Green Extraction and Targeted LC-MS Analysis of Biopesticides in Honey Using Natural Deep Eutectic Solvents
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analyzed Honey Samples
2.3. Synthesis of Natural Deep Eutectic Solvents (NADES)
2.4. Sample Preparation Procedure
2.5. UHPLC-Q-Orbitrap-MS Method
Data Analysis
2.6. Validation Process
3. Results and Discussion
3.1. Optimization of Biopesticide Extraction from Honey Matrix
3.1.1. Effect of Extraction Time
3.1.2. Effect of NADES Type
3.1.3. Effect of Extraction Technique
3.2. Validation of Biopesticide Extraction from Honey Matrix
3.2.1. Matrix Effect
3.2.2. Linearity
3.2.3. Trueness
3.2.4. Precision
3.2.5. Limit of Quantification (LOQ)
3.3. Application to Real Honey Samples
3.4. Green Assessment and Comparison with Conventional Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ChClBt | Choline Chloride–2,3-Butanediol |
DDA | Data-Dependent Acquisition |
HBA | Hydrogen Bond Acceptor |
HBD | Hydrogen Bond Donor |
IPM | Integrated Pest Management |
LGH | Lactic acid–Glucose–Water |
LGLH | Lactic acid–Glycerol–Water |
LOQ | Limits of Quantification |
NADES | Natural Deep Eutectic Solvent |
RSD | Relative Standard Deviation |
SLE | Solid–Liquid Extraction |
UGLH | Urea–Glycerol–Water |
References
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Reyes-Ávila, A.; López-Ruiz, R.; González, F.J.E.; Romero-González, R.; Frenich, A.G. Chemistry and development of bioinsecticides for safe and sustainable use. Curr. Opin. Environ. Sci. Health 2024, 41, 100568. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Chowdhury, S.K.; Banerjee, M.; Basnett, D.; Mazumdar, T. Natural pesticides for pest control in agricultural crops: An alternative and eco-friendly method. Plant Sci. Today 2024, 11, 433–450. [Google Scholar]
- Cappa, F.; Baracchi, D. Bioinsecticides on honey bees: Exposure, sublethal effects, and risk assessment paradigms. Curr. Opin. Environ. Sci. Health 2024, 41, 100569. [Google Scholar] [CrossRef]
- Alkassab, A.T.; Erler, S.; Steinert, M.; Pistorius, J. Exposure of honey bees to mixtures of microbial biopesticides and their effects on bee survival under laboratory conditions. Environ. Sci. Pollut. Res. 2024, 31, 26618–26627. [Google Scholar] [CrossRef]
- Araújo, R.S.; Lopes, M.P.; Viana, T.A.; Bastos, D.S.S.; Machado-Neves, M.; Botina, L.L.; Martins, G.F. Bioinsecticide spinosad poses multiple harmful effects on foragers of Apis mellifera. Environ. Sci. Pollut. Res. 2023, 30, 66923–66935. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef] [PubMed]
- Arifan, F.; Sapatra, E.; Fibrilia, S.; Fatimah, S.; Nugraheni, A.; Prasetyo, A.; Januwardani, S. Optimization of N-hexane and Methanol Solvents on Total Phenol Levels of Gnetum gnemon Peel Extract in the Production of Biopesticide. E3S Web Conf. 2023, 448, 01020. [Google Scholar] [CrossRef]
- Reyes-Ávila, A.; Romero-González, R.; Arrebola-Liébanas, F.J.; Frenich, A.G. Comprehensive analysis of commercial biopesticides using UHPLC and GC-HRMS: Targeted, suspect and unknown component determination. Microchem. J. 2023, 193, 109020. [Google Scholar] [CrossRef]
- Iftikhar, K.; Muzammil, S.; Nadeem, H.U.; Azeem, F.; Rasul, I.; Zubair, M.; Imran, M.; Afzal, M.; Siddique, M.H. Applications of biosolvents in environmental remediation. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–14. [Google Scholar]
- Ullah, N.; Haseeb, A.; Tuzen, M. Application of recently used green solvents in sample preparation techniques: A comprehensive review of existing trends, challenges, and future opportunities. Crit. Rev. Anal. Chem. 2024, 54, 2714–2733. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.; Wei, L.; Chen, X.; Xu, Y.; Zhao, J. Fast dispersive liquid–liquid microextraction of pesticides in water based on a thermo-switchable deep eutectic solvent. Environ. Chem. Lett. 2022, 20, 2271–2276. [Google Scholar] [CrossRef]
- Othman, Z.S.; Hassan, N.H.; Zubairi, S.I. Response Surface Optimization of Rotenone Using Natural Alcohol-Based Deep Eutectic Solvent as Additive in the Extraction Medium Cocktail. J. Chem. 2017, 2017, 9434168. [Google Scholar] [CrossRef]
- Ye, X.; Ye, B.; Xu, J.; Fang, M.; Dong, D.; Wu, C.; Lin, X.; Hu, Y.; Cao, X.; Mo, W. A modified QuEChERS method with hydrophobic NADES as extractant and analyte protectant for analyzing pyrethroid residues in tomatoes. J. Sep. Sci. 2020, 43, 3546–3554. [Google Scholar] [CrossRef]
- Fattahi, N.; Zohrabi, P.; Shiri, F.; Sosa, F.H.B.; Hashemi, B. Alcohol-based deep eutectic solvents with pH-responsive hydrophobicity for the analysis of herbicides in water and fruit juice samples. Sep. Purif. Technol. 2024, 339, 126607. [Google Scholar] [CrossRef]
- Carbonell-Rozas, L.; Capilla-Flores, R.; Romero-González, R.; Frenich, A.G. (Natural) Deep Eutectic Solvents in Food Safety: Innovations in Sample Preparation. Adv. Sample Prep. 2025, 14, 100188. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep eutectic solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Dai, Y.; Chu, X.; Jiao, Y.; Li, Y.; Shan, F.; Zhao, S.; Li, G.; Lei, Z.; Cui, P.; Zhu, Z. Molecular insights into azeotrope separation in the methyl tert-butyl ether production process using ChCl-based deep eutectic solvents. Chem. Eng. Sci. 2022, 264, 118179. [Google Scholar] [CrossRef]
- Carbonell-Rozas, L.; Canales, R.; Romero-González, R.; Silva, M.F.; Frenich, A.G. Structural characterization and physicochemical properties of different hydrophilic natural deep eutectic solvents. Anal. Bioanal. Chem. 2025, 417, 183–197. [Google Scholar] [CrossRef]
- Capilla-Flores, R.; Carbonell-Rozas, L.; López-Ruíz, R.; Frenich, A.G.; Romero-González, R. Natural deep eutectic solvent-based extraction for isolating non-phthalate plastic additives from radish samples (Raphanus sativus L.). Sustain. Chem. Pharm. 2025, 47, 102138. [Google Scholar] [CrossRef]
- Pihlström, T.; Fernández-Alba, A.R.; Amate, C.F.; Poulsen, M.E.; Hardebusch, B.; Anastassiades, M.; Lippold, R.; Cabrera, L.C.; de Kok, A.; O’Regan, F. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed; SANTE: Brussels, Belgium, 2021. [Google Scholar]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.; Amaar, N.M.; Sayed-Ahmed, K.; Molouk, A.F.S.; Awad, F.S. Highly efficient green extraction of oxyfluorfen, imazapic, and pyridaben from food samples using VALLME-based deep eutectic solvent prior to LC-MS/MS. Microchem. J. 2025, 216, 114807. [Google Scholar] [CrossRef]
- Toyoshima, R.; Murashima, K.; Hatta, I. Enhancement of water homeostasis by glycerol and urea in stratum corneum and the difference in the activity between them. Int. J. Cosmet. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Huang, H.; Zheng, Y.; Chang, M.; Song, J.; Xia, L.; Wu, C.; Jia, W.; Ren, H.; Feng, W.; Chen, Y. Ultrasound-based micro-/nanosystems for biomedical applications. Chem. Rev. 2024, 124, 8307–8472. [Google Scholar] [CrossRef]
- Banno, A.; Yabuki, Y.; Sonoda, M.; Tanimori, S. Investigation of variability in the matrix effect on stable isotope-labeled internal standards in LC-MS/MS analysis of 25 pesticides in vegetables. J. Pestic. Sci. 2024, 49, 65–76. [Google Scholar] [CrossRef]
- Sun, R.; Yang, W.; Li, Y.; Sun, C. Multi-residue analytical methods for pesticides in teas: A review. Eur. Food Res. Technol. 2021, 247, 1839–1858. [Google Scholar] [CrossRef]
- Varela-Martínez, D.A.; González-Curbelo, M.Á.; González-Sálamo, J.; Hernández-Borges, J. Determination of 45 pesticides in avocado varieties by the QuEChERS method and GC-MS/MS. J. Vis. Exp. 2023, 202, e66082. [Google Scholar]
- Marczewska, P.; Rolnik, J.; Szalbot, M.; Stobiecki, T. Development and validation of a simple and efficient method for the analysis of commercial formulations containing clopyralid, picloram and aminopyralid. J. Environ. Sci. Health B 2024, 59, 209–214. [Google Scholar] [CrossRef]
- Paul, N.; Banerjee, T. Water Decontamination Through Thiamethoxam Removal Using DL-Menthol/Octanoic Acid Deep Eutectic Solvent: Molecular Dynamics Insights. In Proceedings of the International Conference on Multidimensional Sustainability: Advanced Technologies for Industrial Pollution Control, Howrah, India, 21–23 December 2022; Springer: Singapore, 2022. [Google Scholar]
- Lorenzetti, A.; Lucea, C.S.; Feaño, V.; Silva, M.F.; Gomez, F.; Domini, C. Physicochemical characterization and evaluation of polarity influence in eutectic systems applied to drug solubility. J. Mol. Liq. 2024, 411, 125812. [Google Scholar] [CrossRef]
- do Nascimento Junior, D.R.; Tabernero, A.; Cabral Albuquerque, E.C.M.; Vieira de Melo, S.A.B. Biopesticide encapsulation using supercritical CO2: A comprehensive review and potential applications. Molecules 2021, 26, 4003. [Google Scholar] [CrossRef]
- Fei, Z.; Bao, Y.; Zhao, G.; Bi, Z.; Liu, Y.; Song, Q.; Gao, J. Simultaneous extraction and analysis of antibiotics, pesticides and PAHs in honey by freezing-assisted micro sugaring-out LLE combined with LC-MS/MS and HPLC-FLD. Microchem. J. 2025, 209, 112880. [Google Scholar] [CrossRef]
- Ahire, T.R.; Thasale, R.R.; Das, A.; Kulkarni, N.P.; Vyas, D.M.; Perumal, S. Multivariate optimization and validation of 200 pesticide residues in the banana matrix by GC-MS/MS. Anal. Methods 2024, 16, 4268–4284. [Google Scholar] [CrossRef]
- Ambrus, Á.; Doan, V.V.N.; Szenczi-Cseh, J.; Szemánné-Dobrik, H.; Vásárhelyi, A. Quality control of pesticide residue measurements and evaluation of their results. Molecules 2023, 28, 954. [Google Scholar] [CrossRef] [PubMed]
- Robertz, L.; Rieppo, L.; Korkala, S.; Jaako, T.; Saarakkala, S. Inter- and intra-day precision of a low-cost and wearable bioelectrical impedance analysis device. In Proceedings of the Nordic Conference on Digital Health and Wireless Solutions, Oulu, Finland, 7–8 May 2024; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Nguyen, T.Q.; Bui, M.Q.; Truong, M.N.; Nguyen, T.T. Sample Preparation for Simultaneous Determination of Organic Compounds by Chromatography. Preprint 2025. [Google Scholar] [CrossRef]
- Feinberg, M.; Rudaz, S. Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- EFSA; Bellisai, G.; Bernasconi, G.; Carrasco Cabrera, L.; Castellan, I.; del Aguila, M.; Ferreira, L.; Greco, L.; Jarrah, S.; Leuschner, R. Modification of the existing maximum residue level for acetamiprid in honey. EFSA J. 2025, 23, e9300. [Google Scholar] [CrossRef]
- He, J.; Song, L.; Chen, S.; Li, Y.; Wei, H.; Zhao, D.; Gu, K.; Zhang, S. Novel restricted access materials combined with molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey. Food Chem. 2015, 187, 331–337. [Google Scholar] [CrossRef]
- Santos, S.S.; de Freitas, L.V.P.; Sicupira, L.C.; Silvério, F.O. Simultaneous determination of aldrin and mirex in honey by LLE with low-temperature purification combined with GC–MS. Food Anal. Methods 2022, 15, 2744–2755. [Google Scholar] [CrossRef]
- Almeida, M.O.; Oloris, S.C.S.; Faria, V.H.F.; Ribeiro, M.C.M.; Cantini, D.M.; Soto-Blanco, B. Optimization of method for pesticide detection in honey by using LC and GC coupled with MS detection. Foods 2020, 9, 1368. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep–analytical greenness metric for sample preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
Compound | R2 | Matrix Effect (%) | Recovery | |||
---|---|---|---|---|---|---|
Intra-Day (%) | Inter-Day (%) | |||||
500 µg/kg | 1000 µg/kg | 500 µg/kg | 1000 µg/kg | |||
Acetyleugenol | 0.978 | +33.9 | 62.3 (7.5) 1 | 68.9 (19.8) 1 | 63.4 (18.9) 1 | 68.3 (19.1) |
Azadirachtin | 0.998 | +24.0 | 69.1 (14.1) 1 | 81.6 (10.9) | 70.3 (9.4) | 87.6 (7.3) |
Cevadine | 0.998 | +25.5 | 97.7 (8.7) | 94.2 (10.6) | 79.4 (12.6) | 81.2 (19.5) |
Cinerin I | 0.989 | −9.9 | 60.5 (9.2) 1 | 75.1 (10.1) | 67.0 (19.8) | 71.4 (14.9) |
Cinerin II | 0.992 | +23.0 | - | 79.8 (18.5) | - | 76.5 (15.7) |
Jasmolin I | 0.990 | −9.9 | 50.1 (19.5) 1 | 60.6 (6.5) 1 | 55.4 (21.5) | 68.4 (19.8) 1 |
Jasmolin II | 0.990 | −9.5 | 85.2 (18.9) | 88.7 (19.5) | 80.1 (16.8) | 70.6 (19.9) |
Nicotine | 0.999 | +36.2 | - | 67.9 (20.1) | - | 84.4 (11.3) |
Pulegone | 0.998 | +31.7 | 70.2 (15.3) | 97.5 (7.3) | 71.0 (18.7) | 78.2 (9.5) |
Pyrethrin I | 0.994 | +31.2 | 53.2 (8.0) 1 | 67.9 (7.3) 1 | 62.5 (18.3) 1 | 71.2 (3.0) |
Pyrethrin II | 0.985 | +40.4 | 96.7 (8.4) | 120.5 (9.6) | 81.3 (19.5) | 118.6 (10.4) |
Ricinine | 0.997 | −19.6 | 106.6 (7.7) | 97.1 (9.6) | 87.1 (15.2) | 90.1 (17.2) |
Rotetone | 0.994 | +10.7 | 75.4 (6.5) | 90.7 (11.1) | 72.0 (10.1) | 82.1 (8.8) |
Solamargine | 0.998 | +14.0 | 82.7 (10.0) | 71.8 (17.7) | 72.2 (13.4) | 84.9 (15.7) |
Tomatine | 0.998 | +6.6 | 61.7 (15.0) 1 | 62.4 (23.3) | 70.8 (15.3) | 82.4 (20.0) |
Veratridine | 0.995 | +27.8 | 82.0 (19.8) | 89.9 (10.3) | 85.3 (13.5) | 87.4 (17.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravi, T.; Reyes-Ávila, A.; Carbonell-Rozas, L.; Masri, A.N.; Garrido Frenich, A.; Romero-González, R. Green Extraction and Targeted LC-MS Analysis of Biopesticides in Honey Using Natural Deep Eutectic Solvents. Foods 2025, 14, 3438. https://doi.org/10.3390/foods14193438
Ravi T, Reyes-Ávila A, Carbonell-Rozas L, Masri AN, Garrido Frenich A, Romero-González R. Green Extraction and Targeted LC-MS Analysis of Biopesticides in Honey Using Natural Deep Eutectic Solvents. Foods. 2025; 14(19):3438. https://doi.org/10.3390/foods14193438
Chicago/Turabian StyleRavi, Theaveraj, Alba Reyes-Ávila, Laura Carbonell-Rozas, Asiah Nusaibah Masri, Antonia Garrido Frenich, and Roberto Romero-González. 2025. "Green Extraction and Targeted LC-MS Analysis of Biopesticides in Honey Using Natural Deep Eutectic Solvents" Foods 14, no. 19: 3438. https://doi.org/10.3390/foods14193438
APA StyleRavi, T., Reyes-Ávila, A., Carbonell-Rozas, L., Masri, A. N., Garrido Frenich, A., & Romero-González, R. (2025). Green Extraction and Targeted LC-MS Analysis of Biopesticides in Honey Using Natural Deep Eutectic Solvents. Foods, 14(19), 3438. https://doi.org/10.3390/foods14193438