A Beta Regression Approach to Modelling Country-Level Food Insecurity
Abstract
1. Introduction
2. Theoretical and Policy Background
2.1. Sustainable Development Goal 2 (Zero Hunger)
2.2. Outline of Possible Factors Influencing Food Insecurity
3. Materials and Methods
3.1. Data Sources and Processing
3.2. Analytic Method: Beta Regression
4. Results
4.1. Descriptive Statistics
4.2. Beta Regression Model Results and Marginal Effects of Important Variables
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaw, D. World Food Security: A History Since 1945; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Marcial Romero, N.; Sangerman-Jarquín, D.M.; Hernández Juárez, M.; León Merino, A.; Escalona Maurice, M.J. Food vulnerability in rural households and its relationship with food policy in Mexico. Rev. Mex. Cienc. Agrícolas 2019, 10, 935–945. [Google Scholar]
- United Nations: Department of Economic and Social Affairs. Achieving Sustainable Development and Promoting Development Cooperation: Dialogues at the Economic and Social Council; United Nations: New York, NY, USA, 2009. [Google Scholar]
- World Health Organization. The State of Food Security and Nutrition in the World 2023: Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; Food and Agriculture Organization: Rome, Italy, 2023; Volume 2023. [Google Scholar]
- Quested, T.; O’Connor, C.; Forbes, H. UNEP Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- D’Odorico, P.; Carr, J.A.; Davis, K.F.; Dell’Angelo, J.; Seekell, D.A. Food Inequality, Injustice, and Rights. Bioscience 2019, 69, 180–190. [Google Scholar] [CrossRef]
- N’Ganzi, R.G.; Balan, I.M.; Trasca, T.I.; Pascalau, R.; Brad, I.; Gherman, R.; Tulcan, C.; Gherman, E.D.; Martin, A.R. Food security in low developed countries–the case of the DR Congo. Sci. Pap. Anim. Sci. Biotechnol. 2022, 55, 154. [Google Scholar]
- Salasan, C.; Balan, I.M. The acceptability of environmental acceptable damage and the future of the EU’s rural development policy (Part I: Economic Emergencies-4). In Economics and Engineering of Unpredictable Events-Modelling, Planning and Policies; Taylor & Francis CRC Group: London, UK, 2021. [Google Scholar]
- Gheorghescu, I.-C.; Velcotă, I.-I.; Martin, A.R.; Bălăn, I.M. Food Waste a Major Problem in the European Union; CABI Digital Library: Oxfordshire, UK, 2019. [Google Scholar]
- Grosso, G.; Mateo, A.; Rangelov, N.; Buzeti, T.; Birt, C. Nutrition in the context of the Sustainable Development Goals. Eur. J. Public Health 2020, 30, i19–i23. [Google Scholar] [CrossRef]
- Arndt, M.B.; Abate, Y.H.; Abbasi-Kangevari, M.; Abd ElHafeez, S.; Abdelmasseh, M.; Abd-Elsalam, S.; Abdulah, D.M.; Abdulkader, R.S.; Abidi, H.; Abiodun, O.; et al. Global, regional, and national progress towards the 2030 global nutrition targets and forecasts to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 404, 2543–2583. [Google Scholar] [CrossRef]
- Pearce, J.M.; Parncutt, R. Quantifying Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy. Energies 2023, 16, 6074. [Google Scholar] [CrossRef]
- Pandey, S.R. Determining the Consumer Perception on Perishable Food Wastage in Texas, United States; Texas State University: San Marcos, TX, USA, 2023. [Google Scholar]
- Headey, D.D.; Martin, W.J. The impact of food prices on poverty and food security. Annu. Rev. Resour. Econ. 2016, 8, 329–351. [Google Scholar] [CrossRef]
- Ritchie, H.; Rodés-Guirao, L. Peak global population and other key findings from the 2024 UN World Population Prospects. In Our World in Data; Global Change Data Lab: Oxford, UK, 2024. [Google Scholar]
- Unat, E. A review of Malthusian theory of population under the scope of human capital. FORCE Focus Res. Contemp. Econ. 2020, 1, 132–147. [Google Scholar]
- Naso, P.; Lanz, B.; Swanson, T. The return of Malthus? Resource constraints in an era of declining population growth. Eur. Econ. Rev. 2020, 128, 103499. [Google Scholar] [CrossRef]
- Oladimeji, Y. Food production trend in Nigeria and Malthus theory of population: Empirical evidence from rice production. Niger. J. Agric. Food Environ. 2017, 13, 126–132. [Google Scholar]
- Manzoor, S.; Fayaz, U.; Dar, A.; Dash, K.; Shams, R.; Bashir, I.; Pandey, V.; Abdi, G. Sustainable Development Goals Through Reducing Food Loss and Food Waste: A Comprehensive Review. Future Foods 2024, 9, 100362. [Google Scholar] [CrossRef]
- Iancu, T.; Petre, I.; Tudor, V.; Micu, M.; Ursu, A.; Teodorescu, F.-R.; Dumitru, E. A Difficult Pattern to Change in Romania, the Perspective of Socio-Economic Development. Sustainability 2022, 14, 2350. [Google Scholar] [CrossRef]
- Jangulashvili, T.; Balan, I.M.; Iancu, T.; Jangulashvili, L.; Pirvulescu, L. Research Regarding Food Security in Georgia–Dynamics of Livestock, Animal Productions and Self-Sufficiency. Adv. Res. Life Sci. 1953, 1, 53–58. [Google Scholar] [CrossRef]
- Sen, A. Poverty and Famines: An Essay on Entitlement and Deprivation; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Shafieisabet, N.; Mirvahedi, N. The role of rural–urban linkages in perceived environmental effects of farmers for participation in sustainable food security plans. Agric. Food Secur. 2021, 10, 46. [Google Scholar] [CrossRef]
- Cribari-Neto, F.; Zeileis, A. Beta regression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar] [CrossRef]
- Mollier, L.; Seyler, F.; Chotte, J.-L.; Ringler, C. End hunger, achieve food security and improved nutrition and promote sustainable agriculture: SDG 2. In A Guide to SDG Interactions: From Science to Implementation; International Council for Science: Paris, France, 2017. [Google Scholar]
- Cafiero, C.; Viviani, S.; Nord, M. Food security measurement in a global context: The food insecurity experience scale. Measurement 2018, 116, 146–152. [Google Scholar] [CrossRef]
- Gatton, M.L.; Gallegos, D. A 5-year review of prevalence, temporal trends and characteristics of individuals experiencing moderate and severe food insecurity in 34 high income countries. BMC Public Health 2023, 23, 2215. [Google Scholar] [CrossRef]
- Cooper, M.; Müller, B.; Cafiero, C.; Bayas, J.C.L.; Cuaresma, J.C.; Kharas, H. Monitoring and projecting global hunger: Are we on track? Glob. Food Secur. 2021, 30, 100568. [Google Scholar] [CrossRef]
- FAOSTAT—Suite of Food Security Indicators. Available online: https://www.fao.org/faostat/en/#data/FS (accessed on 11 April 2025).
- Nguyen, A.D.; Dridi, J.; Unsal, F.D.; Williams, O.H. On the drivers of inflation in Sub-Saharan Africa. Int. Econ. 2017, 151, 71–84. [Google Scholar] [CrossRef]
- Senadza, B.; Diaba, D.D. Effect of exchange rate volatility on trade in Sub-Saharan Africa. J. Afr. Trade 2017, 4, 20–36. [Google Scholar] [CrossRef]
- Chaudhary, G.M.; Hashmi, S.H.; Khan, M.A. Exchange rate and foreign trade: A comparative study of major South Asian and South-East Asian countries. Procedia Soc. Behav. Sci. 2016, 230, 85–93. [Google Scholar] [CrossRef]
- UNICEF. The State of Food Security and Nutrition in the World 2023; UNICEF: New York, NJ, USA, 2023. [Google Scholar]
- Unsal, F.; Spray, J.; Okou, C. Staple Food Prices in Sub-Saharan Africa: An Empirical Assessment. In IMF Working Papers; International Monetary Fund: Washington, DC, USA, 2022; Volume 2022, p. 1. [Google Scholar] [CrossRef]
- Maxwell, D. Famine Early Warning and Information Systems in Conflict Settings: Challenges for Humanitarian Metrics and Response; Tufts University: Medford, MA, USA, 2019. [Google Scholar]
- Park, C.Y. ASEAN economic integration: Addressing challenges and embracing opportunities. Asian Econ. Policy Rev. 2024, 19, 172–193. [Google Scholar] [CrossRef]
- Asian Development Bank. Asian Economic Integration Report 2023; Asian Development Bank: Manila, Philippines, 2023. [Google Scholar]
- Garai, R.; Mersat, N.; Wong, S.-K. Implications of COVID-19 Pandemic on Household Food Security: Experience from Sarawak, Malaysia. Int. J. Bus. Soc. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Charles, V.; Gherman, T.; Paliza, J.C. The Gini Index: A modern measure of inequality. In Modern Indices for International Economic Diplomacy; Springer: Berlin/Heidelberg, Germany, 2022; pp. 55–84. [Google Scholar]
- Mukhopadhyay, N.; Sengupta, P.P. Gini Inequality Index: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Hasell, J. Measuring inequality: What is the Gini coefficient? In Our World in Data; Global Change Data Lab: Oxford, UK, 2023. [Google Scholar]
- Ha, J.; Kose, M.A.; Ohnsorge, F. One-stop source: A global database of inflation. J. Int. Money Financ. 2023, 137, 102896. [Google Scholar] [CrossRef]
- Warr, P. Food insecurity and its determinants. Aust. J. Agric. Resour. Econ. 2014, 58, 519–537. [Google Scholar] [CrossRef]
- Gygli, S.; Haelg, F.; Potrafke, N.; Sturm, J.-E. The KOF Globalisation Index—Revisited. Rev. Int. Organ. 2019, 14, 543–574. [Google Scholar] [CrossRef]
- Haelg, F. The KOF globalisation index–A multidimensional approach to globalisation. Jahrbücher Natl. Stat. 2020, 240, 691–696. [Google Scholar] [CrossRef]
- Gozgor, G. Robustness of the KOF index of economic globalisation. World Econ. 2018, 41, 414–430. [Google Scholar] [CrossRef]
- Sukanya, R. Global trade and food security. In Food Security in a Developing World: Status, Challenges, and Opportunities; Springer: Berlin/Heidelberg, Germany, 2024; pp. 229–258. [Google Scholar]
- Kakani, G. Impact of globalization on food security and safety: A review. Plant Arch. 2022, 22, 297–303. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L.; Yan, S.; Chen, X.; Growe, A. Trade for food security: The stability of global agricultural trade networks. Foods 2023, 12, 271. [Google Scholar] [CrossRef]
- d’Amour, C.B.; Anderson, W. International trade and the stability of food supplies in the Global South. Environ. Res. Lett. 2020, 15, 074005. [Google Scholar] [CrossRef]
- Madudova, E.; Corejova, T. The Issue of Measuring Household Consumption Expenditure. Economies 2024, 12, 9. [Google Scholar] [CrossRef]
- Sugiarto, S.; Wibowo, W. Determinants of regional household final consumption expenditure in Indonesia. JEJAK J. Ekon. Kebijak. 2020, 13, 332–344. [Google Scholar] [CrossRef]
- Allee, A.; Lynd, L.R.; Vaze, V. Cross-national analysis of food security drivers: Comparing results based on the Food Insecurity Experience Scale and Global Food Security Index. Food Secur. 2021, 13, 1245–1261. [Google Scholar] [CrossRef]
- Chakraborty, T.; Chakraborty, A.K.; Biswas, M.; Banerjee, S.; Bhattacharya, S. Unemployment Rate Forecasting: A Hybrid Approach. Comput. Econ. 2021, 57, 183–201. [Google Scholar] [CrossRef]
- Nord, M.; Coleman-Jensen, A.; Gregory, C. Prevalence of US Food Insecurity is Related to Changes in Unemployment, Inflation, and the Price of Food; United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Djankov, S.; Ramalho, R. Employment laws in developing countries. J. Comp. Econ. 2009, 37, 3–13. [Google Scholar] [CrossRef]
- Akinyele, O.D.; Oloba, O.M.; Mah, G. Drivers of unemployment intensity in sub-Saharan Africa: Do government intervention and natural resources matter? Rev. Econ. Political Sci. 2023, 8, 166–185. [Google Scholar] [CrossRef]
- Baah-Boateng, W. Unemployment in Africa: How appropriate is the global definition and measurement for policy purpose. Int. J. Manpow. 2015, 36, 650–667. [Google Scholar] [CrossRef]
- Özbek, F. Impact of anomalies on food prices in Türkiye. JAPS J. Anim. Plant Sci. 2023, 33, 453–461. [Google Scholar]
- Silalahi, B.M.; Hamzah, M.Z.; Rustam, R. Economic Growth: Case Study in Food Security. In Proceedings of the International Conference on Sustainable Collaboration in Business, Technology, Information, and Innovation (SCBTII 2024), Bandung, Indonesia, 4–25 July 2024; p. 214. [Google Scholar]
- Hellegers, P. Food security vulnerability due to trade dependencies on Russia and Ukraine. Food Secur. 2022, 14, 1503–1510. [Google Scholar] [CrossRef]
- Ritzel, C.; Möhring, A.; von Ow, A. Vulnerability assessment of food imports—Conceptual framework and empirical application to the case of Switzerland. Heliyon 2024, 10, e27058. [Google Scholar] [CrossRef]
- Fuglie, K.O.; Morgan, S.; Jelliffe, J. World Agricultural Production, Resource Use, and Productivity, 1961–2020; United States Department of Agriculture: Washington, DC, USA, 2024. [Google Scholar]
- Capalbo, S.M.; Vo, T.T. A review of the evidence on agricultural productivity and aggregate technology. In Agricultural Productivity; Taylor & Francis CRC Group: London, UK, 2015; pp. 96–137. [Google Scholar]
- World Bank—Agricultural Land (sq. km); World Bank: Washington, DC, USA, 2024.
- Asongu, S.A.; Uduji, J.I.; Okolo-Obasi, E.N. Political instability and political terror: Global evidence on persistence. J. Public Aff. 2020, 20, e2119. [Google Scholar] [CrossRef]
- World Bank. Worldwide Governance Indicators—Interactive Data Access; World Bank: Washington, DC, USA, 2024. [Google Scholar]
- Davies, S.; Pettersson, T.; Sollenberg, M.; Öberg, M. Organized violence 1989–2024, and the challenges of identifying civilian victims. J. Peace Res. 2025, 62, 1223–1240. [Google Scholar] [CrossRef]
- Sundberg, R.; Melander, E. Introducing the UCDP georeferenced event dataset. J. Peace Res. 2013, 50, 523–532. [Google Scholar] [CrossRef]
- Kousar, S.; Ahmed, F.; Pervaiz, A.; Bojnec, Š. Food Insecurity, Population Growth, Urbanization and Water Availability: The Role of Government Stability. Sustainability 2021, 13, 12336. [Google Scholar] [CrossRef]
- Arel-Bundock, V. WDI: World Development Indicators and Other World Bank Data. 2025. Available online: https://CRAN.R-project.org/package=WDI (accessed on 12 April 2025).
- FAOSTAT—SDG Indicators. Available online: https://www.fao.org/faostat/en/#data/SDGB (accessed on 11 April 2025).
- FAOSTAT—Land Use Indicators. Available online: https://www.fao.org/faostat/en/#data/RL (accessed on 11 April 2025).
- WID—World Inequality Database -GINI Index. Available online: https://wid.world/ (accessed on 10 April 2025).
- York, P. owidR: Import Data from Our World in Data. 2024. Available online: https://github.com/veggabo/owidR (accessed on 12 April 2025).
- Wilson, S. The MICE Algorithm. Vignette Included in R Package miceRanger, Version 1.5.0 2021. Available online: https://CRAN.R-Project.org/package=miceRanger (accessed on 19 May 2025).
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Jakobsen, J.C.; Gluud, C.; Wetterslev, J.; Winkel, P. When and how should multiple imputation be used for handling missing data in randomised clinical trials–a practical guide with flowcharts. BMC Med. Res. Methodol. 2017, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Peng, C.-Y.J. Principled missing data methods for researchers. SpringerPlus 2013, 2, 222. [Google Scholar] [CrossRef] [PubMed]
- Rahmashari, O.D.; Srisodaphol, W. Advanced outlier detection methods for enhancing beta regression robustness. Decis. Anal. J. 2025, 14, 100557. [Google Scholar] [CrossRef]
- Smithson, M.; Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 2006, 11, 54–71. [Google Scholar] [CrossRef]
- Ospina, R.; Ferrari, S.L.P. A general class of zero-or-one inflated beta regression models. Comput. Stat. Data Anal. 2012, 56, 1609–1623. [Google Scholar] [CrossRef]
- Douma, J.C.; Weedon, J.T. Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 2019, 10, 1412–1430. [Google Scholar] [CrossRef]
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science; Version 2.9.0; Zenodo: Geneva, Switzerland, 2024. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2025. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Otsuka, K. Food insecurity, income inequality, and the changing comparative advantage in world agriculture. Agric. Econ. 2013, 44, 7–18. [Google Scholar] [CrossRef]
- Hossain, M.B.; Long, M.A.; Stretesky, P.B. Welfare State Spending, Income Inequality and Food Insecurity in Affluent Nations: A Cross-National Examination of OECD Countries. Sustainability 2021, 13, 324. [Google Scholar] [CrossRef]
- Santos, F.; Zhang, Y.; Escalante, C.; Janoch, E. Growth is not enough: Solving the global food security crisis requires investments to close gaps. Dev. Pract. 2025, 35, 763–775. [Google Scholar] [CrossRef]
- Bogmans, M.C.; Pescatori, M.A.; Prifti, E. How Do Economic Growth and Food Inflation Affect Food Insecurity? International Monetary Fund: Washington, DC, USA, 2024. [Google Scholar]
Year | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|---|---|---|---|
Region | |||||||||
Northern Africa | 28.6 | 29.6 | 31.2 | 30.8 | 30 | 31 | 32.2 | 33.4 | |
Eastern Africa | 58.5 | 61.1 | 63 | 62.9 | 63.3 | 64.2 | 65.6 | 65.4 | |
Middle Africa | N/A | N/A | N/A | N/A | 69.5 | 71.7 | 74.1 | 76.7 | |
Southern Africa | 21.5 | 21.7 | 21.8 | 21.9 | 22.8 | 23.7 | 24 | 24.1 | |
Western Africa | 39.7 | 42.5 | 45 | 46.9 | 50 | 54.6 | 58.3 | 60.7 | |
Latin America and the Caraibbean | 25.1 | 27.5 | 28.7 | 28.9 | 30.5 | 32.6 | 33.4 | 31.3 | |
Central America | 28.9 | 28.1 | 27.6 | 28.4 | 30.5 | 31.7 | 31.3 | 29.3 | |
South America | 19.7 | 23.7 | 25.7 | 25.9 | 27.3 | 30 | 31.4 | 29.2 | |
Northern America | 9.9 | 9.3 | 8.5 | 8.1 | 8 | 7.8 | 8.5 | 9 | |
Central Asia | 9.2 | 11 | 12.5 | 13.7 | 15 | 17.2 | 18.4 | 18 | |
Eastern Asia | 6 | 7.4 | 8.6 | 9 | 8.2 | 7.1 | 6.7 | 6.2 | |
South-eastern Asia | 14.8 | 15.2 | 15.3 | 15.1 | 15.1 | 15.7 | 16.5 | 17 | |
Southern Asia | 27.6 | 27 | 28.4 | 30.7 | 36.4 | 39.8 | 42 | 41.3 | |
Western Asia | 30.7 | 31.6 | 31.7 | 32.3 | 34 | 37 | 38.9 | 38.9 | |
Eastern Europe | 11.2 | 11.2 | 10.3 | 9.2 | 9.2 | 9.7 | 10.4 | 10.6 | |
Northern Europe | 6.7 | 6.5 | 6 | 5.5 | 4.9 | 4.6 | 5.1 | 6.3 | |
Southern Europe | 7.4 | 7.6 | 7.4 | 7.5 | 7.3 | 7.3 | 7.1 | 6.5 | |
Western Europe | 5.2 | 4.9 | 4.7 | 4.5 | 4.2 | 4.4 | 4.9 | 5.6 | |
Oceania | 22.2 | 23 | 23.8 | 24.3 | 23.8 | 23.8 | 23.8 | 25 | |
World | 21.7 | 22.5 | 23.6 | 24.5 | 26.2 | 27.7 | 29 | 29 |
Variable Type | Variable Name | Expected Relation | Hypothesis No. |
---|---|---|---|
Economic | GINI coefficient (income inequality) | Positive | H1 |
Long-term average yearly inflation rate | Positive | H2 | |
KOF index of economic globalization (trade and financial openness to global markets) | Negative | H3 | |
Per capita household final consumption expenditure (HFCE) | Negative | H4 | |
Unemployment rate | Positive | H5 | |
Food and agriculture | Food price anomalies index | Positive | H6 |
Cereal import dependency ratio | Positive | H7 | |
Value of agricultural production per area | Negative | H7 | |
Total agricultural land area | Negative | H8 | |
Share of agricultural land in total area | Negative | H9 | |
Governance, political stability, and war | Political stability and absence of violence | Negative | H10 |
Death rate in armed conflicts | Positive | H11 | |
Population and demographics | Population | Positive | H12 |
Urbanization rate | Negative/Positive | H13 | |
Disasters | Economic damages from natural disasters as % of GDP | Positive | H14 |
Variable Name | Unit | Missing Values Percentage | Data Procedure |
---|---|---|---|
Proportion of population experiencing moderate or severe food insecurity | Percentage | 0% | None |
GINI coefficient (income inequality) | Unitless | 0% | None |
Long-term average yearly inflation rate | Percentage | 0.65% | MICE |
KOF index of economic globalization (trade and financial openness to global markets) | Unitless | 3.26% | MICE imputation |
Per capita HFCE | US Dollars PPP (2021) | 16.33% | MICE, winsorizing (99% quantile) |
Unemployment rate | Percentage | 3.92% | MICE |
Food price anomalies index | Unitless | 1.30% | MICE |
Cereal import dependency ratio | Percentage | 6.53% | MICE |
Value of agricultural production per area | Dollars/Hectare | 0% | Winsorizing (1–99% quantiles) |
Total agricultural land area | 1000 Hectares | 0% | Winsorizing (5–95% quantiles) |
Share of agricultural land in total area | Percentage | 0% | None |
Political stability and absence of violence | Unitless | 0% | None |
Involvement in armed conflicts | Dummy variable of involvement in armed conflicts | 0% | None |
Population | Millions | 0% | None |
Urbanization rate | Percentage of population | 4.57% | MICE |
Economic damages from natural disasters as % of GDP | Percentage of GDP | 0% | Winsorizing (1–99% quantiles) |
Logit | Probit | Cloglog | Cauchit | Loglog | |
---|---|---|---|---|---|
AIC | −246.12 | −237.40 | −254.08 | −270.58 | −221.57 |
BIC | −191.57 | −182.85 | −199.53 | −216.03 | −167.02 |
Pseudo R2 | 0.72 | 0.72 | 0.72 | 0.70 | 0.71 |
Variable Name | Mean | Standard Deviation | Median | Median Absolute Deviation | Minimum | Maximum | Range | Skew | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
MFSI | 0.33 | 0.25 | 0.28 | 0.28 | 0.02 | 0.89 | 0.87 | 0.63 | −0.81 |
GINI coefficient | 0.50 | 0.11 | 0.53 | 0.09 | 0.22 | 0.68 | 0.47 | −0.84 | −0.24 |
Long-term average yearly inflation rate | 6.50 | 9.20 | 3.60 | 2.27 | 1.05 | 52.30 | 51.25 | 3.61 | 14.12 |
KOF index of economic globalization (trade and financial openness to global markets) | 0.58 | 0.17 | 0.58 | 0.20 | 0.26 | 0.94 | 0.67 | 0.04 | −0.99 |
Per capita HFCE | 11,619.01 | 9293.02 | 8812.74 | 9116.14 | 580.03 | 34,903.91 | 34,323.88 | 0.76 | −0.58 |
Unemployment rate | 0.08 | 0.06 | 0.06 | 0.04 | 0.00 | 0.37 | 0.37 | 1.85 | 4.37 |
Food price anomalies index | 0.53 | 0.56 | 0.51 | 0.58 | −0.64 | 2.09 | 2.73 | 0.37 | −0.43 |
Cereal import dependency ratio | 0.27 | 0.84 | 0.43 | 0.59 | −4.76 | 1.00 | 5.76 | −2.76 | 10.86 |
Value of agricultural production per area | 1749.70 | 2005.99 | 1100.03 | 1102.56 | 16.91 | 10,230.30 | 10,213.39 | 2.39 | 6.17 |
Total agricultural land area | 16,836.58 | 27,537.35 | 3941.03 | 5780.70 | 8.75 | 112,209.94 | 112,201.19 | 2.29 | 4.79 |
Share of agricultural land in total area | 0.39 | 0.21 | 0.41 | 0.23 | 0.00 | 0.84 | 0.84 | 0.10 | −0.80 |
Political stability and absence of violence | 50.00 | 20.00 | 51.04 | 21.23 | −0.10 | 81.54 | 81.64 | −0.69 | −0.28 |
Urbanization rate | 0.60 | 0.22 | 0.64 | 0.26 | 0.11 | 1.00 | 0.89 | −0.24 | −0.94 |
Population | 30.10 | 53.83 | 9.69 | 13.11 | 0.05 | 341.72 | 341.68 | 3.20 | 11.66 |
Economic damages from natural disasters as % of GDP | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.05 | 0.05 | 5.81 | 33.49 |
Involvement in armed conflicts | 0.25 | 0.43 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.15 | −0.67 |
Variable Name | Estimate | Std. Error | z Value | Pr (>|z|) |
---|---|---|---|---|
Coefficients (mean model with cauchit link) | ||||
(Intercept) | −1.41586 | 0.63 | −2.26 | 0.02 * |
GINI coefficient | 0.04716 | 0.01 | 4.80 | 0.00 *** |
Long-term average yearly inflation rate | 0.01761 | 0.01 | 2.97 | 0.00 ** |
KOF index of economic globalization (trade and financial openness to global markets) | −0.02112 | 0.01 | −3.18 | 0.00 ** |
Per capita HFCE | −0.00009 | 0.00 | −5.00 | 0.00 *** |
Unemployment rate | −0.00804 | 0.01 | −0.83 | 0.41 |
Food price anomalies index | −0.00250 | 0.10 | −0.02 | 0.98 |
Cereal import dependency ratio | 0.00066 | 0.00 | 0.79 | 0.43 |
Value of agricultural production per area | −0.00009 | 0.00 | −1.69 | 0.09 |
Total agricultural land area | −0.00001 | 0.00 | −2.25 | 0.02 * |
Share of agricultural land in total area | 0.00180 | 0.00 | 0.64 | 0.52 |
Political stability and absence of violence | 0.00071 | 0.00 | 0.16 | 0.87 |
Urbanization rate | 0.00298 | 0.00 | 0.78 | 0.44 |
Population | −0.00127 | 0.00 | −0.80 | 0.42 |
Economic damages from natural disasters as % of GDP | 0.07014 | 0.08 | 0.91 | 0.36 |
Involvement in armed conflicts | 0.04448 | 0.16 | 0.29 | 0.77 |
Phi coefficients (precision model with log link) | ||||
(Intercept) | 1.99563 | 0.17 | 11.42 | 0.00 *** |
Per capita HFCE | 7.23 × 10−5 | 1.2 × 10−5 | 6.026 | 0.00 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, A.R.; Adamov, T.C.; Merce, I.; Brad, I.; Gordan, M.-I.; Iancu, T. A Beta Regression Approach to Modelling Country-Level Food Insecurity. Foods 2025, 14, 2997. https://doi.org/10.3390/foods14172997
Martin AR, Adamov TC, Merce I, Brad I, Gordan M-I, Iancu T. A Beta Regression Approach to Modelling Country-Level Food Insecurity. Foods. 2025; 14(17):2997. https://doi.org/10.3390/foods14172997
Chicago/Turabian StyleMartin, Anamaria Roxana, Tabita Cornelia Adamov, Iuliana Merce, Ioan Brad, Marius-Ionuț Gordan, and Tiberiu Iancu. 2025. "A Beta Regression Approach to Modelling Country-Level Food Insecurity" Foods 14, no. 17: 2997. https://doi.org/10.3390/foods14172997
APA StyleMartin, A. R., Adamov, T. C., Merce, I., Brad, I., Gordan, M.-I., & Iancu, T. (2025). A Beta Regression Approach to Modelling Country-Level Food Insecurity. Foods, 14(17), 2997. https://doi.org/10.3390/foods14172997