Sustainability Views and Intentions to Reduce Beef Consumption: An International Web-Based Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ethical Considerations
2.3. Instrument Measures and Outcomes
2.3.1. General Demographics and Characteristics
2.3.2. Acceptance and Feasibility of the #NoBeefWeek Concept
2.3.3. Views About Beef Consumption, Human Health, and the Environment
2.3.4. Long-Term Beef Consumption Change Intentions
2.4. Statistical Analysis
3. Results
3.1. High Acceptance of the #NoBeefWeek Concept
3.2. Prevalent Intentions to Reduce Beef Consumption in the Long Term
Greatest Resistance to Long-Term Intake Cutbacks Amongst Frequent Beef Eaters
3.3. Predominance of Environmental Concern in Relation to Beef Consumption
Recognition of Environmental Impacts Associated with Greater Beef Cutback Intentions and Lower Change Resistance
4. Discussion
4.1. Acceptance of the #NoBeefWeek Concept
4.2. Long-Term Intentions to Reduce Beef Consumption
4.3. Environmental Concern and Beef Reduction Intentions
4.4. Implications for Public Health and Policy
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Selinske, M.J.; Fidler, F.; Gordon, A.; Garrard, G.E.; Kusmanoff, A.M.; Bekessy, S.A. We Have a Steak in It: Eliciting Interventions to Reduce Beef Consumption and Its Impact on Biodiversity. Conserv. Lett. 2020, 13, e12721. [Google Scholar] [CrossRef]
- Stoll-Kleemann, S.; Schmidt, U.J. Reducing Meat Consumption in Developed and Transition Countries to Counter Climate Change and Biodiversity Loss: A Review of Influence Factors. Reg. Environ. Chang. 2017, 17, 1261–1277. [Google Scholar] [CrossRef]
- Eshel, G.; Shepon, A.; Makov, T.; Milo, R. Land, Irrigation Water, Greenhouse Gas, and Reactive Nitrogen Burdens of Meat, Eggs, and Dairy Production in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 11996–12001. [Google Scholar] [CrossRef]
- Rotz, C.A.; Asem-Hiablie, S.; Place, S.; Thoma, G. Environmental Footprints of Beef Cattle Production in the United States. Agric. Syst. 2019, 169, 1–13. [Google Scholar] [CrossRef]
- Gerber, P.J.; Mottet, A.; Opio, C.I.; Falcucci, A.; Teillard, F. Environmental Impacts of Beef Production: Review of Challenges and Perspectives for Durability. Meat Sci. 2015, 109, 2–12. [Google Scholar] [CrossRef]
- Faergeman, O.; Østergaard, L. [Climate Change, Food Production and Human Health]. Ugeskr Laeger Dan. 2009, 171, 3181–3184. [Google Scholar]
- Wang, Y.; Li, X.; Yang, J.; Tian, Z.; Sun, Q.; Xue, W.; Dong, H. Mitigating Greenhouse Gas and Ammonia Emissions from Beef Cattle Feedlot Production: A System Meta-Analysis. Environ. Sci. Technol. 2018, 52, 11232–11242. [Google Scholar] [CrossRef]
- Gerber, P.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, W.; Zhang, K.; Fan, M.; Lin, R. The Global Burden of Disease Attributable to Diet High in Red Meat in 204 Countries and Territories, 1999–2019: An Updated Analysis of the Global Burden of Disease Study. Mol. Nutr. Food Res. 2023, 67, e2300144. [Google Scholar] [CrossRef]
- Liu, D.; Shi, Q.; Cheng, G.; Huang, Q.; Li, S. Worldwide Burden Attributable to Diet High in Red Meat from 1990 to 2019. Arch. Med. Sci. 2023, 19, 1–15. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 Report of The Lancet Countdown on Health and Climate Change: Responding to Converging Crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; Stewart, B.W.; et al. Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Stylianou, N.; Guibourg, C.; Briggs, H. Climate Change Food Calculator: What’s Your Diet’s Carbon Footprint? BBC News, 2023. [Google Scholar]
- Watts, J. ‘Everything Is Parched’: Amazon Struggles with Drought Amid Deforestation. The Guardian, 2023. Available online: https://www.worldenergydata.org/everything-is-parched-amazon-struggles-with-drought-amid-deforestation/ (accessed on 24 July 2025).
- Wasley, A.; Mendonça, E.; Youssef, Y.; Soutar, R. More Than 800m Amazon Trees Felled in Six Years to Meet Beef Demand. The Guardian, 2023. Available online: https://www.theguardian.com/environment/2023/jun/02/more-than-800m-amazon-trees-felled-in-six-years-to-meet-beef-demand (accessed on 24 July 2025).
- Fassler, J. Inside Big Beef’s Climate Messaging Machine: Confuse, Defend and Downplay. The Guardian, 2023. Available online: https://www.theguardian.com/environment/2023/may/03/beef-industry-public-relations-messaging-machine (accessed on 24 July 2025).
- Watson, K. Brazil: Amazon Sees Worst Deforestation Levels In 15 Years. BBC News, 2021. Available online: https://www.bbc.co.uk/news/world-latin-america-59341770 (accessed on 24 July 2025).
- Lowrey, A. Your Diet Is Cooking the Planet. The Atlantic, 2021. Available online: https://www.theatlantic.com/health/archive/2021/04/rules-eating-fight-climate-change/618515/ (accessed on 24 July 2025).
- Briggs, H. Amazon Soya and Beef Exports “Linked to Deforestation.” BBC News, 2020. Available online: https://www.bbc.co.uk/news/science-environment-53438680 (accessed on 24 July 2025).
- Ingraham, C. How Beef Demand Is Accelerating the Amazon’s Deforestation and Climate Peril. The Washington Post, 2019. Available online: https://www.washingtonpost.com/business/2019/08/27/how-beef-demand-is-accelerating-amazons-deforestation-climate-peril/ (accessed on 24 July 2025).
- Carroll, A.E. The Real Problem with Beef. The New York Times, 2019. Available online: https://www.nytimes.com/2019/10/01/upshot/beef-health-climate-impact.html (accessed on 24 July 2025).
- van Daalen, K.R.; Tonne, C.; Semenza, J.C.; Rocklöv, J.; Markandya, A.; Dasandi, N.; Jankin, S.; Achebak, H.; Ballester, J.; Bechara, H.; et al. The 2024 Europe Report of the Lancet Countdown on Health and Climate Change: Unprecedented Warming Demands Unprecedented Action. Lancet Public Health 2024, 9, e495. [Google Scholar] [CrossRef]
- Wistar, A.; Hall, M.G.; Bercholz, M.; Taillie, L.S. Designing Environmental Messages to Discourage Red Meat Consumption: An Online Experiment. Int. J. Environ. Res. Public Health 2022, 19, 2919. [Google Scholar] [CrossRef]
- Stewart, C.; Piernas, C.; Cook, B.; Jebb, S.A. Trends in UK Meat Consumption: Analysis of Data from Years 1–11 (2008–09 to 2018–19) of the National Diet and Nutrition Survey Rolling Programme. Lancet Planet. Health 2021, 5, e699–e708. [Google Scholar] [CrossRef]
- Rust, N.A.; Ridding, L.; Ward, C.; Clark, B.; Kehoe, L.; Dora, M.; Whittingham, M.J.; McGowan, P.; Chaudhary, A.; Reynolds, C.J.; et al. How to Transition to Reduced-Meat Diets That Benefit People and the Planet. Sci. Total. Environ. 2020, 718, 137208. [Google Scholar] [CrossRef]
- Sanchez-Sabate, R.; Sabaté, J. Consumer Attitudes Towards Environmental Concerns of Meat Consumption: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1220. [Google Scholar] [CrossRef]
- Li, X.Z.; Yan, C.G.; Zan, L. Sen Current Situation and Future Prospects for Beef Production in China—A Review. Asian-Australas. J. Anim. Sci. 2018, 31, 984. [Google Scholar] [CrossRef]
- Smith, S.B.; Gotoh, T.; Greenwood, P.L. Current Situation and Future Prospects for Global Beef Production: Overview of Special Issue. Asian-Australas. J. Anim. Sci. 2018, 31, 927. [Google Scholar] [CrossRef]
- Béné, C. Why the Great Food Transformation May Not Happen—A Deep-Dive into Our Food Systems’ Political Economy, Controversies and Politics of Evidence. World Dev. 2022, 154, 105881. [Google Scholar] [CrossRef]
- OECD-FAO Agricultural Outlook 2025-2034; OECD-FAO Agricultural Outlook; OECD Publishing: Paris, France, 2025.
- Lau, C.S.; Fulgoni, V.L.; Van Elswyk, M.E.; McNeill, S.H. Trends in Beef Intake in the United States: Analysis of the National Health and Nutrition Examination Survey, 2001–2018. Nutrients 2023, 15, 2475. [Google Scholar] [CrossRef]
- Pechey, R.; Reynolds, J.P.; Cook, B.; Marteau, T.M.; Jebb, S.A. Acceptability of Policies to Reduce Consumption of Red and Processed Meat: A Population-Based Survey Experiment. J. Environ. Psychol. 2022, 81, 101817. [Google Scholar] [CrossRef]
- Taillie, L.S.; Prestemon, C.E.; Hall, M.G.; Grummon, A.H.; Vesely, A.; Jaacks, L.M. Developing Health and Environmental Warning Messages about Red Meat: An Online Experiment. PLoS ONE 2022, 17, e0268121. [Google Scholar] [CrossRef]
- Sasse, T.; Rutter, J.; Norris, E.; Shepheard, M. Net Zero: How Government Can Meet Its Climate Change Target; Institute for Government: London, UK, 2020.
- Hobbs-Grimmer, D.A.; Givens, D.I.; Lovegrove, J.A. Associations between Red Meat, Processed Red Meat and Total Red and Processed Red Meat Consumption, Nutritional Adequacy and Markers of Health and Cardio-Metabolic Diseases in British Adults: A Cross-Sectional Analysis Using Data from UK National Diet and Nutrition Survey. Eur. J. Nutr. 2021, 60, 2979–2997. [Google Scholar] [CrossRef]
- Mauvais, L. This Year, COP28 Is Finally Making Its Menu Match Calls to Climate Action. Sentient Media, 2023. Available online: https://sentientmedia.org/cop28-menu-climate-action/ (accessed on 24 July 2025).
- Wilson, S. The COP26 Menu Is ‘like Serving Cigarettes at a Lung Cancer Conference’. Big Issue 2021. Available online: https://www.bigissue.com/news/environment/cop26-haggis-the-most-unsustainable-dish-at-glasgow-climate-conference/ (accessed on 24 July 2025).
- Meat on the Menu, Not the Agenda, at COP27 Climate Conference|Reuters. Available online: https://www.reuters.com/business/cop/meat-menu-not-agenda-cop27-climate-conference-2022-11-15/ (accessed on 8 December 2024).
- Willits-Smith, A.; Odinga, H.; O’Malley, K.; Rose, D. Demographic and Socioeconomic Correlates of Disproportionate Beef Consumption among US Adults in an Age of Global Warming. Nutrients 2023, 15, 3795. [Google Scholar] [CrossRef]
- Ronto, R.; Alves Lopes, C.V.; Bogueva, D.; Davis, B.; Bhatti, A.J.; Navarrete, P.; Chau, J.Y. Exploring Australian News Media Portrayals of Sustainable and Plant-Based Diets. Nutrients 2024, 16, 996. [Google Scholar] [CrossRef]
- Ellithorpe, M.E.; Zeldes, G.; Hall, E.D.; Chavez, M.; Takahashi, B.; Bleakley, A.; Plasencia, J. I’m Lovin’ It: How Fast Food Advertising Influences Meat-Eating Preferences. J. Health Commun. 2022, 27, 141–151. [Google Scholar] [CrossRef]
- Sievert, K.; Lawrence, M.; Parker, C.; Russell, C.A.; Baker, P. Who Has a Beef with Reducing Red and Processed Meat Consumption? A Media Framing Analysis. Public Health Nutr. 2022, 25, 578. [Google Scholar] [CrossRef]
- Kwasny, T.; Dobernig, K.; Riefler, P. Towards Reduced Meat Consumption: A Systematic Literature Review of Intervention Effectiveness, 2001–2019. Appetite 2022, 168, 105739. [Google Scholar] [CrossRef]
- Katz, D.L.; Doughty, K.N.; Geagan, K.; Jenkins, D.A.; Gardner, C.D. Perspective: The Public Health Case for Modernizing the Definition of Protein Quality. Adv. Nutr. 2019, 10, 755. [Google Scholar] [CrossRef]
- Prescott, S.L.; Hancock, T.; Bland, J.; van den Bosch, M.; Jansson, J.K.; Johnson, C.C.; Kondo, M.; Katz, D.; Kort, R.; Kozyrskyj, A.; et al. Eighth Annual Conference of InVIVO Planetary Health: From Challenges to Opportunities. Int. J. Environ. Res. Public Health 2019, 16, 4302. [Google Scholar] [CrossRef]
- Marinova, D.; Bogueva, D. Planetary Health and Reduction in Meat Consumption. Sustain. Earth 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Bogueva, D.; Phau, I.; Bogueva, D.; Phau, I. Meat Myths and Marketing. In Impact of Meat Consumption on Health and Environmental Sustainability; Raphaely, T., Marinova, D., Eds.; IGI Global: Hershey, PA, USA, 2016; pp. 264–276. ISBN 9781466695542. [Google Scholar]
- Krattenmacher, J.; Espinosa, R.; Sanders, E.; Twine, R.; Ripple, W.J. The Dublin Declaration: Gain for the Meat Industry, Loss for Science. Environ. Sci. Policy 2024, 162, 103922. [Google Scholar] [CrossRef]
- Clare, K.; Maani, N.; Milner, J. Meat, Money and Messaging: How the Environmental and Health Harms of Red and Processed Meat Consumption Are Framed by the Meat Industry. Food Policy 2022, 109, 102234. [Google Scholar] [CrossRef]
- Garcia, D.; Galaz, V.; Daume, S. EATLancet vs Yes2meat: The Digital Backlash to the Planetary Health Diet. Lancet 2019, 394, 2153–2154. [Google Scholar] [CrossRef]
- Feigin, S.V.; Wiebers, D.O.; Blumstein, D.T.; Knight, A.; Eshel, G.; Lueddeke, G.; Kopnina, H.; Feigin, V.L.; Morand, S.; Lee, K.; et al. Solving Climate Change Requires Changing Our Food Systems. Oxf. Open Clim. Chang. 2025, 5, kgae024. [Google Scholar] [CrossRef]
- The Health Sciences Academy. Available online: https://thehealthsciencesacademy.org/ (accessed on 14 December 2022).
- True Health Initiative: Uniting for People and Planetary Health. Available online: https://www.truehealthinitiative.org/ (accessed on 10 October 2024).
- Grosso, G. The Global Burden of Food Insecurity Due to COVID-19. Nutrients 2022, 14, 3582. [Google Scholar] [CrossRef]
- Ruani, M.A.; Reiss, M.J. Susceptibility to COVID-19 Nutrition Misinformation and Eating Behavior Change during Lockdowns: An International Web-Based Survey. Nutrients 2023, 15, 451. [Google Scholar] [CrossRef]
- Ruani, M.A.; Reiss, M.J.; Kalea, A.Z. Diet-Nutrition Information Seeking, Source Trustworthiness, and Eating Behavior Changes: An International Web-Based Survey. Nutrients 2023, 15, 4515. [Google Scholar] [CrossRef]
- Grummon, A.H.; Musicus, A.A.; Salvia, M.G.; Thorndike, A.N.; Rimm, E.B. Impact of Health, Environmental, and Animal Welfare Messages Discouraging Red Meat Consumption: An Online Randomized Experiment. J. Acad. Nutr. Diet. 2023, 123, 466. [Google Scholar] [CrossRef]
- Wolstenholme, E.; Poortinga, W.; Whitmarsh, L. Two Birds, One Stone: The Effectiveness of Health and Environmental Messages to Reduce Meat Consumption and Encourage Pro-Environmental Behavioral Spillover. Front. Psychol. 2020, 11, 577111. [Google Scholar] [CrossRef]
- Pabian, S.; Hudders, L.; Poels, K.; Stoffelen, F.; De Backer, C.J.S. Ninety Minutes to Reduce One’s Intention to Eat Meat: A Preliminary Experimental Investigation on the Effect of Watching the Cowspiracy Documentary on Intention to Reduce Meat Consumption. Front. Commun. 2020, 5, 508327. [Google Scholar] [CrossRef]
- Harguess, J.M.; Crespo, N.C.; Hong, M.Y. Strategies to Reduce Meat Consumption: A Systematic Literature Review of Experimental Studies. Appetite 2020, 144, 104478. [Google Scholar] [CrossRef]
- Bianchi, F.; Dorsel, C.; Garnett, E.; Aveyard, P.; Jebb, S.A. Interventions Targeting Conscious Determinants of Human Behaviour to Reduce the Demand for Meat: A Systematic Review with Qualitative Comparative Analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 102. [Google Scholar] [CrossRef]
- Saari, U.A.; Damberg, S.; Frömbling, L.; Ringle, C.M. Sustainable Consumption Behavior of Europeans: The Influence of Environmental Knowledge and Risk Perception on Environmental Concern and Behavioral Intention. Ecol. Econ. 2021, 189, 107155. [Google Scholar] [CrossRef]
- Mroz, G.; Painter, J. What Do Consumers Read About Meat? An Analysis of Media Representations of the Meat-Environment Relationship Found in Popular Online News Sites in the UK. Environ. Commun. 2023, 17, 947–964. [Google Scholar] [CrossRef]
- Semba, R.D.; Neu, P.; Berg, P.; Harding, J.; McKenzie, S.; Ramsing, R. The Origins and Growth of the Meatless Monday Movement. Front. Nutr. 2024, 11, 1283239. [Google Scholar] [CrossRef]
- Kim, A.; Öström, Å.; Mihnea, M.; Niimi, J. Consumers’ Attachment to Meat: Association between Sensory Properties and Preferences for Plant-Based Meat Alternatives. Food Qual. Prefer. 2024, 116, 105134. [Google Scholar] [CrossRef]
- Baugreet, S.; Kerry, J.P.; Brodkorb, A.; Gomez, C.; Auty, M.; Allen, P.; Hamill, R.M. Optimisation of Plant Protein and Transglutaminase Content in Novel Beef Restructured Steaks for Older Adults by Central Composite Design. Meat Sci. 2018, 142, 65–77. [Google Scholar] [CrossRef]
- da Cruz, G.L.; Louzada, M.L.d.C.; da Silva, J.T.; Garzillo, J.M.F.; Rauber, F.; Rivera, X.S.; Reynolds, C.; Levy, R.B. The Environmental Impact of Beef and Ultra-Processed Food Consumption in Brazil. Public Health Nutr. 2024, 27, e34. [Google Scholar] [CrossRef]
- Morais, H.B.; Chardulo, L.A.L.; Baldassini, W.A.; Lippi, I.C.d.C.; Orsi, G.B.; Ruviaro, C.F. Environmental Impacts of High-Quality Brazilian Beef Production: A Comparative Life Cycle Assessment of Premium and Super-Premium Beef. Animals 2023, 13, 3578. [Google Scholar] [CrossRef]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat Consumption: Which Are the Current Global Risks? A Review of Recent (2010–2020) Evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef]
- Broom, D.M. Land and Water Usage in Beef Production Systems. Animals 2019, 9, 286. [Google Scholar] [CrossRef]
- Behrens, P.; Kiefte-De Jong, J.C.; Bosker, T.; Rodrigues, J.F.D.; De Koning, A.; Tukker, A. Evaluating the Environmental Impacts of Dietary Recommendations. Proc. Natl. Acad. Sci. USA 2017, 114, 13412–13417. [Google Scholar] [CrossRef]
- Mansky de la Fuente, V.; Hötzel, M.J.; Teixeira, D.L.; Larraín, R.E.; Enriquez-Hidalgo, D. Citizen Attitudes towards Present and Future Beef Consumption before and after the COVID-19 Pandemic. Meat Sci. 2024, 212, 109467. [Google Scholar] [CrossRef]
- Magalhaes, D.R.; Çakmakçı, C.; Campo, M.d.M.; Çakmakçı, Y.; Makishi, F.; Silva, V.L.d.S.; Trindade, M.A. Changes in the Current Patterns of Beef Consumption and Consumer Behavior Trends—Cross-Cultural Study Brazil-Spain-Turkey. Foods 2023, 12, 475. [Google Scholar] [CrossRef]
- Macdiarmid, J.I.; Douglas, F.; Campbell, J. Eating like There’s No Tomorrow: Public Awareness of the Environmental Impact of Food and Reluctance to Eat Less Meat as Part of a Sustainable Diet. Appetite 2016, 96, 487–493. [Google Scholar] [CrossRef]
- Asvatourian, V.; Craig, T.; Horgan, G.W.; Kyle, J.; Macdiarmid, J.I. Relationship between Pro-Environmental Attitudes and Behaviour and Dietary Intake Patterns. Sustain. Prod. Consum. 2018, 16, 216–226. [Google Scholar] [CrossRef]
- Rubio, N.R.; Xiang, N.; Kaplan, D.L. Plant-Based and Cell-Based Approaches to Meat Production. Nat. Commun. 2020, 11, 6276. [Google Scholar] [CrossRef]
- Santo, R.E.; Kim, B.F.; Goldman, S.E.; Dutkiewicz, J.; Biehl, E.M.B.; Bloem, M.W.; Neff, R.A.; Nachman, K.E. Considering Plant-Based Meat Substitutes and Cell-Based Meats: A Public Health and Food Systems Perspective. Front. Sustain. Food Syst. 2020, 4, 569383. [Google Scholar] [CrossRef]
- Stephens, N.; Ellis, M. Cellular Agriculture in the UK: A Review. Wellcome Open Res. 2020, 5, 12. [Google Scholar] [CrossRef]
- Stephens, N.; Di Silvio, L.; Dunsford, I.; Ellis, M.; Glencross, A.; Sexton, A. Bringing Cultured Meat to Market: Technical, Socio-Political, and Regulatory Challenges in Cellular Agriculture. Trends Food Sci. Technol. 2018, 78, 155–166. [Google Scholar] [CrossRef]
- Ruxton, C.H.; Ruani, M.A.; Evans, C. EL Promoting and Disseminating Consistent and Effective Nutrition Messages: Challenges and Opportunities. Proc. Nutr. Soc. 2023, 82, 394–405. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Dagevos, H. A Meta-Review of Consumer Behaviour Studies on Meat Reduction and Alternative Protein Acceptance. Food Qual. Prefer. 2024, 114, 105067. [Google Scholar] [CrossRef]
- Knickmeyer, D. Social Factors Influencing Household Waste Separation: A Literature Review on Good Practices to Improve the Recycling Performance of Urban Areas. J. Clean. Prod. 2020, 245, 118605. [Google Scholar] [CrossRef]
- Katz, D.L. Knowing Well, Being Well: Well-Being Born of Understanding: Where’s the Beef? At the Juncture of Flora, Fauna, and Food. Am. J. Health Promot. 2022, 36, 894–900. [Google Scholar] [CrossRef]
- Atwoli, L.; Baqui, A.H.; Benfield, T.; Bosurgi, R.; Godlee, F.; Hancocks, S.; Horton, R.; Laybourn-Langton, L.; Monteiro, C.A.; Norman, I.; et al. Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health. BMJ 2021, 374, 658–660. [Google Scholar] [CrossRef]
- Grummon, A.H.; Goodman, D.; Jaacks, L.M.; Taillie, L.S.; Chauvenet, C.A.; Salvia, M.G.; Rimm, E.B. Awareness of and Reactions to Health and Environmental Harms of Red Meat among Parents in the United States. Public Health Nutr. 2022, 25, 893–903. [Google Scholar] [CrossRef]
- Leiserowitz, A.; Ballew, M.; Rosenthal, S.; Semaan, J. Climate Change and the American Diet; Yale University and Earth Day Network: New Haven, CT, USA, 2020. [Google Scholar]
- Çoker, E.N.; van der Linden, S. Fleshing out the Theory of Planned of Behavior: Meat Consumption as an Environmentally Significant Behavior. Curr. Psychol. 2022, 41, 681–690. [Google Scholar] [CrossRef]
- Veeramani, A.; Dias, G.M.; Kirkpatrick, S.I. Carbon Footprint of Dietary Patterns in Ontario, Canada: A Case Study Based on Actual Food Consumption. J. Clean. Prod. 2017, 162, 1398–1406. [Google Scholar] [CrossRef]
- Sabaté, J.; Sranacharoenpong, K.; Harwatt, H.; Wien, M.; Soret, S. The Environmental Cost of Protein Food Choices. Public Health Nutr. 2015, 18, 2067–2073. [Google Scholar] [CrossRef]
- Truelove, H.B.; Parks, C. Perceptions of Behaviors That Cause and Mitigate Global Warming and Intentions to Perform These Behaviors. J. Environ. Psychol. 2012, 32, 246–259. [Google Scholar] [CrossRef]
- Thomas, D.T.; Mata, G.; Toovey, A.F.; Hunt, P.W.; Wijffels, G.; Pirzl, R.; Strachan, M.; Ridoutt, B.G. Climate and Biodiversity Credentials for Australian Grass-Fed Beef: A Review of Standards, Certification and Assurance Schemes. Sustainability 2023, 15, 13935. [Google Scholar] [CrossRef]
- Phelps, L.N.; Kaplan, J.O. Land Use for Animal Production in Global Change Studies: Defining and Characterizing a Framework. Glob. Change Biol. 2017, 23, 4457–4471. [Google Scholar] [CrossRef]
- Skidmore, M.E.; Moffette, F.; Rausch, L.; Christie, M.; Munger, J.; Gibbs, H.K. Cattle Ranchers and Deforestation in the Brazilian Amazon: Production, Location, and Policies. Glob. Environ. Chang. 2021, 68, 102280. [Google Scholar] [CrossRef]
- de Castro Solar, R.R.; Barlow, J.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Thomson, J.R.; Louzada, J.; Maués, M.; Moura, N.G.; Oliveira, V.H.F.; et al. How Pervasive Is Biotic Homogenization in Human-Modified Tropical Forest Landscapes? Ecol. Lett. 2015, 18, 1108–1118. [Google Scholar] [CrossRef]
- Bollani, L.; Bonadonna, A.; Lucia, M.G.; Dansero, E.; Donoso, V.G.; Hirye, M.C.M.; Gerwenat, C.; Reicher, C. Amazon Deforestation and Global Meat Consumption Trends: An Assessment of Land Use Change and Market Data from Rondônia That Shows Why We Should Consider Changing Our Diets. Sustainability 2024, 16, 4526. [Google Scholar] [CrossRef]
- West, T.A.P.; Rausch, L.; Munger, J.; Gibbs, H.K. Protected Areas Still Used to Produce Brazil’s Cattle. Conserv. Lett. 2022, 15, e12916. [Google Scholar] [CrossRef]
- Escobar, H. Amazon fires clearly linked to deforestation, scientists say. Science 2019, 365, 853. [Google Scholar] [CrossRef]
- Flores, B.M.; Montoya, E.; Sakschewski, B.; Nascimento, N.; Staal, A.; Betts, R.A.; Levis, C.; Lapola, D.M.; Esquível-Muelbert, A.; Jakovac, C.; et al. Critical Transitions in the Amazon Forest System. Nature 2024, 626, 555–564. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Gregg, J.W.; Rockström, J.; Mann, M.E.; Oreskes, N.; Lenton, T.M.; Rahmstorf, S.; Newsome, T.M.; Xu, C.; et al. The 2024 State of the Climate Report: Perilous Times on Planet Earth. Bioscience 2024, 74, 812–824. [Google Scholar] [CrossRef]
- Munialo, C.D.; Vriesekoop, F. Plant-Based Foods as Meat and Fat Substitutes. Food Sci. Nutr. 2023, 11, 4898–4911. [Google Scholar] [CrossRef]
- Takacs, B.; Stegemann, J.A.; Kalea, A.Z.; Borrion, A. Comparison of Environmental Impacts of Individual Meals—Does It Really Make a Difference to Choose Plant-Based Meals Instead of Meat-Based Ones? J. Clean. Prod. 2022, 379, 134782. [Google Scholar] [CrossRef]
- Scarborough, P.; Allender, S.; Clarke, D.; Wickramasinghe, K.; Rayner, M. Modelling the Health Impact of Environmentally Sustainable Dietary Scenarios in the UK. Eur. J. Clin. Nutr. 2012, 66, 710–715. [Google Scholar] [CrossRef]
- Wolk, A. Potential Health Hazards of Eating Red Meat. J. Intern. Med. 2017, 281, 106–122. [Google Scholar] [CrossRef]
- Humpenöder, F.; Bodirsky, B.L.; Weindl, I.; Lotze-Campen, H.; Linder, T.; Popp, A. Projected Environmental Benefits of Replacing Beef with Microbial Protein. Nature 2022, 605, 90–96. [Google Scholar] [CrossRef]
- Gibbs, J.; Cappuccio, F.P. Plant-Based Dietary Patterns for Human and Planetary Health. Nutrients 2022, 14, 1614. [Google Scholar] [CrossRef]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2021, 11, 105. [Google Scholar] [CrossRef]
- Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. Eur. Food Res. Technol. 2020, 247, 297–308. [Google Scholar] [CrossRef]
- Weinrich, R.; Strack, M.; Neugebauer, F. Consumer Acceptance of Cultured Meat in Germany. Meat Sci. 2020, 162, 107924. [Google Scholar] [CrossRef]
- Weinrich, R. Opportunities for the Adoption of Health-Based Sustainable Dietary Patterns: A Review on Consumer Research of Meat Substitutes. Sustainability 2019, 11, 4028. [Google Scholar] [CrossRef]
- Bryant, C.; Barnett, J. Consumer Acceptance of Cultured Meat: A Systematic Review. Meat Sci. 2018, 143, 8–17. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Consumer Perception and Behaviour Regarding Sustainable Protein Consumption: A Systematic Review. Trends Food Sci. Technol. 2017, 61, 11–25. [Google Scholar] [CrossRef]
- Farsi, D.N.; Gallegos, J.L.; Finnigan, T.J.A.; Cheung, W.; Munoz, J.M.; Commane, D.M. The Effects of Substituting Red and Processed Meat for Mycoprotein on Biomarkers of Cardiovascular Risk in Healthy Volunteers: An Analysis of Secondary Endpoints from Mycomeat. Eur. J. Nutr. 2023, 62, 3349–3359. [Google Scholar] [CrossRef]
- Crimarco, A.; Springfield, S.; Petlura, C.; Streaty, T.; Cunanan, K.; Lee, J.; Fielding-Singh, P.; Carter, M.M.; Topf, M.A.; Wastyk, H.C.; et al. A Randomized Crossover Trial on the Effect of Plant-Based Compared with Animal-Based Meat on Trimethylamine-N-Oxide and Cardiovascular Disease Risk Factors in Generally Healthy Adults: Study with Appetizing Plantfood—Meat Eating Alternative Trial (SWAP-MEAT). Am. J. Clin. Nutr. 2020, 112, 1188. [Google Scholar] [CrossRef]
- Bottin, J.H.; Swann, J.R.; Cropp, E.; Chambers, E.S.; Ford, H.E.; Ghatei, M.A.; Frost, G.S. Mycoprotein Reduces Energy Intake and Postprandial Insulin Release without Altering Glucagon-like Peptide-1 and Peptide Tyrosine-Tyrosine Concentrations in Healthy Overweight and Obese Adults: A Randomised-Controlled Trial. Br. J. Nutr. 2016, 116, 360–374. [Google Scholar] [CrossRef]
- Messina, M.; Sievenpiper, J.L.; Williamson, P.; Kiel, J.; Erdman, J.W. Perspective: Soy-Based Meat and Dairy Alternatives, Despite Classification as Ultra-Processed Foods, Deliver High-Quality Nutrition on Par with Unprocessed or Minimally Processed Animal-Based Counterparts. Adv. Nutr. 2022, 13, 726–738. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2022, 14, 29. [Google Scholar] [CrossRef]
- Tan, H.C.; Ho, J.A.; Kumarusamy, R.; Sambasivan, M. Measuring Social Desirability Bias: Do the Full and Short Versions of the Marlowe-Crowne Social Desirability Scale Matter? J. Empir. Res. Hum. Res. Ethics 2021, 17, 382–400. [Google Scholar] [CrossRef]
- Larsen, M.; Nyrup, J.; Petersen, M.B. Do Survey Estimates of the Public’s Compliance with COVID-19 Regulations Suffer from Social Desirability Bias? J. Behav. Public Adm. 2020, 3, 1–9. [Google Scholar] [CrossRef]
- Kreuter, F.; Presser, S.; Tourangeau, R. Social Desirability Bias in CATI, IVR, and Web Surveys: The Effects of Mode and Question Sensitivity. Public Opin. Q. 2008, 72, 847–865. [Google Scholar] [CrossRef]
- Scott, A.; Jeon, S.H.; Joyce, C.M.; Humphreys, J.S.; Kalb, G.; Witt, J.; Leahy, A. A Randomised Trial and Economic Evaluation of the Effect of Response Mode on Response Rate, Response Bias, and Item Non-Response in a Survey of Doctors. BMC Med Res. Methodol. 2011, 11, 126. [Google Scholar] [CrossRef]
- Greszki, R.; Meyer, M.; Schoen, H. Exploring the Effects of Removing “Too Fast” Responses and Respondents from Web Surveys. Public Opin. Q. 2015, 79, 471–503. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C.; Katz, D.L. Preventive Medicine for Person, Place, and Planet: Revisiting the Concept of High-Level Wellness in the Planetary Health Paradigm. Int. J. Environ. Res. Public Health 2019, 16, 238. [Google Scholar] [CrossRef]
Beef Eaters’ Responses | n | % | |
---|---|---|---|
Likelihood of avoiding beef and its derivative products during #NoBeefWeek | Extremely likely | 391 | 54.2 |
Likely | 156 | 21.6 | |
Unsure | 58 | 8.0 | |
Unlikely | 38 | 5.3 | |
Extremely unlikely | 78 | 10.8 | |
All responses (beef eaters and beef avoiders) | n | % | |
Likelihood of encouraging family and friends to avoid beef and its derivative products during #NoBeefWeek | Extremely likely | 490 | 38.6 |
Likely | 356 | 28.0 | |
Unsure | 199 | 15.7 | |
Unlikely | 116 | 9.1 | |
Extremely unlikely | 110 | 8.7 |
Long-Term Intention to Change Own Beef Consumption Relative to Self-Reported Beef Intake Frequency | Stop My Consumption | Minimize My Consumption | Reduce My Consumption | Keep My Consumption Unchanged | WAGV 1 | Total Responses n |
---|---|---|---|---|---|---|
Percentage 2 | ||||||
Every day | 10.7 | 14.3 | 7.1 | 67.9 | 2.32 | 28 |
Four to six times per week | 3.3 | 14.8 | 32.8 | 49.2 | 2.28 | 61 |
Two to three times per week | 7.5 | 25.4 | 42.2 | 24.9 | 1.84 | 173 |
Once a week | 11.7 | 30.3 | 37.7 | 20.4 | 1.67 | 162 |
A couple of times a month or less | 29.2 | 36.4 | 20.8 | 13.6 | 1.19 | 264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruani, M.A.; Katz, D.L.; de la Vega, M.A.; Goldberg, M.H. Sustainability Views and Intentions to Reduce Beef Consumption: An International Web-Based Survey. Foods 2025, 14, 2620. https://doi.org/10.3390/foods14152620
Ruani MA, Katz DL, de la Vega MA, Goldberg MH. Sustainability Views and Intentions to Reduce Beef Consumption: An International Web-Based Survey. Foods. 2025; 14(15):2620. https://doi.org/10.3390/foods14152620
Chicago/Turabian StyleRuani, Maria A., David L. Katz, Michelle A. de la Vega, and Matthew H. Goldberg. 2025. "Sustainability Views and Intentions to Reduce Beef Consumption: An International Web-Based Survey" Foods 14, no. 15: 2620. https://doi.org/10.3390/foods14152620
APA StyleRuani, M. A., Katz, D. L., de la Vega, M. A., & Goldberg, M. H. (2025). Sustainability Views and Intentions to Reduce Beef Consumption: An International Web-Based Survey. Foods, 14(15), 2620. https://doi.org/10.3390/foods14152620