An Extensive Analysis of Artemisia integrifolia Linn. on T2DM: Investigating Glycolipid Metabolism, Metabolic Profiling, and Molecular Docking for Potential Functional Food Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of LH
2.3. Animal Experiment
2.4. Intervention of Drugs, Collection of Blood and Liver Tissues
2.5. Body Weight and FBG
2.6. Histopathological Analysis
2.7. Biochemical Assays
2.8. Insulin and Insulin Resistance Index
2.9. Untargeted Metabolomics Analysis
2.10. Quantitative Real-Time PCR (RT-qPCR)
2.11. Immunofluorescence Staining
2.12. Molecular Docking
2.13. Statistical Analysis
3. Results
3.1. Determination of the Chemical Components of LH
3.2. Effects of LH on FBG, Body Weight, Insulin, and HOMA-IR in T2DM Rats
3.3. Effects of LH on Hepatic Morphology, Steatosis, and Function in T2DM Rats
3.4. Effects of LH on Dyslipidemia in T2DM Rats
3.5. Effects of LH on Liver Metabolism in T2DM Rats
3.6. Effects of LH on the S1P and PI3K/AKT Signaling Pathway in T2DM Rats
3.7. Spearman Correlation Matrix of Hepatic Metabolites and Biochemical Parameters
3.8. Molecular Modeling and Docking of Active Components of LH with PI3Ka
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
AKT | protein kinase B |
ALP | alkaline phosphatase |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
CHO | cholesterol |
ESI | electrospray ionization source |
FBG | fasting blood glucose |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
GLU | glucose |
GLUT4 | glucose transporter protein 4 |
HDL-C | high density lipoprotein cholesterol |
H&E | haematoxylin and eosin |
LDL-C | low density lipoprotein cholesterol |
LH | Artemisia integrifolia Linn. |
Met | metformin |
OPLS-DA | orthogonal partial least-squares-discriminant analysis |
ORO | Oil red O |
PCA | principal component analysis |
PI3K | phosphatidylinositol 3-kinase |
QC | quality control |
RT-qPCR | quantitative real-time PCR |
S1P | sphingosine 1-phosphate |
SOD | superoxide dismutase |
SPF | specific pathogen-free |
STZ | streptozotocin |
T2DM | Type II diabetes mellitus |
TCM | Traditional Chinese Medicine |
TG | triglycerides |
VIP | variable importance in projection |
References
- Martín-Carro, B.; Donate-Correa, J.; Fernández-Villabrille, S.; Martín-Vírgala, J.; Panizo, S.; Carrillo-López, N.; Martínez-Arias, L.; Navarro-González, J.F.; Naves-Díaz, M.; Fernández-Martín, J.L.; et al. Experimental Models to Study Diabetes Mellitus and Its Complications: Limitations and New Opportunities. Int. J. Mol. Sci. 2023, 24, 10309. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Xu, G.; Jiang, S.; Li, H.; Yuan, G. In Vitro Antioxidant activities and anti-diabetic effect of a polysaccharide from Schisandra sphenanthera in rats with type 2 diabetes. Int. J. Biol. Macromol. 2017, 94, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Guo, Y.; Li, J.; He, S.; Chen, Y.; Jin, H. Antidiabetic Effect of Collagen Peptides from Harpadon nehereus Bones in Streptozotocin-Induced Diabetes Mice by Regulating Oxidative Stress and Glucose Metabolism. Mar. Drugs 2023, 21, 518. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Wang, T.; Zhang, L.; Wang, H.; Lu, H.; Yang, R.; Ding, Y. Grape Seed Proanthocyanidins Protect Pancreatic β Cells Against Ferroptosis via the Nrf2 Pathway in Type 2 Diabetes. Biol. Trace Elem. Res. 2024, 5531–5544. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, C.; Duan, Z.; Ma, P.; Ma, X.; Fan, D. Network Pharmacological Analysis Combined with Experimental Verification to Explore the Effect of Ginseng Polypeptide on the Improvement of Diabetes Symptoms in db/db Mice. J. Agric. Food Chem. 2024, 72, 18537–18551. [Google Scholar] [CrossRef]
- Wang, W.; Chen, S.; Xu, S.; Liao, G.; Li, W.; Yang, X.; Li, T.; Zhang, H.; Huang, H.; Zhou, Y.; et al. Jianpi Shengqing Huazhuo Formula improves abnormal glucose and lipid metabolism in obesity by regulating mitochondrial biogenesis. J. Ethnopharmacol. 2024, 319, 117102. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, N.; Su, F.; Wang, Y.; Yang, B.; Sun, Y.; Guan, W.; Kuang, H.; Wang, Q. Comprehensive Metabolomics and Network Pharmacology to Explore the Mechanism of 5-Hydroxymethyl Furfural in the Treatment of Blood Deficiency Syndrome. Front. Pharmacol. 2022, 12, 811331. [Google Scholar] [CrossRef]
- Huang, K.; Ding, R.; Lai, C.; Wang, H.; Fan, X.; Chu, Y.; Fang, Y.; Hua, T.; Yuan, H. Vitexin attenuates neuropathic pain by regulating astrocyte autophagy flux and polarization via the S1P/ S1PR1-PI3K/ Akt axis. Eur. J. Pharmacol. 2024, 981, 176848. [Google Scholar] [CrossRef]
- Wu, S.; Ai, W.; Nie, L.; Lu, X. Antidiabetic activity of eupafolin through peroxisome proliferator-activated receptor-gamma and PI3K/Akt signaling in Type 2 diabetic rats. J. Biochem. Mol. Toxicol. 2023, 37, 23463. [Google Scholar] [CrossRef]
- Yang, B.; Yang, R.; Zhang, X.; Wang, W.; Kan, J. Hovenia dulcis (Guaizao) polysaccharide ameliorates hyperglycemia through multiple signaling pathways in rats with type 2 diabetes mellitus. Int. J. Biol. Macromol. 2025, 285, 138338. [Google Scholar] [CrossRef]
- Hu, X.-y.; Chang, Y.; Xu, Z.-Z.; Wang, Y.; Dai, M.-M.; Yu, K.-K.; Sun, C.-B.; Dong, M.-X.; Zhang, J.-X.; Xu, N.; et al. Rubusoside Reduces Blood Glucose and Inhibits Oxidative Stress by Activating the AMPK Signaling Pathway in Type 2 Diabetes Mellitus Mice. Nat. Prod. Commun. 2022, 17, 1934578X2110692. [Google Scholar] [CrossRef]
- Neagu, E.; Paun, G.; Albu, C.; Eremia, S.A.-M.V.; Radu, G.L. Artemisia abrotanum and Symphytum officinale Polyphenolic Compounds-Rich Extracts with Potential Application in Diabetes Management. Metabolites 2023, 13, 354. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-H.; Xu, Y.-H.; Bao, W.-Q.; Pa, B.-L.-G.-T.; Hao, J.-S. Structure elucidation and antimicrobial activities of five compounds from Artemisia integrifolia L. Z. Für Naturforschung C 2019, 74, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Q.; Bao, W.; Pa, B. Antihyperlipidemic Effect, Identification and Isolation of the Lipophilic Components from Artemisia integrifolia. Molecules 2019, 24, 725. [Google Scholar] [CrossRef]
- Li, S.; Wang, Q.; Bao, W.; Pa, B.; Xu, Y. Two new compounds from supercritical fluid extract of Artemisia integrifolia L. Nat. Prod. Res. 2019, 35, 2365–2369. [Google Scholar] [CrossRef]
- Sharafati-Chaleshtori, R.; Nickdasti, A.; Mortezapour, E.; Pourhanifeh, M.H.; Ghazanfari, M.; Movahedpour, A.; Khatami, A.; Ashrafizadeh, M.; Zarrabi, A.; Mahabady, M.K.; et al. Artemisia Species as a New Candidate for Diabetes Therapy: A Comprehensive Review. Curr. Mol. Med. 2021, 21, 832–849. [Google Scholar] [CrossRef]
- Su, F.; Bai, C.; Zhang, W.; Zhang, Y.; Liu, M.; Sun, Y.; Yang, B.; Kuang, H.; Wang, Q. Polysaccharides from bile Arisaema exert an antipyretic effect on yeast-induced fever rats through regulating gut microbiota and metabolic profiling. Int. J. Biol. Macromol. 2024, 278, 134823. [Google Scholar] [CrossRef]
- Liu, M.; Guo, P.; Zeng, M.; Zhang, Y.; Jia, J.; Liu, Y.; Chen, X.; Kuang, H.; Feng, W.; Zheng, X. Effects and mechanisms of frehmaglutin D and rehmaionoside C improve LPS-induced acute kidney injury through the estrogen receptor-mediated TLR4 pathway in vivo and in vitro. Phytomedicine 2024, 123, 155218. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, J.; Xu, Y.; Bao, Y. Structure Elucidation of A New Iridoid from Artemisia integrifolia. Rec. Nat. Prod. 2018, 12, 544–548. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, X.; Du, M.; Zhao, T.; Wang, J. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomed. Pharmacother. 2018, 106, 1227–1235. [Google Scholar] [CrossRef]
- Alshareef, N.S.; AlSedairy, S.A.; Al-Harbi, L.N.; Alshammari, G.M.; Yahya, M.A. Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects. Antioxidants 2024, 13, 1098. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, Q.; Li, J.; Sun, L.; Zhuang, Y. Hypoglycemic Effect of Rambutan (Nephelium lappaceum L.) Peel Polyphenols on Type 2 Diabetes Mice by Modulating Gut Microbiota and Metabolites. Mol. Nutr. Food Res. 2024, 68, e2400555. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhong, S.; Liao, J.; Tao, J.; Yao, Y.; Song, P.; Yang, X. Caragana jubata ethanol extract ameliorates the symptoms of STZ-HFD-induced T2DM mice by PKC/GLUT4 pathway. J. Ethnopharmacol. 2025, 339, 119171. [Google Scholar] [CrossRef] [PubMed]
- Czuba, L.C.; Wu, X.; Huang, W.; Hollingshead, N.; Roberto, J.B.; Kenerson, H.L.; Yeung, R.S.; Crispe, I.N.; Isoherranen, N. Altered vitamin A metabolism in human liver slices corresponds to fibrogenesis. Clin. Transl. Sci. 2021, 14, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Naiki, Y.; Miyado, M.; Horikawa, R.; Katsumata, N.; Onodera, M.; Pang, S.; Ogata, T.; Fukalmi, M. Extra-adrenal induction of Cyp21a1 ameliorates systemic steroid metabolism in a mouse model of congenital adrenal hyperplasia. Endocr. J. 2016, 63, 897–904. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, M.; Liao, Y.; Ji, Z.; Lin, W.; Pu, X.; Wang, L.; Wang, W. Investigating the Mechanisms of 15-PGDH Inhibitor SW033291 in Improving Type 2 Diabetes Mellitus: Insights from Metabolomics and Transcriptomics. Metabolites 2024, 14, 509. [Google Scholar] [CrossRef]
- He, Q.; Bo, J.; Shen, R.; Li, Y.; Zhang, Y.; Zhang, J.; Yang, J.; Liu, Y.; Chiefari, E. S1P Signaling Pathways in Pathogenesis of Type 2 Diabetes. J. Diabetes Res. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Yu, G.; Sun, M.; Zhang, T.; Xu, H.; Wang, J.; Ye, W.; Wang, P.; Zhang, S.; Zhang, C.; Sun, Y. Lanhuashen stimulates the positive cross-regulation mediated by the S1P axis to ameliorate the disorder of glucolipid metabolism induced by the high sucrose diet in Drosophila melanogaster. J. Ethnopharmacol. 2024, 319, 117248. [Google Scholar] [CrossRef]
- Tan, S.Y.; Wong, J.L.M.; Sim, Y.J.; Wong, S.S.; Elhassan, S.A.M.; Tan, S.H.; Lim, G.P.L.; Tay, N.W.R.; Annan, N.C.; Bhattamisra, S.K.; et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 364–372. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, J.; Wen, M.; Zhang, X.; Lyu, D.; Li, S.; Xiao, H.; Li, M.; Shen, C.; Huang, H. Gentiopicroside ameliorates glucose and lipid metabolism in T2DM via targeting FGFR1. Phytomedicine 2024, 132, 155780. [Google Scholar] [CrossRef]
- Park, J.E.; Son, J.; Seo, Y.; Han, J.S. HM-Chromanone Ameliorates Hyperglycemia and Dyslipidemia in Type 2 Diabetic Mice. Nutrients 2022, 14, 1951. [Google Scholar] [CrossRef]
- Yonamine, C.; Pinheiro-Machado, E.; Michalani, M.L.; Alves-Wagner, A.B.; Esteves, J.V.; Freitas, H.S.; Machado, U.F. Resveratrol Improves Glycemic Control in Type 2 Diabetic Obese Mice by Regulating Glucose Transporter Expression in Skeletal Muscle and Liver. Molecules 2017, 22, 1180. [Google Scholar] [CrossRef]
Names | Forward (5′-3′) | Reverse (5′-3′) |
---|---|---|
PI3KA | CTAAGGAGGAGCACTGTCCGTTG | GAGATTCAAAGCCATTTTCCCG |
AKT | ATCGTGTGGCAAGATGTGTATGAG | GCTGAGTAGGAGAACTGGGGAAA |
GAPDH | TTCAGCTCTGGGATGACCTT | TGCCACTCAGAAGACTGTGG |
Model | Rt (Time) | Adducts | Measured Mass | Formula Compound | Tentative Identification | HMDB ID | Trend |
---|---|---|---|---|---|---|---|
ESI (+) | 13.26 | M+H−H2O | 269.2268 | C20H30O | Vitamin A | HMDB0000305 | ↓ |
13.94 | M+H−H2O | 397.3834 | C29H50O | beta-Sitosterol | HMDB0000852 | ↓ | |
5.36 | M+H−H2O | 347.223 | C21H32O5 | Tetrahydrocortisone | HMDB0000903 | ↓ | |
13.94 | M+H−H2O | 397.3834 | C29H50O | 4,4-Dimethyl-5a-cholesta-8-en-3b-ol | HMDB0006840 | ↓ | |
13.94 | M+H−H2O | 369.3515 | C27H46O | 5a-Cholest-8-en-3b-ol | HMDB0006841 | ↓ | |
13.99 | M+H | 756.5545 | C42H78NO8P | PC (14:0/20:3 (5Z,8Z,11Z)) | HMDB0007881 | ↓ | |
6.52 | M+H | 468.3087 | C22H46NO7P | LysoPC (14:0/0:0) | HMDB0010379 | ↑ | |
6.84 | M+H, M+Na, M+H−H2O | 494.3237 | C24H48NO7P | LysoPC (16:1(9Z)/0:0) | HMDB0010383 | ↑ | |
13.33 | M+H−H2O | 133.1013 | C10H14O | (R)-Menthofuran | HMDB0036089 | ↓ | |
10.33 | 2M+H | 309.2803 | C10H18O | gamma-Terpineol | HMDB0036993 | ↓ | |
ESI (−) | 6.48 | M+FA−H | 424.2466 | C18H38NO5P | Sphingosine 1-phosphate | HMDB0000277 | ↑ |
11.16 | M−H | 317.2483 | C21H34O2 | Allopregnanolone | HMDB0001449 | ↓ | |
11.16 | M−H | 317.2483 | C21H34O2 | Alloepipregnanolone | HMDB0001455 | ↓ | |
10.64 | M−H | 752.523 | C42H76NO8P | PC (14:0/20:4 (5Z,8Z,11Z,14Z)) | HMDB0007883 | ↓ | |
10.73 | M−H | 317.213 | C20H30O3 | 12-KETE | HMDB0013633 | ↓ | |
12.36 | M−H | 121.0655 | C8H10O | 1-Phenylethanol | HMDB0032619 | ↑ | |
11.71 | M−H | 297.2431 | C18H34O3 | Ricinoleic acid | HMDB0034297 | ↓ | |
10.95 | M−H2O−H | 365.3423 | C24H48O3 | Cerebronic acid | HMDB0039540 | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Su, F.; He, Y.; Sun, M.; Bai, C.; Zhang, W.; Li, B.; Sun, Y.; Wang, Q.; Kuang, H. An Extensive Analysis of Artemisia integrifolia Linn. on T2DM: Investigating Glycolipid Metabolism, Metabolic Profiling, and Molecular Docking for Potential Functional Food Applications. Foods 2025, 14, 2945. https://doi.org/10.3390/foods14172945
Liu M, Su F, He Y, Sun M, Bai C, Zhang W, Li B, Sun Y, Wang Q, Kuang H. An Extensive Analysis of Artemisia integrifolia Linn. on T2DM: Investigating Glycolipid Metabolism, Metabolic Profiling, and Molecular Docking for Potential Functional Food Applications. Foods. 2025; 14(17):2945. https://doi.org/10.3390/foods14172945
Chicago/Turabian StyleLiu, Meng, Fazhi Su, Yujia He, Minghao Sun, Chenxi Bai, Wensen Zhang, Biao Li, Yanping Sun, Qiuhong Wang, and Haixue Kuang. 2025. "An Extensive Analysis of Artemisia integrifolia Linn. on T2DM: Investigating Glycolipid Metabolism, Metabolic Profiling, and Molecular Docking for Potential Functional Food Applications" Foods 14, no. 17: 2945. https://doi.org/10.3390/foods14172945
APA StyleLiu, M., Su, F., He, Y., Sun, M., Bai, C., Zhang, W., Li, B., Sun, Y., Wang, Q., & Kuang, H. (2025). An Extensive Analysis of Artemisia integrifolia Linn. on T2DM: Investigating Glycolipid Metabolism, Metabolic Profiling, and Molecular Docking for Potential Functional Food Applications. Foods, 14(17), 2945. https://doi.org/10.3390/foods14172945