The Effect of Reduced Nitrogen Fertilizer Application on japonica Rice Based on Volatile Metabolomics Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Eating Quality
2.3. Sample Preparation
2.4. GC-MS Conditions
2.5. Data Processing
3. Results and Discussion
3.1. Effect of Nitrogen Fertilizer Reduction on Eating Quality of SuiJing 18
3.2. Effect of Nitrogen Fertilizer Reduction on Volatile Metabolomics of SuiJing 18
3.2.1. Qualitative and Quantitative Volatile Metabolomics Analysis
3.2.2. Volatile Metabolite rOAV Analysis
3.2.3. OPLS-DA Analysis
3.2.4. Differential Volatile Metabolite Screening
3.2.5. Analysis of Key Differential Volatile Metabolites
3.2.6. Hierarchical Cluster Analysis of Differential Volatile Metabolites
3.2.7. Correlation Analysis of Differential Volatile Metabolites
3.2.8. KEGG Analysis of Differential Volatile Metabolites
3.2.9. Flavoromics Analysis of Differential Volatile Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, S.; Wei, J.; Chen, X.; Zhu, S.; Zhou, X. Systematical construction of rice flavor types based on HS-SPME-GC–MS and sensory evaluation. Food Chem. 2023, 413, 135604. [Google Scholar] [CrossRef]
- Tang, L.; Chen, W. Development Trend and Prospect of Geng Rice in Northeast China. China Rice 2021, 27, 1–4. [Google Scholar] [CrossRef]
- Jiang, S.; Duan, X.; Zhang, D.; Shang, B.; Liu, H.; Ma, H.; Yang, C.; Liu, X. Analysis of Aroma Components of Representative Japonica Rice in Northeast China Based on GC-MS and Flash GC E-nose. J. Chin. Cereals Oils Assoc. 2024, 171–179. [Google Scholar] [CrossRef]
- Lee, J.; Yang, K.; Wu, C.; Chu, L.; Jiang, W.; Chen, H. Discussion on the differences in Aroma Components in different fragrant Rice varieties during Storage. Life 2023, 13, 2063. [Google Scholar] [CrossRef]
- Zhou, T.; Li, Z.; Li, E.; Wang, W.; Yuan, L.; Zhang, H.; Liu, L.; Wang, Z.; Gu, J.; Yang, J. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels. J. Integr. Agric. 2022, 21, 1576–1592. [Google Scholar] [CrossRef]
- Guo, L.; Li, H.; Cao, X.; Cao, A.; Huang, M. Effect of agricultural subsidies on the use of chemical fertilizer. J. Environ. Manag. 2021, 299, 113621. [Google Scholar] [CrossRef]
- Wei, H.; Ying, Z.; Shi, Q.; Chao, H.; Lei, H.; Dong, X.; Zhou, N.; Xing, Z.; Hu, Y.; Cui, P. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J. Integr. Agric. 2018, 17, 2405–2417. [Google Scholar] [CrossRef]
- Cheng, B.; Jiang, Y.; Cao, C. Balance rice yield and eating quality by changing the traditional nitrogen management for sustainable production in China. J. Clean. Prod. 2021, 312, 127793. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Z.; Fang, C.; Hu, X. Characteristic flavor compounds and functional components of fragrant rice with different flavor types. Foods 2023, 12, 2185. [Google Scholar] [CrossRef]
- Custodio, M.C.; Cuevas, R.P.; Ynion, J.; Laborte, A.G.; Velasco, M.L.; Demont, M. Rice quality: How is it defined by consumers, industry, food scientists, and geneticists? Trends Food Sci. Technol. 2019, 92, 122–137. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Q.; Li, E.; Yuan, L.; Wang, W.; Zhang, H.; Liu, L.; Wang, Z.; Yang, J.; Gu, J. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohydr. Polym. 2020, 239, 116237. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. Food Res. Int. 2020, 130, 108924. [Google Scholar] [CrossRef]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Mahattanatawee, K.; Rouseff, R.L. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC–Olfactometry and GC–PFPD. Food Chem. 2014, 154, 1–6. [Google Scholar] [CrossRef]
- Zheng, H.; Du, X.; Guo, L.; Hu, J.; Xu, Y.; Zhao, H. Using NMR to study changes in the characteristic constituents of stored rice. J. Cereal Sci. 2017, 75, 179–185. [Google Scholar] [CrossRef]
- Mo, Z.; Li, W.; Pan, S.; Fitzgerald, T.L.; Xiao, F.; Tang, Y.; Wang, Y.; Duan, M.; Tian, H.; Tang, X. Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Rice 2015, 8, 9. [Google Scholar] [CrossRef]
- Xu, J.; Liu, K.; Zhang, C. Electronic nose for volatile organic compounds analysis in rice aging. Trends Food Sci. Technol. 2021, 109, 83–93. [Google Scholar] [CrossRef]
- Hoffmann, J.F.; Bassinello, P.Z.; Colombari Filho, J.M.; Lindemann, I.d.S.; Elias, M.C.; Takeoka, G.R.; Vanier, N.L. Volatile compounds profile of Brazilian aromatic brown rice genotypes and its cooking quality characteristics. Cereal Chem. 2019, 96, 292–301. [Google Scholar] [CrossRef]
- Zhao, Q.; Xue, Y.; Shen, Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage. Food Res. Int. 2020, 133, 109160. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Cao, X.; Khan, M.A.R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol. 2022, 24, 227–239. [Google Scholar] [CrossRef]
- Wakte, K.; Zanan, R.; Hinge, V.; Khandagale, K.; Nadaf, A.; Henry, R. Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (Oryza sativa L.): A status review. J. Sci. Food Agric. 2017, 97, 384–395. [Google Scholar] [CrossRef]
- Dias, L.; Duarte, G.; Mariutti, L.; Bragagnolo, N. Aroma profile of rice varieties by a novel SPME method able to maximize 2-acetyl-1-pyrroline and minimize hexanal extraction. Food Res. Int. 2019, 123, 550–558. [Google Scholar] [CrossRef]
- Pal, S.; Bagchi, T.B.; Dhali, K.; Kar, A.; Sanghamitra, P.; Sarkar, S.; Samaddar, M.; Majumder, J. Evaluation of sensory, physicochemical properties and Consumer preference of black rice and their products. J. Food Sci. Technol. 2019, 56, 1484–1494. [Google Scholar] [CrossRef]
- Routray, W.; Rayaguru, K. 2-Acetyl-1-pyrroline: A key aroma component of aromatic rice and other food products. Food Rev. Int. 2018, 34, 539–565. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, L.; Wang, W.; Wang, Q.; Liu, J.; Wang, Y.; Liu, H.; Shang, B.; Duan, X.; Sun, H. Lipidomics reveals the changes in non-starch and starch lipids of rice (Oryza sativa L.) during storage. J. Food Compos. Anal. 2022, 105, 104205. [Google Scholar] [CrossRef]
- Song, S.; Zhu, K.; Han, L.; Sapozhnikova, Y.; Zhang, Z.; Yao, W. Residue analysis of 60 pesticides in red swamp crayfish using QuEChERS with high-performance liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2018, 66, 5031–5038. [Google Scholar] [CrossRef]
- Mao, X.; Xiao, W.; Wan, Y.; Li, Z.; Luo, D.; Yang, H. Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: Improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables. Food Chem. 2021, 345, 128807. [Google Scholar] [CrossRef]
- Huang, W.; Gfeller, V.; Erb, M. Root volatiles in plant–plant interactions II: Root volatiles alter root chemistry and plant–herbivore interactions of neighbouring plants. Plant Cell Environ. 2019, 42, 1964–1973. [Google Scholar] [CrossRef]
- Xue, J.; Liu, P.; Yin, J.; Wang, W.; Zhang, J.; Wang, W.; Le, T.; Ni, D.; Jiang, H. Dynamic changes in volatile compounds of shaken black tea during its manufacture by GC× GC–TOFMS and multivariate data analysis. Foods 2022, 11, 1228. [Google Scholar] [CrossRef]
- Aurélie, R.; Ying, X.; Eric, E.; Christophe, J. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Zhao, L.; Liu, J.; Shang, B.; Yang, W.; Duan, X.; Sun, H. Metabolomic analysis reveals insights into deterioration of rice quality during storage. Foods 2022, 11, 1729. [Google Scholar] [CrossRef]
- Huang, W.-T.; Zheng, Z.-C.; Hua, D.; Chen, X.-F.; Zhang, J.; Chen, H.-H.; Ye, X.; Guo, J.-X.; Yang, L.-T.; Chen, L.-S. Adaptive responses of carbon and nitrogen metabolisms to nitrogen-deficiency in Citrus sinensis seedlings. BMC Plant Biol. 2022, 22, 370. [Google Scholar] [CrossRef]
- Zhou, C.; Zhu, C.; Tian, C.; Xu, K.; Huang, L.; Shi, B.; Lai, Z.; Lin, Y.; Guo, Y. Integrated volatile metabolome, multi-flux full-length sequencing, and transcriptome analyses provide insights into the aroma formation of postharvest jasmine (Jasminum sambac) during flowering. Postharvest Biol. Tec. 2022, 183, 111726. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Liu, M.; Liu, Y.; Strappe, P.; Sun, H.; Zhou, Z. Comparative non-targeted metabolomic analysis reveals insights into the mechanism of rice yellowing. Food Chem. 2019, 308, 125621. [Google Scholar] [CrossRef]
- Yan, N.; Du, Y.; Liu, X.; Chu, M.; Shi, J.; Zhang, H.; Liu, Y.; Zhang, Z. A comparative UHPLC-QqQ-MS-based metabolomics approach for evaluating Chinese and North American wild rice. Food Chem. 2019, 275, 618–627. [Google Scholar] [CrossRef]
- Tieman, D.; Zhu, G.; Resende Jr, M.F.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.O.; Taylor, M.; Zhang, B. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef]
- Zhu, Z.; Bassey, A.P.; Cao, Y.; Ma, Y.; Huang, M.; Yang, H. Food protein aggregation and its application. Food Res. Int. 2022, 160, 111725. [Google Scholar] [CrossRef]
- Vilotte, A.; Bodiguel, H.; Ako, K.; Gunes, D.Z.; Schmitt, C.; de Loubens, C. Kinetic and structural characterization of whey protein aggregation in a millifluidic continuous process. Food Hydrocolloid 2021, 110, 106137. [Google Scholar] [CrossRef]
- Yang, J.; Liu, G.; Zeng, H.; Chen, L. Effects of high pressure homogenization on faba bean protein aggregation in relation to solubility and interfacial properties. Food Hydrocolloid 2018, 83, 275–286. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, D.; Sheng, B.; Zhu, Z.; Li, H.; Nian, Y.; Wang, C.; Li, C.; Xu, X.; Zhou, G. Application of preheating treatment in up-and down-regulating the glycation process of dietary proteins. Food Hydrocolloid 2020, 98, 105264. [Google Scholar] [CrossRef]
Scale | 5 m | 5 m | 5 m |
---|---|---|---|
10 m | A2 20% reduction in nitrogen fertilizer | A1 conventional fertilization | A3 40% reduction in nitrogen fertilizer |
10 m | A3 40% reduction in nitrogen fertilizer | A2 20% reduction in nitrogen fertilizer | A1 conventional fertilization |
10 m | A1 conventional fertilization | A3 40% reduction in nitrogen fertilizer | A2 20% reduction in nitrogen fertilizer |
Month | April | May | June | July | August | September | |
---|---|---|---|---|---|---|---|
Ten Days of a Month | |||||||
Item | |||||||
Average temperature (°C) | First | 6.5 | 13.0 | 17.0 | 23.0 | 21.4 | 18.7 |
Middle | 5.6 | 10.8 | 21.3 | 22.2 | 23.7 | 15.9 | |
End | 6.9 | 17.3 | 22.8 | 24.4 | 20.4 | 14.2 | |
Amount of precipitation (mm) | First | 0.0 | 0.1 | 11.1 | 76.3 | 26.4 | 1.0 |
Middle | 9.8 | 23.9 | 8.4 | 63.4 | 21.4 | 19.5 | |
End | 18.2 | 18.3 | 80.8 | 15.0 | 36.5 | 34.7 | |
Sunshine time (h) | First | 56.1 | 84.1 | 64.6 | 88.9 | 65.6 | 70.7 |
Middle | 72.4 | 69.5 | 90.1 | 68.8 | 59.3 | 68.4 | |
End | 74.2 | 81.7 | 48.7 | 52.9 | 22.9 | 43.2 |
Index | Score |
---|---|
Odor | 0~20 |
Color | 0~7 |
Glossiness | 0~8 |
Integrity | 0~7 |
Stickiness | 0~10 |
Elasticity | 0~10 |
Hardness | 0~10 |
Taste | 0~25 |
Texture of cold rice | 0~5 |
Composite eating quality score | 0~100 |
Class | Index | Compounds | VIP | p-Value | FC | ||
---|---|---|---|---|---|---|---|
A2 vs. A1 | A3 vs. A1 | A3 vs. A2 | |||||
Hydrocarbons | XMW0771 | 3,4-Dimethylcycloocta-1,5-diene | 1.45 | 0.032 | 2.78 | 2.42 | 0.87 |
Hydrocarbons | XMW0121 | 4,6,8-Trimethyl-1-nonene | 1.80 | 0.018 | 1.03 | 1.24 | 1.20 |
Terpenoids | KMW0432 | (z)-3,7-Dimethylocta-2,6-dienal | 1.98 | 0.008 | 1.14 | 1.43 | 1.26 |
Terpenoids | KMW0420 | Trans-piperitol | 1.11 | 0.049 | 1.39 | 1.23 | 0.89 |
Ketone | KMW0260 | 3,4-Dimethyl-1,2-cyclopentaned | 1.08 | 0.034 | 0.97 | 1.04 | 1.08 |
Alcohol | WMW0103 | 2-Cyclopentaneethanol | 1.21 | 0.006 | 1.41 | 1.23 | 0.87 |
Heterocyclic compound | D81 | Ethyl 3-(2-furyl)propionate | 1.49 | 0.034 | 1.02 | 0.87 | 0.85 |
Others | XMW1440 | Methacrylic anhydride | 1.02 | 0.044 | 1.48 | 1.24 | 0.84 |
Ester | KMW0204 | Hexyl acetate | 1.07 | 0.021 | 1.83 | 1.41 | 0.77 |
Aromatics | WMW0227 | 1,4-Dichlorobenzene | 1.87 | 0.014 | 1.04 | 1.24 | 1.19 |
Aldehyde | D173 | 4-Methyl-benzeneacetaldehyde | 1.15 | 0.048 | 1.27 | 1.16 | 0.92 |
Ester | XMW0776 | Allyl benzoate | 1.91 | 0.021 | 1.16 | 1.26 | 1.08 |
Ketone | XMW0039 | 3-Methylcycloheptanone | 1.73 | 0.041 | 1.02 | 1.15 | 1.12 |
Aromatics | KMW0205 | 1-Methoxycyclohexene | 1.96 | 0.020 | 1.13 | 1.26 | 1.11 |
Aromatics | w08×082 | 1-Methylnaphthalene | 1.39 | 0.031 | 1.02 | 0.92 | 0.91 |
Aromatics | XMW0662×082 | 2-Methylnaphthalene | 1.39 | 0.031 | 1.02 | 0.92 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, Q.; Zhang, D.; Duan, X.; Sun, H. The Effect of Reduced Nitrogen Fertilizer Application on japonica Rice Based on Volatile Metabolomics Analysis. Foods 2024, 13, 3310. https://doi.org/10.3390/foods13203310
Wu J, Wang Q, Zhang D, Duan X, Sun H. The Effect of Reduced Nitrogen Fertilizer Application on japonica Rice Based on Volatile Metabolomics Analysis. Foods. 2024; 13(20):3310. https://doi.org/10.3390/foods13203310
Chicago/Turabian StyleWu, Jiahao, Qian Wang, Dong Zhang, Xiaoliang Duan, and Hui Sun. 2024. "The Effect of Reduced Nitrogen Fertilizer Application on japonica Rice Based on Volatile Metabolomics Analysis" Foods 13, no. 20: 3310. https://doi.org/10.3390/foods13203310
APA StyleWu, J., Wang, Q., Zhang, D., Duan, X., & Sun, H. (2024). The Effect of Reduced Nitrogen Fertilizer Application on japonica Rice Based on Volatile Metabolomics Analysis. Foods, 13(20), 3310. https://doi.org/10.3390/foods13203310