Unveiling the Potential of Endophytic Bacillus amyloliquefaciens LJ1 from Nanguo Pear: A Genomic and Functional Study for Biocontrol of Post-Harvest Rot
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. DNA Extraction and Whole-Genome Sequencing
2.3. Genome Assembly and Optimization
2.4. Genome Annotation
2.5. Analysis of Metabolic Systems
2.6. Pathogenicity Analysis
2.7. Safety Assessment
2.8. Animal Experiment Design
2.9. Effects of Bacillus amyloliquefaciens LJ1 on Penicillium expansum In Vitro
2.10. Effects of Bacillus amyloliquefaciens LJ1 on Penicillium expansum In Vivo
2.11. Statistical Analysis
3. Results and Discussion
3.1. Genome Assessment
3.2. Genome Assembly and Prediction
3.3. Gene Annotation
3.4. Genomic Metabolic System Analysis
3.5. Genomic Pathogenic System Analysis
3.6. Safety Evaluation
3.7. Biocontrol Activity of Bacillus amyloliquefaciens LJ1 Against Penicillium expansum
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; Chen, W.; Liu, S.; Wu, J.; Zhu, Y.; Qin, L.; Zhu, B. Beneficial relationships between endophytic bacteria and medicinal plants. Front. Plant Sci. 2021, 12, 646146. [Google Scholar] [CrossRef]
- Rana, K.L.; Kour, D.; Kaur, T.; Negi, R.; Devi, R.; Yadav, N.; Rai, P.K.; Singh, S.; Rai, A.K.; Yadav, A.; et al. Endophytic nitrogen-fixing bacteria: Untapped treasurer for agricultural sustainability. J. Appl. Biol. Biotechnol. 2023, 11, 75–93. [Google Scholar]
- del Barrio-Duque, A.; Ley, J.; Samad, A.; Antonielli, L.; Sessitsch, A.; Compant, S. Beneficial endophytic bacteria-Serendipita indica interaction for crop enhancement and resistance to phytopat. Front. Microbiol. 2019, 10, 2888. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.J.; Palombo, E.A.; Moulton, S.E.; Zaferanloo, B. Exploring the promise of endophytic fungi: A review of novel antimicrobial compounds. Microorganisms 2022, 10, 1990. [Google Scholar] [CrossRef]
- Mengistu, A.A. Endophytes: Colonization, behaviour, and their role in defense mechanism. Int. J. Microbiol. 2020, 2020, 6927219. [Google Scholar] [CrossRef]
- Sahu, P.K.; Singh, S.; Gupta, A.; Singh, U.B.; Brahmaprakash, G.P.; Saxena, A.K. Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol. Control 2019, 137, 104014. [Google Scholar] [CrossRef]
- Hazarika, D.J.; Goswami, G.; Gautom, T.; Parveen, A.; Das, P.; Barooah, M.; Boro, R.C. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol. 2019, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- De la Cruz-López, N.; Cruz-López, L.; Holguín-Meléndez, F.; Guillén-Navarro, G.K.; Huerta-Palacios, G. Volatile organic compounds produced by cacao endophytic bacteria and their inhibitory activity on Moniliophthora roreri. Curr. Microbiol. 2022, 79, 35. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Xiang, W.; Cao, K.X.; Lu, X.; Yao, S.C.; Hung, D.; Huang, R.-S.; Li, L.B. Characterization of volatile organic compounds emitted from endophytic Burkholderia cenocepacia ETR-B22 by SPME-GC-MS and their inhibitory activity against various plant fungal pathogens. Molecules 2020, 25, 3765. [Google Scholar] [CrossRef]
- Luo, L.; Zhao, C.; Wang, E.; Raza, A.; Yin, C. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiol. Res. 2022, 259, 127016. [Google Scholar] [CrossRef]
- Chowdhury, S.P.; Hartmann, A.; Gao, X.; Borriss, R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front. Microbiol. 2015, 6, 780. [Google Scholar] [CrossRef]
- Abdallah, D.B.; Tounsi, S.; Gharsallah, H.; Hammami, A.; Frikha-Gargouri, O. Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens. Environ. Sci. Pollut. Res. 2018, 25, 36518–36529. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Yahaya, R.S.R.; Baharudin, M.M.A.A.; Yaminudin, S.M.; Karim, M.; Ahmad, S.A.; Sabri, S. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Prasad, V.; Chauhan, P.S.; Lata, C. Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front. Plant Sci. 2017, 8, 1510. [Google Scholar] [CrossRef]
- Chen, X.; Krug, L.; Yang, H.; Li, H.; Yang, M.; Berg, G.; Cernava, T. Nicotiana tabacum seed endophytic communities share a common core structure and genotype-specific signatures in diverging cultivars. Comput. Struct. Biotechnol. J. 2020, 18, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chen, Y.; Liu, S.; Ou, X.; Wang, Y.; Zhao, Z.; Tang, R.; Yan, Y.; Zeng, X.; Feng, S.; et al. Biocontrol performance of a novel Bacillus velezensis L33a on tomato gray mold and its complete genome sequence analysis. Postharvest Biol. Technol. 2024, 213, 112925. [Google Scholar] [CrossRef]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An Empirically Improved Memory-Efficient Short-Read de Novo Assembler. GigaScience 2012, 1, 18. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Delcher, A.L.; Bratke, K.A.; Powers, E.C.; Salzberg, S.L. Identifying Bacterial Genes and Endosymbiont DNA with Glimmer. Bioinformatics 2007, 23, 673–679. [Google Scholar] [CrossRef]
- Besemer, J.; Borodovsky, M. GeneMark: Web Software for Gene Finding in Prokaryotes, Eukaryotes and Viruses. Nucleic Acids Res. 2005, 33, 451–454. [Google Scholar] [CrossRef]
- Li, X.L.; Lv, X.Y.; Ji, J.B.; Wang, W.D.; Wang, J.; Wang, C.; He, H.B.; Ben, A.L.; Liu, T.L. Complete genome sequence of Nguyenibacter sp. L1, a phosphate solubilizing bacterium isolated from Lespedeza bicolor rhizosphere. Front. Microbiol. 2023, 14, 1257442. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Wu, P.; Entwistle, S.; Li, X.; Yohe, T.; Yi, H.; Yang, Z.; Yin, Y. dbCAN-seq: A database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids 2018, 4, D516–D521. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Medema, M.H.; Weber, T. The antiSMASH database version 4: Additional genomes and BGCs, new sequence-based searches and more. Nucleic Acids Res. 2024, 52, 586–589. [Google Scholar] [CrossRef]
- Benson, G. Tandem Repeats Finder: A Program to Analyze DNA Sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Darkoh, C.; Chappell, C.; Gonzales, C.; Okhuysen, P. A rapid and specific method for the detection of indole in complex biological samples. Appl. Environ. Microbiol. 2015, 81, 8093–8097. [Google Scholar] [CrossRef]
- Mete, A.; Co¸sansu, S.; Demirkol, O.; Ayhan, K. Amino acid decarboxylase activities and biogenic amine formation abilities of lactic acid bacteria isolated from shalgam. Int. J. Food Prop. 2017, 20, 171–178. [Google Scholar] [CrossRef]
- Díez-Solinska, A.; Vegas, O.; Azkona, G. Refinement in the European Union: A systematic review. Animals 2022, 12, 3263. [Google Scholar] [CrossRef]
- Cardiff, R.D.; Miller, C.H.; Munn, R.J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014, 6, 073411. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Koumoutsi, A.; Scholz, R.; Eisenreich, A.; Schneider, K.; Heinemeyer, I.; Morgenstern, B.; Voss, B.; Hess, W.R.; Reva, O.; et al. Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 2007, 25, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Tian, W.; Liu, D.Y.; Liu, Y.C.; Shen, Q.R.; Shen, B. Characterization of a cryptic plasmid pPZZ84 from Bacillus pumilus. Plasmid 2010, 64, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Keswani, C.; Singh, H.B.; Hermosa, R.; García-Estrada, C.; Caradus, J.; He, Y.W.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Vinale, F.; et al. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Appl. Microbiol. Biotechnol. 2019, 103, 9287–9303. [Google Scholar] [CrossRef] [PubMed]
- Godden, A.M.; Immler, S. The potential role of the mobile and non-coding genomes in adaptive response. Trends Genet. 2023, 39, 5–8. [Google Scholar] [CrossRef]
- Machado, D.; Maistrenko, O.M.; Andrejev, S.; Kim, Y.; Bork, P.; Patil, K.R.; Patil, K.R. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 2021, 5, 195–203. [Google Scholar] [CrossRef]
- Conde, A.; Chaves, M.M.; Gerós, H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol. 2011, 52, 1583–1602. [Google Scholar] [CrossRef]
- Fernandez-San Millan, A.; Fernandez-Irigoyen, J.; Santamaria, E.; Larraya, L.; Farran, I.; Veramendi, J. Metschnikowia pulcherrima as an efficient biocontrol agent of Botrytis cinerea infection in apples: Unraveling protection mechanisms through yeast proteomics. Biol. Control 2023, 183, 105266. [Google Scholar] [CrossRef]
- Xie, C.; Gong, W.; Zhu, Z.; Yan, L.; Hu, Z.; Peng, Y. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage. Genomics 2018, 110, 201–209. [Google Scholar] [CrossRef]
- Hemsworth, G.R.; Dejean, G.; Davies, G.J.; Brumer, H. Learning from microbial strategies for polysaccharide degradation. Biochem. Soc. Trans. 2016, 44, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, G.; Liang, Y.; Tan, M.; Fang, J.; Peng, J.; Li, K. Co-production of surfactin and fengycin by Bacillus subtilis BBW1542 isolated from marine sediment: A promising biocontrol agent against foodborne pathogens. J. Food Sci. Technol. 2024, 61, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Dertz, E.A.; Xu, J.; Stintzi, A.; Raymond, K.N. Bacillibactin-mediated iron transport in bacillus s ubtilis. J. Am. Chem. Soc. 2006, 128, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Özcengiz, G.; Öğülür, İ. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. New Biotechnol. 2015, 32, 612–619. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Wang, Z.; Zhang, Z.; Liu, Y.; Liu, S.; Wu, Q.; Saiding, E.; Han, J.; Jun, Z.; et al. Analysis of antimicrobial biological activity of a marine Bacillus velezensis NDB. Arch. Microbiol. 2024, 206, 131. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Z.; Huang, J.; Wei, S.; Sun, X.; Chen, Y.; Liu, H.; Li, S. Candicidin isomer production is essential for biocontrol of cucumber rhizoctonia rot by Streptomyces albidoflavus W68. Appl. Environ. Microbiol. 2021, 87, e03078-20. [Google Scholar] [CrossRef]
- Blasey, N.; Rehrmann, D.; Riebisch, A.K.; Mühlen, S. Targeting bacterial pathogenesis by inhibiting virulence-associated Type III and Type IV secretion systems. Front. Cell. Infect. Microbiol. 2023, 12, 1065561. [Google Scholar] [CrossRef] [PubMed]
- Green, E.R.; Mecsas, J. Bacterial secretion systems: An overview. Virulence Mech. Bact. Pathog. 2016, 4, 213–239. [Google Scholar]
- Mattingly, A.E.; Weaver, A.A.; Dimkovikj, A.; Shrout, J.D. Assessing travel conditions: Environmental and host influences on bacterial surface motility. J. Bacteriol. 2018, 200, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Prajapati, V.; Prajapati, S.; Bais, H.; Lu, J. Comparative genome analysis of Bacillus amyloliquefaciens focusing on phylogenomics, functional traits, and prevalence of antimicrobial and virulence genes. Front. Genet. 2021, 12, 724217. [Google Scholar] [CrossRef] [PubMed]
- Schwidder, M.; Heinisch, L.; Schmidt, H. Genetics, toxicity, and distribution of enterohemorrhagic Escherichia coli hemolysin. Toxins 2019, 11, 502. [Google Scholar] [CrossRef]
- Kumar, A.; Sperandio, V. Indole signaling at the host-microbiota-pathogen interface. MBio 2019, 10, 10–1128. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef]
- Sahoo, T.K.; Jena, P.K.; Prajapati, B.; Gehlot, L.; Patel, A.K.; Seshadri, S. In vivo assessment of immunogenicity and toxicity of the bacteriocin TSU4 in BALB/c mice. Probiotics Antimicrob. Proteins 2017, 9, 345–354. [Google Scholar] [CrossRef]
- Elsherbiny, E.A.; Dawood, D.H.; Safwat, N.A. Antifungal action and induction of resistance by β-aminobutyric acid against Penicillium digitatum to control green mold in orange fruit. Pestic. Biochem. Physiol. 2021, 171, 104721. [Google Scholar] [CrossRef] [PubMed]
- Sidorova, T.M.; Asaturova, A.M.; Homyak, A.I. Biologically active metabolites of Bacillus subtilis and their role in the control of phytopathogenic microorganisms. Agric. Biol. 2018, 53, 29–37. [Google Scholar] [CrossRef]
- Kaspar, F.; Neubauer, P.; Gimpel, M. Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. J. Nat. Prod. 2019, 82, 2038–2053. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Genome Size (bp) | 3,947,365 |
Chrom No. | 1 |
Plas No. | 0 |
GC Content (%) | 46.48 |
CDS No. | 3757 |
tRNA No. | 95 |
rRNA No. | 30 |
Type | Parameter | Value |
---|---|---|
Coded sequence | Gene No. | 3757 |
Gene Total Len (bp) | 3,485,559 | |
Gene Average Len (bp) | 927.75 | |
Gene Density (kb) | 0.95 | |
GC Content in Gene Region (%) | 47.32 | |
Gene/Genome (%) | 88.30 | |
Intergenetic Region Len (bp) | 461,806 | |
GC Content in Intergenetic Region (%) | 40.17 | |
tRNA | tRNAs No. | 95 |
Type of tRNAs No. | 20 | |
rRNA | rRNAs No. | 30 |
16S rRNA | 10 | |
23S rRNA | 10 | |
5S rRNA | 10 | |
House-keeping gene | House-keeping Gene No. | 31 |
sRNA | sRNA No. | 81 |
In Genome (%) | 0.2966 | |
Tandem repeat | Repeat No. | 70 |
In Genome (%) | 0.43 | |
Interspersed repeat | SINE No. | 16 |
LINEs No. | 25 | |
LTR No. | 2 | |
DNA Transposon No. | 7 |
Location | Cluster ID | Type | MIBiG Accession | Similar Cluster | Similarity (%) | Gene No. |
---|---|---|---|---|---|---|
Chromosome | cluster1 | NRPS | BGC0000433 | surfactin | 82 | 40 |
Chromosome | cluster2 | PKS-like | BGC0000693 | butirosin A/butirosin B | 7 | 41 |
Chromosome | cluster3 | terpene | - | - | - | 23 |
Chromosome | cluster4 | lanthipeptide-class-ii | - | - | - | 30 |
Chromosome | cluster5 | transAT-PKS | BGC0000181 | macrolactin H | 100 | 44 |
Chromosome | cluster6 | transAT-PKS | BGC0001089 | bacillaene | 100 | 44 |
Chromosome | cluster7 | NRPS | BGC0001095 | fengycin | 100 | 63 |
Chromosome | cluster8 | terpene | - | - | - | 22 |
Chromosome | cluster9 | T3PKS | - | - | - | 50 |
Chromosome | cluster10 | transAT-PKS | BGC0000176 | difficidin | 100 | 40 |
Chromosome | cluster11 | NRPS | BGC0000309 | bacillibactin | 100 | 45 |
Chromosome | cluster12 | other | BGC0001184 | bacilysin | 100 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Jiang, J.; Sun, K.; Ye, S. Unveiling the Potential of Endophytic Bacillus amyloliquefaciens LJ1 from Nanguo Pear: A Genomic and Functional Study for Biocontrol of Post-Harvest Rot. Foods 2025, 14, 3020. https://doi.org/10.3390/foods14173020
Li Z, Jiang J, Sun K, Ye S. Unveiling the Potential of Endophytic Bacillus amyloliquefaciens LJ1 from Nanguo Pear: A Genomic and Functional Study for Biocontrol of Post-Harvest Rot. Foods. 2025; 14(17):3020. https://doi.org/10.3390/foods14173020
Chicago/Turabian StyleLi, Zilong, Jiamin Jiang, Keyu Sun, and Shuhong Ye. 2025. "Unveiling the Potential of Endophytic Bacillus amyloliquefaciens LJ1 from Nanguo Pear: A Genomic and Functional Study for Biocontrol of Post-Harvest Rot" Foods 14, no. 17: 3020. https://doi.org/10.3390/foods14173020
APA StyleLi, Z., Jiang, J., Sun, K., & Ye, S. (2025). Unveiling the Potential of Endophytic Bacillus amyloliquefaciens LJ1 from Nanguo Pear: A Genomic and Functional Study for Biocontrol of Post-Harvest Rot. Foods, 14(17), 3020. https://doi.org/10.3390/foods14173020