Red Beet Extract Powder, Gelatin and Sucrose Interactions in Gummy Candies
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Study Design
2.3. Sample Preparation
2.4. Physico-Chemical Analysis
2.5. Texture Analysis
2.6. Antioxidant Capacity and Total Phenolic Content
2.6.1. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Method
2.6.2. Total Phenolic Content
2.7. Color Analysis
2.8. Storage Stability
2.9. Sensory Evaluation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Properties
3.2. Texture Characteristics
3.3. Color
3.4. Antioxidant Activity and Total Phenolics Content
3.5. Storage Stability
3.6. Sensory Evaluations
3.7. Optimization Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandarakesan, A.; Muruhan, S.; Sayanam, R.R.A. Identification and Prevalence of Food Colors in Candies Commonly Consumed by Children in Muscat, Oman. Int. J. Nutr. Pharmacol. Neurol. Dis. 2018, 8, 41–46. [Google Scholar] [CrossRef]
- McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E.; et al. Food Additives and Hyperactive Behaviour in 3-Year-Old and 8/9-Year-Old Children in the Community: A Randomised, Double-Blinded, Placebo-Controlled Trial. Lancet 2007, 370, 1560–1567. [Google Scholar] [CrossRef]
- Miller, M.D.; Steinmaus, C.; Golub, M.S.; Castorina, R.; Thilakartne, R.; Bradman, A.; Marty, M.A. Potential Impacts of Synthetic Food Dyes on Activity and Attention in Children: A Review of the Human and Animal Evidence. Environ. Health A Glob. Access Sci. Source 2022, 21, 45. [Google Scholar] [CrossRef]
- Gunes, R.; Palabiyik, I.; Konar, N.; Said Toker, O. Soft Confectionery Products: Quality Parameters, Interactions with Processing and Ingredients. Food Chem. 2022, 385, 132735. [Google Scholar] [CrossRef] [PubMed]
- Kruszewski, B.; Domian, E.; Nowacka, M. Influence of High-Pressure Homogenization on the Physicochemical Properties and Betalain Pigments of Red Beetroot (Beta vulgaris L.) Juice. Molecules 2023, 28, 2018. [Google Scholar] [CrossRef] [PubMed]
- Kujala, T.; Loponen, J.; Pihlaja, K. Betalains and Phenolics in Red Beetroot (Beta vulgaris) Peel Extracts: Extraction and Characterisation. Z. Fur Naturforschung-Sect. C J. Biosci. 2001, 56, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Sousa, E.P.d.; Oliveira, E.N.A.d.; Lima, T.L.S.; Almeida, R.F.; Barros, J.H.T.; Lima, C.M.G.; Giuffrè, A.M.; Wawrzyniak, J.; Wybraniec, S.; Coutinho, H.D.M.; et al. Empirical Modeling of the Drying Kinetics of Red Beetroot (Beta vulgaris L.; Chenopodiaceae) with Peel, and Flour Stability in Laminated and Plastic Flexible Packaging. Foods 2024, 13, 2784. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Chung, I.M.; Samynathan, R.; Chandar, S.R.H.; Venkidasamy, B.; Sarkar, T.; Rebezov, M.; Gorelik, O.; Shariati, M.A.; Simal-Gandara, J. A Comprehensive Review of Beetroot (Beta vulgaris L.) Bioactive Components in the Food and Pharmaceutical Industries. Crit. Rev. Food Sci. Nutr. 2024, 64, 708–739. [Google Scholar] [CrossRef]
- Özcan, K.; Ersus Bilek, S. Kırmızı Pancardan Renk Maddesi Üretimi ve Stabilitesinin Sağlanması. Akad. Gıda 2018, 16, 439–449. [Google Scholar] [CrossRef]
- Salman, K.H.; Mehany, T.; Zaki, K.G.; Al-Doury, M.K.W. Development of Functional Probiotic Yogurt from Buffalo Milk Supplemented with Red Beetroot (Beta Vulgaris L.) as an Antioxidant, Natural Colorant, and Starter Growth Stimulant. Food Chem. Adv. 2024, 5, 100776. [Google Scholar] [CrossRef]
- Tekin, İ.; Özcan, K.; Ersus, S. Optimization of Ionic Gelling Encapsulation of Red Beet (Beta vulgaris L.) Juice Concentrate and Stability of Betalains. Biocatal. Agric. Biotechnol. 2023, 51, 102774. [Google Scholar] [CrossRef]
- Kaba, B.; Zannou, O.; Ali Redha, A.; Koca, I. Enhancing Extraction of Betalains from Beetroot (Beta vulgaris L.) Using Deep Eutectic Solvents: Optimization, Bioaccessibility and Stability. Food Prod. Process. Nutr. 2024, 6, 38. [Google Scholar] [CrossRef]
- de Oliveira, S.P.A.; do Nascimento, H.M.A.; Sampaio, K.B.; de Souza, E.L. A Review on Bioactive Compounds of Beet (Beta vulgaris L. subsp. vulgaris) with Special Emphasis on Their Beneficial Effects on Gut Microbiota and Gastrointestinal Health. Crit. Rev. Food Sci. Nutr. 2021, 61, 2022–2033. [Google Scholar] [CrossRef] [PubMed]
- Brauch, J.E.; Kroner, M.; Schweiggert, R.M.; Carle, R. Studies into the Stability of 3-O-Glycosylated and 3,5-O-Diglycosylated Anthocyanins in Differently Purified Liquid and Dried Maqui (Aristotelia chilensis (Mol.) Stuntz) Preparations during Storage and Thermal Treatment. J. Agric. Food Chem. 2015, 63, 8705–8714. [Google Scholar] [CrossRef]
- Sadilova, E.; Stintzing, F.C.; Kammerer, D.R.; Carle, R. Matrix Dependent Impact of Sugar and Ascorbic Acid Addition on Color and Anthocyanin Stability of Black Carrot, Elderberry and Strawberry Single Strength and from Concentrate Juices upon Thermal Treatment. Food Res. Int. 2009, 42, 1023–1033. [Google Scholar] [CrossRef]
- Dufour, C.; Sauvaitre, I. Interactions between Anthocyanins and Aroma Substances in a Model System. Effect on the Flavor of Grape-Derived Beverages. J. Agric. Food Chem. 2000, 48, 1784–1788. [Google Scholar] [CrossRef]
- Gok, S.; Toker, O.S.; Palabiyik, I.; Konar, N. Usage Possibility of Mannitol and Soluble Wheat Fiber in Low Calorie Gummy Candies. LWT 2020, 128, 109531. [Google Scholar] [CrossRef]
- Tau, T.; Gunasekaran, S. Thermorheological Evaluation of Gelation of Gelatin with Sugar Substitutes. LWT 2016, 69, 570–578. [Google Scholar] [CrossRef]
- Schrieber, R.; Gareis, H. Gelatine Handbook: Theory and Industrial Practice; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 9783527315482. [Google Scholar]
- Altan Kamer, D.D.; Palabiyik, I.; Işık, N.O.; Akyuz, F.; Demirci, A.S.; Gumus, T. Effect of Confectionery Solutes on the Rheological Properties of Fish (Oncorhynchus mykiss) Gelatin. LWT 2019, 101, 499–505. [Google Scholar] [CrossRef]
- Ben-Yoseph, E.; Hartel, R.W. Computer Simulation of Sugar Crystallization in Confectionery Products. Innov. Food Sci. Emerg. Technol. 2006, 7, 225–232. [Google Scholar] [CrossRef]
- Hubbermann, E.M. Coloring of Low-Moisture and Gelatinized Food Products. In Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color; Carle, R., Schweiggert, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 179–196. ISBN 9780081003923. [Google Scholar]
- Dalabasmaz, S.; Melayim, M.E.; Konar, N. Effects of Gelatin Concentration, Adding Temperature and Mixing Rate on Texture and Quality Characteristics of Model Gels. J. Texture Stud. 2023, 55, e12800. [Google Scholar] [CrossRef]
- Periche, A.; Heredia, A.; Escriche, I.; Andrés, A.; Castelló, M.L. Potential Use of Isomaltulose to Produce Healthier Marshmallows. LWT 2015, 62, 605–612. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Y.; Zhang, F.; Wang, Y.; Yi, J.; Liao, X. Effects of High Hydrostatic Pressure on Enzymes, Phenolic Compounds, Anthocyanins, Polymeric Color and Color of Strawberry Pulps. J. Sci. Food Agric. 2011, 91, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, P. The Stability and Shelf Life of Food; Woodhead Publishing Series in Food Science, Technology and Nutrition: Cambridge, UK; Elsevier Science: Cambridge, UK; Woodhead Publishing: Cambridge, UK, 2016; ISBN 9780081004357. [Google Scholar]
- Molina-Rubio, M.P.; Casas-Alencáster, N.B.; Martínez-Padilla, L.P. Effect of Formulation and Processing Conditions on the Rheological and Textural Properties of a Semi-Liquid Syrup Model. Food Res. Int. 2010, 43, 678–682. [Google Scholar] [CrossRef]
- Göztok, S.P.; Palabiyik, I.; Bölük, E.; Gunes, R.; Toker, O.S.; Konar, N. Determination and Numerical Modeling of Sugar Release from Model Food Gels. J. Food Eng. 2023, 338, 111262. [Google Scholar] [CrossRef]
- Ergun, R.; Lietha, R.; Hartel, R.W. Moisture and Shelf Life in Sugar Confections. Crit. Rev. Food Sci. Nutr. 2010, 50, 162–192. [Google Scholar] [CrossRef]
- Vojvodić Cebin, A.; Bunić, M.; Mandura Jarić, A.; Šeremet, D.; Komes, D. Physicochemical and Sensory Stability Evaluation of Gummy Candies Fortified with Mountain Germander Extract and Prebiotics. Polymers 2024, 16, 259. [Google Scholar] [CrossRef]
- Tireki, S.; Sumnu, G.; Sahin, S. Investigation of Average Crosslink Distance and Physicochemical Properties of Gummy Candy during Storage: Effect of Formulation and Storage Temperature. Phys. Fluids 2023, 35, 53115. [Google Scholar] [CrossRef]
- Hartel, R.W.; von Elbe, J.H.; Hofberger, R. Confectionery Science and Technology; Springer: Berlin/Heidelberg, Germany, 2018; Volume 536, ISBN 9783319617428. [Google Scholar]
- Spanemberg, F.E.M.; Korzenowski, A.L.; Sellitto, M.A. Effects of Sugar Composition on Shelf Life of Hard Candy: Optimization Study Using D-Optimal Mixture Design of Experiments. J. Food Process Eng. 2019, 42, e13213. [Google Scholar] [CrossRef]
- Amjadi, S.; Ghorbani, M.; Hamishehkar, H.; Roufegarinejad, L. Improvement in the Stability of Betanin by Liposomal Nanocarriers: Its Application in Gummy Candy as a Food Model. Food Chem. 2018, 256, 156–162. [Google Scholar] [CrossRef]
- Pizzoni, D.; Compagnone, D.; Di Natale, C.; D’Alessandro, N.; Pittia, P. Evaluation of Aroma Release of Gummy Candies Added with Strawberry Flavours by Gas-Chromatography/Mass-Spectrometry and Gas Sensors Arrays. J. Food Eng. 2015, 167, 77–86. [Google Scholar] [CrossRef]
- Mardani, M.; Yeganehzad, S.; Ptichkina, N.; Kodatsky, Y.; Kliukina, O.; Nepovinnykh, N.; Naji-Tabasi, S. Study on Foaming, Rheological and Thermal Properties of Gelatin-Free Marshmallow. Food Hydrocoll. 2019, 93, 335–341. [Google Scholar] [CrossRef]
- Konar, N.; Gunes, R.; Palabiyik, I.; Toker, O.S. Health Conscious Consumers and Sugar Confectionery: Present Aspects and Projections. Trends Food Sci. Technol. 2022, 123, 57–68. [Google Scholar] [CrossRef]
- Wang, R.; Hartel, R.W. Confectionery Gels: Gelling Behavior and Gel Properties of Gelatin in Concentrated Sugar Solutions. Food Hydrocoll. 2022, 124, 107132. [Google Scholar] [CrossRef]
- Burey, P.; Bhandari, B.R.; Rutgers, R.P.G.; Halley, P.J.; Torley, P.J. Confectionery Gels: A Review on Formulation, Rheological and Structural Aspects. Int. J. Food Prop. 2009, 12, 176–210. [Google Scholar] [CrossRef]
- Ge, H.; Wu, Y.; Woshnak, L.L.; Mitmesser, S.H. Effects of Hydrocolloids, Acids and Nutrients on Gelatin Network in Gummies. Food Hydrocoll. 2021, 113, 106549. [Google Scholar] [CrossRef]
- DeMars, L.L.; Ziegler, G.R. Texture and Structure of Gelatin/Pectin-Based Gummy Confections. Food Hydrocoll. 2001, 15, 643–653. [Google Scholar] [CrossRef]
- Periche, A.; Heredia, A.; Escriche, I.; Andrés, A.; Castelló, M.L. Optical, Mechanical and Sensory Properties of Based-Isomaltulose Gummy Confections. Food Biosci. 2014, 7, 37–44. [Google Scholar] [CrossRef]
- Silva, L.B.d.; Queiroz, M.B.; Fadini, A.L.; Fonseca, R.C.C.; Germer, S.P.M.; Efraim, P. Chewy Candy as a Model System to Study the Influence of Polyols and Fruit Pulp (Açai) on Texture and Sensorial Properties. LWT 2016, 65, 268–274. [Google Scholar] [CrossRef]
- Cappa, C.; Lavelli, V.; Mariotti, M. Fruit Candies Enriched with Grape Skin Powders: Physicochemical Properties. LWT 2015, 62, 569–575. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, J.; Yun, X.; Dong, T. Effect of Artemisia Sphaerocephala Krasch Gum on the Gel Properties of Myofibrillar Protein and Its Application in Cooked Sheep Sausage. Food Hydrocoll. 2023, 142, 108752. [Google Scholar] [CrossRef]
- Nowakowski, C.M.; Hartel, R.W. Moisture Sorption of Amorphous Sugar Products. J. Food Sci. 2002, 67, 1419–1425. [Google Scholar] [CrossRef]
- Cebi, N.; Dogan, C.E.; Mese, A.E.; Ozdemir, D.; Arıcı, M.; Sagdic, O. A Rapid ATR-FTIR Spectroscopic Method for Classification of Gelatin Gummy Candies in Relation to the Gelatin Source. Food Chem. 2019, 277, 373–381. [Google Scholar] [CrossRef]
- Sadahira, M.S.; Rodrigues, M.I.; Akhtar, M.; Murray, B.S.; Netto, F.M. Influence of PH on Foaming and Rheological Properties of Aerated High Sugar System with Egg White Protein and Hydroxypropylmethylcellulose. LWT 2018, 89, 350–357. [Google Scholar] [CrossRef]
- Antigo, J.L.D.; Bergamasco, R.d.C.; Madrona, G.S. Effect of Ph on the Stability of Red Beet Extract (Beta Vulgaris L.) Microcapsules Produced by Spray Drying or Freeze Drying. Food Sci. Technol. 2018, 38, 72–77. [Google Scholar] [CrossRef]
- Costa, A.P.D.; Hermes, V.S.; Rios, A.O.; Flôres, S.H. Minimally Processed Beetroot Waste as an Alternative Source to Obtain Functional Ingredients. J. Food Sci. Technol. 2017, 54, 2050–2058. [Google Scholar] [CrossRef]
- Ravichandran, K.; Saw, N.M.M.T.; Mohdaly, A.A.A.; Gabr, A.M.M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of Processing of Red Beet on Betalain Content and Antioxidant Activity. Food Res. Int. 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Eggleston, G.; Boue, S.; Bett-Garber, K.; Verret, C.; Triplett, A.; Bechtel, P. Phenolic Contents, Antioxidant Potential and Associated Colour in Sweet Sorghum Syrups Compared to Other Commercial Syrup Sweeteners. J. Sci. Food Agric. 2021, 101, 613–623. [Google Scholar] [CrossRef]
- Manohar, M.P.; Harish Nayaka, M.A. Mahadevaiah Studies on Phenolic Content and Polyphenol Oxidase Activity of Sugarcane Varieties with Reference to Sugar Processing. Sugar Tech. 2014, 16, 385–391. [Google Scholar] [CrossRef]
- Loncaric, A.; Dugalic, K.; Mihaljevic, I.; Jakobek, L.; Pilizota, V. Effects of Sugar Addition on Total Polyphenol Content and Antioxidant Activity of Frozen and Freeze-Dried Apple Purée. J. Agric. Food Chem. 2014, 62, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Rohn, S. Possibilities and Limitations in the Analysis of Covalent Interactions between Phenolic Compounds and Proteins. Food Res. Int. 2014, 65, 13–19. [Google Scholar] [CrossRef]
- Gallo, M.; Vinci, G.; Graziani, G.; De Simone, C.; Ferranti, P. The Interaction of Cocoa Polyphenols with Milk Proteins Studied by Proteomic Techniques. Food Res. Int. 2013, 54, 406–415. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Ghosh, A.K.; Ghosh, C. Recent Developments on Polyphenol-Protein Interactions: Effects on Tea and Coffee Taste, Antioxidant Properties and the Digestive System. Food Funct. 2012, 3, 592–605. [Google Scholar] [CrossRef]
- Pascal, C.; Poncet-Legrand, C.; Imberty, A.; Gautier, C.; Sarni-Manchado, P.; Cheynier, V.; Vernhet, A. Interactions between a Non Glycosylated Human Proline-Rich Protein and Flavan-3-Ols Are Affected by Protein Concentration and Polyphenol/Protein Ratio. J. Agric. Food Chem. 2007, 55, 4895–4901. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Renard, C.M.G.C. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 213–248. [Google Scholar] [CrossRef]
- Eeles, M.; Groves, K.M.; Murphy, O.C. Microstructure of Confectionery Gums and Its Relationship to Shelf Life. In Leatherhead Food Research Association Research Report; Leatherhead-Food-Research: London, UK, 2002. [Google Scholar]
- Gabarra, P.; Hartel, R.W. Corn Syrup Solids and Their Saccharide Fractions Affect Crystallization of Amorphous Sucrose. J. Food Sci. 1998, 63, 523–528. [Google Scholar] [CrossRef]
- Kayın, N.; Atalay, D.; Türken Akçay, T.; Erge, H.S. Color Stability and Change in Bioactive Compounds of Red Beet Juice Concentrate Stored at Different Temperatures. J. Food Sci. Technol. 2019, 56, 5097–5106. [Google Scholar] [CrossRef]
- Faghihi, T.; Heidarzadeh, Z.; Jafari, K.; Farhoudi, I.; Hekmatfar, S. An Experimental Study on the Effect of Four Pediatric Drug Types on Color Stability in Different Tooth-Colored Restorative Materials. Dent. Res. J. 2021, 18, 75. [Google Scholar] [CrossRef]
- Sakiroff, L.M.; Chennell, P.; Yessaad, M.; Pereira, B.; Bouattour, Y.; Sautou, V. Evaluation of Color Changes during Stability Studies Using Spectrophotometric Chromaticity Measurements versus Visual Examination. Sci. Rep. 2022, 12, 8959. [Google Scholar] [CrossRef]
- Lombardelli, C.; Benucci, I.; Esti, M. Novel Food Colorants from Tomatoes: Stability of Carotenoid-Containing Chromoplasts under Different Storage Conditions. LWT 2021, 140, 110725. [Google Scholar] [CrossRef]
- Farhan, M.; Ahmad, Z.; Waseem, M.; Mehmood, T.; Javed, M.R.; Ali, M.; Manzoor, M.F.; Goksen, G. Assessment of Beetroot Powder as Nutritional, Antioxidant, and Sensory Evaluation in Candies. J. Agric. Food Res. 2024, 15, 101023. [Google Scholar] [CrossRef]

| Sample | Sucrose (g/100 g) | Gelatin Solution (g/100 g) | RBEP (g/100 g) | TSS (°Bx) | Dry Matter Content (g/100 g) | Water Activity | pH | L* | a* | b* | C* | h* |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 36.62 | 16.68 | 0.00 | 85.90 ± 0.01 | 82.57 ± 0.44 | 0.70 ± 0.03 | 5.41 ± 0.02 | 77.10 ± 1.69 | −0.05 ± 1.02 | 8.17 ± 0.64 | 8.24 ± 0.64 | 97.20 ± 0.36 |
| 2 | 37.43 | 15.00 | 0.87 | 88.00 ± 0.01 | 82.77 ± 0.19 | 0.70 ± 0.01 | 4.71 ± 0.01 | 26.70 ± 1.27 | 24.70 ± 1.72 | 4.93 ± 0.42 | 25.20 ± 1.76 | 11.30 ± 0.57 |
| 3 | 33.55 | 18.75 | 1.00 | 87.70 ± 0.01 | 80.04 ± 0.29 | 0.71 ± 0.01 | 4.87 ± 0.03 | 23.90 ± 0.43 | 12.00 ± 0.56 | 1.79 ± 0.28 | 12.10 ± 0.59 | 8.44 ± 0.94 |
| 4 | 36.41 | 15.89 | 1.00 | 89.40 ± 0.01 | 81.74 ± 0.56 | 0.67 ± 0.02 | 4.76 ± 0.02 | 25.30 ± 1.86 | 27.10 ± 3.44 | 5.45 ± 0.59 | 27.70 ± 3.50 | 11.40 ± 0.34 |
| 5 | 35.50 | 17.37 | 0.43 | 88.60 ± 0.01 | 81.37 ± 0.44 | 0.65 ± 0.01 | 5.09 ± 0.03 | 38.70 ± 0.95 | 41.20 ± 0.65 | 6.85 ± 0.16 | 41.80 ± 0.66 | 9.44 ± 0.14 |
| 6 | 35.50 | 17.37 | 0.43 | 85.00 ± 0.01 | 80.30 ± 0.35 | 0.68 ± 0.00 | 5.19 ± 0.03 | 26.30 ± 0.88 | 19.90 ± 0.65 | 3.98 ± 0.20 | 20.00 ± 0.91 | 11.30 ± 0.23 |
| 7 | 35.50 | 17.37 | 0.43 | 84.10 ± 0.01 | 81.03 ± 0.14 | 0.71 ± 0.01 | 5.23 ± 0.03 | 23.90 ± 0.49 | 29.40 ± 0.58 | 6.78 ± 0.39 | 30.20 ± 0.58 | 13.00 ± 0.72 |
| 8 | 32.56 | 19.74 | 1.00 | 85.40 ± 0.01 | 79.85 ± 0.39 | 0.75 ± 0.02 | 5.06 ± 0.02 | 24.90 ± 1.69 | 10.10 ± 0.41 | 1.06 ± 0.42 | 10.20 ± 0.42 | 5.97 ± 2.29 |
| 9 | 32.00 | 20.78 | 0.52 | 89.20 ± 0.01 | 80.25 ± 0.13 | 0.71 ± 0.04 | 5.23 ± 0.03 | 31.60 ± 1.19 | 31.80 ± 1.36 | 6.19 ± 0.25 | 32.30 ± 1.39 | 11.00 ± 0.17 |
| 10 | 37.43 | 15.00 | 0.87 | 87.40 ± 0.01 | 82.76 ± 0.21 | 0.66 ± 0.03 | 4.92 ± 0.03 | 30.40 ± 1.97 | 33.20 ± 1.73 | 6.12 ± 0.63 | 33.80 ± 1.67 | 10.50 ± 1.37 |
| 11 | 34.37 | 18.93 | 0.00 | 86.70 ± 0.01 | 81.40 ± 0.31 | 0.74 ± 0.01 | 5.64 ± 0.03 | 78.60 ± 1.02 | −0.52 ± 0.09 | 6.16 ± 0.69 | 6.18 ± 0.69 | 94.80 ± 0.58 |
| 12 | 32.00 | 20.78 | 0.52 | 86.50 ± 0.01 | 79.98 ± 0.18 | 0.74 ± 0.03 | 5.20 ± 0.02 | 26.60 ± 2.89 | 11.50 ± 1.47 | 1.18 ± 1.25 | 11.60 ± 1.42 | 8.60 ± 2.67 |
| 13 | 35.50 | 17.37 | 0.43 | 86.10 ± 0.01 | 81.57 ± 0.46 | 0.72 ± 0.02 | 5.40 ± 0.01 | 43.70 ± 0.45 | 43.60 ± 0.21 | 5.91 ± 0.21 | 44.00 ± 0.24 | 7.73 ± 0.25 |
| 14 | 33.32 | 19.98 | 0.00 | 85.40 ± 0.01 | 78.80 ± 0.12 | 0.72 ± 0.05 | 5.74 ± 0.02 | 72.80 ± 1.58 | −0.78 ± 0.19 | 8.09 ± 0.81 | 7.14 ± 0.94 | 96.20 ± 0.98 |
| 15 | 34.48 | 17.82 | 1.00 | 84.60 ± 0.01 | 81.17 ± 0.23 | 0.74 ± 0.01 | 5.13 ± 0.02 | 30.10 ± 0.34 | 37.50 ± 1.92 | 8.00 ± 0.49 | 38.40 ± 1.98 | 12.00 ± 0.16 |
| 16 | 37.76 | 15.54 | 0.00 | 87.40 ± 0.01 | 82.79 ± 0.06 | 0.72 ± 0.03 | 5.74 ± 0.01 | 91.50 ± 0.21 | −0.93 ± 0.04 | 6.13 ± 0.12 | 6.20 ± 0.13 | 97.40 ± 2.00 |
| A: Sucrose | B: Gelatin Solution | C: Coloring Agent | Hardness | Resilience | Cohesion | Springiness | Gumminess | Chewiness | TSS | DMC | aw | pH | L* | a* | b* | C* | Hue Angle | Hardness Variance | ∆E | TPC | AA | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A: Sucrose | 1.000 | −0.979 | −0.089 | −0.617 | −0.614 | −0.467 | −0.009 | −0.696 | −0.451 | 0.127 | 0.871 | −0.570 | −0.112 | 0.243 | 0.122 | 0.422 | 0.186 | 0.185 | −0.423 | 0.023 | −0.076 | −0.122 |
| B: Gelatin Solution | −0.979 | 1.000 | −0.115 | 0.669 | 0.647 | 0.450 | 0.067 | 0.726 | 0.508 | −0.167 | −0.863 | 0.601 | 0.293 | −0.070 | −0.227 | −0.326 | −0.268 | −0.019 | 0.443 | −0.074 | −0.087 | −0.052 |
| C: Coloring Agent | −0.089 | −0.115 | 1.000 | −0.265 | −0.171 | 0.073 | −0.284 | −0.156 | −0.288 | 0.194 | −0.028 | −0.159 | −0.889 | −0.842 | 0.515 | −0.463 | 0.408 | −0.815 | −0.102 | 0.253 | 0.798 | 0.853 |
| Hardness | −0.617 | 0.669 | −0.265 | 1.000 | 0.727 | 0.364 | 0.099 | 0.793 | 0.665 | −0.643 | −0.670 | 0.562 | 0.343 | −0.014 | −0.382 | −0.196 | −0.413 | 0.139 | 0.275 | −0.107 | −0.234 | −0.259 |
| Resilience | −0.614 | 0.647 | −0.171 | 0.727 | 1.000 | 0.790 | 0.533 | 0.673 | 0.867 | −0.454 | −0.712 | 0.486 | 0.318 | −0.056 | −0.283 | −0.342 | −0.336 | 0.009 | 0.248 | −0.167 | −0.135 | −0.162 |
| Cohesion | −0.467 | 0.450 | 0.073 | 0.364 | 0.790 | 1.000 | 0.328 | 0.528 | 0.547 | −0.164 | −0.471 | 0.343 | 0.089 | −0.169 | −0.081 | −0.303 | −0.138 | −0.138 | 0.119 | −0.107 | 0.118 | 0.119 |
| Springiness | −0.009 | 0.067 | −0.284 | 0.099 | 0.533 | 0.328 | 1.000 | −0.028 | 0.755 | −0.360 | −0.230 | −0.030 | 0.408 | 0.190 | 0.004 | 0.151 | 0.030 | 0.120 | 0.111 | −0.290 | −0.407 | −0.408 |
| Gumminess | −0.696 | 0.726 | −0.156 | 0.793 | 0.693 | 0.528 | −0.028 | 1.000 | 0.604 | −0.442 | −0.640 | 0.582 | 0.222 | −0.137 | −0.333 | −0.449 | −0.398 | −0.027 | 0.145 | 0.099 | 0.096 | 0.097 |
| Chewiness | −0.451 | 0.508 | −0.288 | 0.665 | 0.867 | 0.547 | 0.755 | 0.604 | 1.000 | −0.633 | −0.630 | 0.357 | 0.433 | 0.023 | −0.216 | −0.144 | −0.239 | 0.071 | 0.207 | −0.188 | −0.252 | −0.270 |
| TSS | 0.127 | −0.167 | 0.194 | −0.643 | −0.454 | −0.164 | −0.360 | −0.442 | −0.633 | 1.000 | 0.283 | −0.473 | −0.366 | −0.060 | 0.168 | −0.080 | 0.160 | −0.135 | −0.060 | 0.326 | 0.236 | 0.235 |
| DMC | 0.871 | −0.863 | −0.028 | −0.670 | −0.712 | −0.471 | −0.230 | −0.640 | −0.630 | 0.283 | 1.000 | −0.402 | −0.154 | 0.233 | 0.171 | 0.356 | 0.230 | 0.135 | −0.478 | 0.005 | −0.032 | −0.030 |
| aw | −0.570 | 0.601 | −0.159 | 0.562 | 0.486 | 0.343 | −0.030 | 0.582 | 0.357 | −0.473 | −0.402 | 1.000 | 0.458 | 0.233 | −0.451 | −0.240 | −0.467 | 0.267 | 0.316 | −0.391 | −0.129 | −0.099 |
| pH | −0.012 | 0.293 | −0.889 | 0.343 | 0.318 | 0.089 | 0.408 | 0.222 | 0.433 | −0.366 | −0.154 | 0.458 | 1.000 | 0.838 | −0.520 | 0.397 | −0.421 | 0.791 | 0.266 | −0.348 | −0.835 | −0.837 |
| L* | 0.243 | −0.070 | −0.842 | −0.014 | −0.056 | −0.169 | 0.190 | −0.137 | 0.023 | −0.060 | 0.233 | 0.233 | 0.838 | 1.000 | −0.640 | 0.492 | −0.520 | 0.960 | 0.318 | −0.331 | −0.795 | −0.815 |
| a* | 0.122 | −0.227 | 0.515 | −0.382 | −0.283 | −0.081 | 0.004 | −0.333 | −0.216 | 0.168 | 0.171 | −0.451 | −0.520 | −0.640 | 1.000 | 0.154 | 0.987 | −0.768 | −0.694 | 0.167 | 0.408 | 0.437 |
| b* | 0.422 | −0.326 | −0.463 | −0.196 | −0.342 | −0.303 | 0.151 | −0.449 | −0.144 | −0.080 | 0.356 | −0.240 | 0.397 | 0.492 | 0.154 | 1.000 | 0.300 | 0.469 | −0.196 | −0.203 | −0.521 | −0.581 |
| C* | 0.186 | −0.268 | 0.408 | −0.413 | −0.336 | −0.138 | 0.030 | −0.398 | −0.239 | 0.160 | 0.230 | −0.467 | −0.421 | −0.520 | 0.987 | 0.300 | 1.000 | −0.657 | −0.703 | 0.127 | 0.298 | 0.320 |
| Hue Angle | 0.183 | −0.019 | −0.815 | 0.139 | 0.009 | −0.138 | 0.120 | −0.027 | 0.071 | −0.135 | 0.135 | 0.267 | 0.791 | 0.960 | −0.768 | 0.469 | −0.657 | 1.000 | 0.438 | −0.296 | −0.751 | −0.794 |
| Hardness Variance | −0.423 | 0.443 | −0.102 | 0.275 | 0.248 | 0.119 | 0.111 | 0.145 | 0.207 | −0.060 | −0.478 | 0.316 | 0.266 | 0.318 | −0.694 | −0.179 | −0.703 | 0.438 | 1.000 | −0.161 | −0.305 | −0.257 |
| ∆E | 0.023 | −0.074 | 0.253 | −0.107 | −0.167 | −0.107 | −0.290 | 0.099 | −0.188 | 0.326 | 0.005 | −0.391 | −0.348 | −0.331 | 0.167 | −0.203 | 0.127 | −0.296 | −0.161 | 1.000 | 0.228 | 0.240 |
| TPC | −0.076 | −0.087 | 0.798 | −0.234 | −0.135 | 0.118 | −0.407 | 0.096 | −0.252 | 0.236 | −0.032 | −0.129 | −0.835 | −0.795 | 0.408 | −0.521 | 0.298 | −0.751 | −0.305 | 0.228 | 1.000 | 0.973 |
| AA | −0.122 | −0.052 | 0.853 | −0.259 | −0.162 | 0.119 | −0.408 | 0.097 | −0.270 | 0.235 | −0.030 | −0.099 | −0.837 | −0.815 | 0.437 | −0.581 | 0.320 | −0.794 | −0.257 | 0.240 | 0.973 | 1.000 |
| Sample | Sucrose (g/100 g) | Gelatin Solution (g/100 g) | RBEP (g/100 g) | Hardness (N) | Resilience | Cohesion | Springiness (mm) | Gumminess (N) | Chewiness (Nxmm) | Total Phenolics Content (mg GAE/kg) | Antioxidant Activity (AA, % Inhibition) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 36.62 | 16.68 | 0.00 | 14.93 ± 0.21 | 0.59 ± 0.01 | 0.87 ± 0.01 | 0.23 ± 0.04 | 13.02 ± 0.01 | 2.96 ± 0.01 | 25.60 ± 0.12 | 0.00 ± 0.02 |
| 2 | 37.43 | 15.00 | 0.87 | 12.29 ± 1.9 | 0.69 ± 0.01 | 0.99 ± 0.01 | 0.19 ± 0.03 | 12.15 ± 0.01 | 2.36 ± 0.01 | 257.40 ± 0.97 | 48.50 ± 1.23 |
| 3 | 33.55 | 18.75 | 1.00 | 15.43 ± 1.75 | 0.79 ± 0.02 | 1.00 ± 0.01 | 0.20 ± 0.01 | 15.49 ± 0.01 | 3.11 ± 0.01 | 144.20 ± 0.15 | 33.50 ± 0.43 |
| 4 | 36.41 | 15.89 | 1.00 | 10.78 ± 1.46 | 0.57 ± 0.01 | 0.89 ± 0.01 | 0.22 ± 0.04 | 9.62 ± 0.01 | 2.15 ± 0.01 | 197.20 ± 0.28 | 42.30 ± 0.38 |
| 5 | 35.50 | 17.37 | 0.43 | 11.34 ± 0.97 | 0.78 ± 0.01 | 0.99 ± 0.01 | 0.54 ± 0.01 | 11.18 ± 0.01 | 6.04 ± 0.01 | 104.00 ± 0.56 | 19.00 ± 0.14 |
| 6 | 35.50 | 17.37 | 0.43 | 16.65 ± 0.01 | 0.82 ± 0.01 | 0.98 ± 0.01 | 0.48 ± 0.01 | 16.32 ± 0.01 | 7.75 ± 0.01 | 116.60 ± 0.63 | 24.60 ± 0.15 |
| 7 | 35.50 | 17.37 | 0.43 | 19.18 ± 0.5 | 0.88 ± 0.01 | 1.00 ± 0.01 | 0.41 ± 0.11 | 19.14 ± 0.01 | 7.88 ± 0.01 | 88.40 ± 0.21 | 11.20 ± 0.38 |
| 8 | 32.56 | 19.74 | 1.00 | 17.20 ± 0.94 | 0.89 ± 0.01 | 0.99 ± 0.01 | 0.49 ± 0.03 | 17.05 ± 0.01 | 8.29 ± 0.01 | 144.60 ± 0.35 | 31.80 ± 0.58 |
| 9 | 32.00 | 20.78 | 0.52 | 14.99 ± 0.45 | 0.76 ± 0.04 | 1.00 ± 0.02 | 0.28 ± 0.07 | 14.94 ± 0.01 | 4.19 ± 0.01 | 95.20 ± 0.58 | 18.70 ± 0.62 |
| 10 | 37.43 | 15.00 | 0.87 | 12.05 ± 0.49 | 0.64 ± 0.06 | 0.98 ± 0.03 | 0.33 ± 0.06 | 11.81 ± 0.02 | 3.87 ± 0.01 | 128.20 ± 0.54 | 30.50 ± 0.25 |
| 11 | 34.37 | 18.93 | 0.00 | 18.16 ± 1.41 | 0.83 ± 0.03 | 1.00 ± 0.02 | 0.32 ± 0.05 | 18.11 ± 0.03 | 5.75 ± 0.01 | 11.40 ± 0.48 | 0.00 ± 0.01 |
| 12 | 32.00 | 20.78 | 0.52 | 16.79 ± 0.88 | 0.84 ± 0.01 | 1.02 ± 0.01 | 0.25 ± 0.03 | 17.16 ± 0.01 | 4.24 ± 0.01 | 217.00 ± 1.22 | 49.80 ± 0.37 |
| 13 | 35.50 | 17.37 | 0.43 | 13.63 ± 1.01 | 0.66 ± 0.02 | 0.92 ± 0.01 | 0.31 ± 0.09 | 12.53 ± 0.01 | 3.84 ± 0.01 | 96.70 ± 0.26 | 20.30 ± 0.15 |
| 14 | 33.32 | 19.98 | 0.00 | 17.96 ± 1.71 | 0.87 ± 0.01 | 1.01 ± 0.01 | 0.45 ± 0.01 | 18.11 ± 0.01 | 8.19 ± 0.01 | 51.20 ± 0.83 | 0.00 ± 0.03 |
| 15 | 34.48 | 17.82 | 1.00 | 13.61 ± 1.22 | 0.73 ± 0.03 | 1.00 ± 0.01 | 0.37 ± 0.07 | 13.62 ± 0.01 | 5.04 ± 0.01 | 151.70 ± 0.27 | 36.90 ± 0.14 |
| 16 | 37.76 | 15.54 | 0.00 | 10.63 ± 0.82 | 0.75 ± 0.01 | 0.99 ± 0.00 | 0.48 ± 0.02 | 10.53 ± 0.01 | 5.11 ± 0.01 | 17.90 ± 0.14 | 0.00 ± 0.04 |
| Sample | Hardness * (%) | Resilience * (%) | Cohesion * (%) | Springiness * (%) | Gumminess * (%) | Chewiness * (%) | ΔEa |
|---|---|---|---|---|---|---|---|
| 1 | 39.0 | 46.6 | 13.5 | 143.0 | 57.8 | 283.2 | 3.07 |
| 2 | 3.21 | 13.5 | −2.28 | 19.6 | 1.00 | 18.6 | 1.81 |
| 3 | 46.0 | 5.17 | −3.55 | −3.36 | 40.8 | 35.7 | 6.00 |
| 4 | 23.7 | 38.8 | 8.96 | 40.6 | 35.3 | 87.7 | 7.09 |
| 5 | 11.3 | 2.87 | −2.08 | −54.0 | 8.93 | −50.0 | 4.13 |
| 6 | 28.5 | 1.77 | −0.12 | −44.7 | 28.4 | −29.0 | 1.50 |
| 7 | 0.11 | −6.63 | −2.15 | −5.13 | −2.04 | −6.41 | 6.36 |
| 8 | 49.6 | −4.40 | −0.29 | −6.94 | 49.2 | 38.9 | 2.43 |
| 9 | 31.4 | 2.74 | −1.14 | 47.2 | 29.9 | 89.7 | 3.54 |
| 10 | 20.7 | −2.47 | −3.52 | 48.9 | 16.6 | 72.6 | 6.70 |
| 11 | 30.8 | −3.28 | −0.47 | 35.5 | 30.2 | 75.7 | 1.88 |
| 12 | 9.65 | −0.52 | −2.31 | 73.4 | 7.18 | 85.5 | 6.08 |
| 13 | −2.11 | 27.1 | 8.00 | 88.9 | 5.84 | 97.7 | 3.40 |
| 14 | 52.1 | 0.27 | −1.46 | −12.7 | 49.9 | 32.0 | 3.31 |
| 15 | 26.2 | 3.26 | −1.65 | 12.5 | 24.1 | 38.2 | 1.04 |
| 16 | 32.2 | 6.07 | −1.11 | −2.50 | 30.8 | 27.3 | 3.07 |
| Factor A | Factor B | Factor C | Response1 | Response 2 | Response 3 | Response 4 | |
|---|---|---|---|---|---|---|---|
| Sucrose (g/100 g) | Gelatin Solution (g/100 g) | RBEP (g/100 g) | Springiness (mm) | Hardness (N) | ΔE* value | Hardness Variation (%) | |
| 34.52 | 18.33 | 0.44 | 0.47 | 15.16 | 3.83 | 13.51 | |
| Experimental Results | |||||||
| 95% CI Low for Mean | Observed | 95%CI High for Mean | |||||
| Springiness (mm) | 0.18 | 0.43 | 0.77 | ||||
| Hardness (N) | 10.36 | 14.85 | 19.95 | ||||
| ΔE value | −0.54 | 2.10 | 8.22 | ||||
| Hardness Variation (%) | 10.89 | 16.22 | 37.49 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toker, O.S.; Atalar, I.; Kurt, A.; Palabiyik, I.; Konar, N. Red Beet Extract Powder, Gelatin and Sucrose Interactions in Gummy Candies. Foods 2025, 14, 3138. https://doi.org/10.3390/foods14173138
Toker OS, Atalar I, Kurt A, Palabiyik I, Konar N. Red Beet Extract Powder, Gelatin and Sucrose Interactions in Gummy Candies. Foods. 2025; 14(17):3138. https://doi.org/10.3390/foods14173138
Chicago/Turabian StyleToker, Omer Said, Ilyas Atalar, Abdullah Kurt, Ibrahim Palabiyik, and Nevzat Konar. 2025. "Red Beet Extract Powder, Gelatin and Sucrose Interactions in Gummy Candies" Foods 14, no. 17: 3138. https://doi.org/10.3390/foods14173138
APA StyleToker, O. S., Atalar, I., Kurt, A., Palabiyik, I., & Konar, N. (2025). Red Beet Extract Powder, Gelatin and Sucrose Interactions in Gummy Candies. Foods, 14(17), 3138. https://doi.org/10.3390/foods14173138

