 2021, 13, 816. [Google Scholar] [CrossRef]
- Clifton-Brown, J.; Hastings, A.; von Cossel, M.; Murphy-Bokern, D.; McCalmont, J.; Whittaker, J.; Alexopoulou, E.; Amaducci, S.; Andronic, L.; Ashman, C.; et al. Perennial biomass cropping and use: Shaping the policy ecosystem in European countries. Glob. Change Biol. Bioenergy 2023, 15, 538–558. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.H.; Holzer, K. Trading in the era of carbon standards: How can trade, standard setting, and climate regimes cooperate? Oxf. Rev. Econ. Policy 2023, 39, 110–122. [Google Scholar] [CrossRef]
- Varshney, R.K.; Bohra, A.; Yu, J.; Graner, A.; Zhang, Q.; Sorrells, M.E. Designing Future Crops: Genomics-Assisted Breeding Comes of Age. Trends Plant Sci. 2021, 26, 631–649. [Google Scholar] [CrossRef]
- Ahmar, S.; Hensel, G.; Gruszka, D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals–current status, improvements, and perspectives. Biotechnol. Adv. 2023, 69, 108248. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, A.; Graziani, G.; De Luca, L.; Cepparulo, M.; Ritieni, A.; Romano, R.; Di Vaio, C. Minor Variety of Campania Olive Germplasm (“Racioppella”): Effects of Kaolin on Production and Bioactive Components of Drupes and Oil. Plants 2023, 12, 1259. [Google Scholar] [CrossRef]
- Han, A.; Huang, J.; Wang, X.; Zhu, Z. Efficient Water-Saving Irrigation, Space Efficiency and Agricultural Development—Study Based on Spatial Stochastic Frontier Model. J. Syst. Sci. Complex. 2023, 36, 2559–2579. [Google Scholar] [CrossRef]
- Goh, H.H.; Xu, Z.; Liang, X.; Zhang, D.; Dai, W.; Liu, H.; Kurniawan, T.A.; Wong, S.Y.; Goh, K.C. Solving carbon tax challenges with a holistic approach: Integrating evolutionary game theory and life cycle energy solutions. J. Clean. Prod. 2023, 423, 138817. [Google Scholar] [CrossRef]
- Shao, Y.; Zhou, Z.; Chen, H.; Zhang, F.; Cui, Y.; Zhou, Z. The potential of urban family vertical farming: A pilot study of Shanghai. Sustain. Prod. Consum. 2022, 34, 586–599. [Google Scholar] [CrossRef]
- Peng, L.; Yi, J.; Yang, X.; Xie, J.; Chen, C. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. J. Bioresour. Bioprod. 2023, 8, 78–89. [Google Scholar] [CrossRef]
- Karimi Sani, I.; Masoudpour-Behabadi, M.; Alizadeh Sani, M.; Motalebinejad, H.; Juma, A.S.M.; Asdagh, A.; Eghbaljoo, H.; Khodaei, S.M.; Rhim, J.-W.; Mohammadi, F. Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem. 2023, 405, 134964. [Google Scholar] [CrossRef]
- Gao, E.; Cui, Q.; Jing, H.; Zhang, Z.; Zhang, X. A review of application status and replacement progress of refrigerants in the Chinese cold chain industry. Int. J. Refrig. 2021, 128, 104–117. [Google Scholar] [CrossRef]
- Liu, P.; Dong, L.; Cao, A. Design of Medical Cold Chain Information Acquisition System Based on Linear Prediction. Wirel. Pers. Commun. 2020, 115, 1197–1209. [Google Scholar] [CrossRef]
- Pan, X.; Guo, S.; Li, M.; Song, J. The effect of technology infrastructure investment on technological innovation—A study based on spatial durbin model. Technovation 2021, 107, 102315. [Google Scholar] [CrossRef]
- Wu, Y.; Liao, Y.; Xu, M.; He, J.; Tao, Y.; Zhou, J.; Chen, W. Barriers identification, analysis and solutions to rural clean energy infrastructures development in China: Government perspective. Sustain. Cities Soc. 2022, 86, 104106. [Google Scholar] [CrossRef]


| Aspects | Climate Factors | Fruit and Vegetable Categories | Effects | Mechanisms | Location | References |
|---|---|---|---|---|---|---|
| Yield | Temperature | Pineapple | Decrease by 6% for every 1 °C change | Extremely high temperature affects flowering | Fields in Queensland, Australia | [23] |
| Japanese apricot | Decrease by 100 kg/1000 m2 for every 1 °C increase | Temperature affects pollination and fruit setting | Fields in Wakayama, Japan | [25] | ||
| Peach | Decrease | High temperature affects flower blooming and fruit development | Fields in Bordeaux, Balandran, Étoile-sur-Rhoône, France | [26] | ||
| Decrease | Abnormal winter temperature affects flowering and fruit setting | Fields in Mornag, Tunisia | [27] | |||
| Tomato | Decrease by 70% | Pollen quality and viability were poor at high temperatures | Fields and greenhouses in Cambodia | [24] | ||
| CO2 | Tomato | Increase | Higher CO2 concentration facilitates the transfer of photosynthetic products to fruit | Controlled environmental chambers in Zhenjiang, China | [28] | |
| Cherry tomato | Yield increase under reduced irrigation | Elevated CO2 improves root development and nitrogen uptake and increases irrigation water productivity | Controlled environmental chambers in Wuwei, China | [29] | ||
| Dragon fruit | Decrease | Higher rainfall causes the drop of dragon fruit buds or flowers, and fruit decay | Fields in Baramati, India | [30] | ||
| Loquat | Decrease | Frequent rainfall affects pollinator activity | Fields in Ras Munif, Jordan | [31] | ||
| Soil pH and salinity | Palm | Decrease by 44% and 64% at 10 ds/m and 15 ds/m | Salinity stress | Fields in Dubai, United Arab Emirates | [32] | |
| Quality | Temperature | Apple | Decrease in soluble solids content, increase in titratable acidity, abnormal skin color | High temperature decreases the leaf photosynthetic rate and affects anthocyanin accumulation | Controlled environmental Facility in Korea | [33] |
| Tomato | High temperature changes mineral content depending on the cultivar | N/A | Greenhouse in Texcoco, Mexico | [34] | ||
| Strawberry | Increase in antioxidant activity | High temperature increases the total polyphenol content | Controlled environmental chambers in Melbourne, Australia | [35] | ||
| Peach | Decrease in fruit weight, size, and sweetness | High temperatures retard late fruit development | Controlled environmental chambers in Kagawa, Japan | [36] | ||
| CO2 | Cherry tomato | Increase in contents of soluble solids, vitamin C, and lycopene | High CO2 level increases photosynthesis | Controlled environmental chambers in Wuwei, China | [29] | |
| Rainfall | Guava | Decrease in texture and sugar content | Excessive rainfall during fruit development reduces the accumulation of photosynthetic products | N/A | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xing, M.; Li, J.; Li, B. The Impacts of Global Climate Change and Environmental Security on Fruits and Vegetables—A Policy–Technology Nexus Perspective. Foods 2025, 14, 4016. https://doi.org/10.3390/foods14234016
Wang X, Xing M, Li J, Li B. The Impacts of Global Climate Change and Environmental Security on Fruits and Vegetables—A Policy–Technology Nexus Perspective. Foods. 2025; 14(23):4016. https://doi.org/10.3390/foods14234016
Chicago/Turabian StyleWang, Xuzeng, Mengyang Xing, Jian Li, and Boqiang Li. 2025. "The Impacts of Global Climate Change and Environmental Security on Fruits and Vegetables—A Policy–Technology Nexus Perspective" Foods 14, no. 23: 4016. https://doi.org/10.3390/foods14234016
APA StyleWang, X., Xing, M., Li, J., & Li, B. (2025). The Impacts of Global Climate Change and Environmental Security on Fruits and Vegetables—A Policy–Technology Nexus Perspective. Foods, 14(23), 4016. https://doi.org/10.3390/foods14234016

