Influences of Weizmannia coagulans PR06 Fermentation on Texture, Cooking Quality and Starch Digestibility of Oolong Tea-Fortified Rice Noodles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Fermented Rice Noodles
2.3. Microstructure Observation
2.3.1. Scanning Electron Microscope (SEM)
2.3.2. Fluorescence Microscope
2.4. Texture Measurement
2.5. Determination of Cooking Quality
2.6. Measurement of Starch Characteristics
2.6.1. Chain Length Distribution of Amylopectin
2.6.2. Short-Range Ordered Structure of Starch
2.6.3. In Vitro Digestibility of Starch
2.7. Measurement of Rheological Properties
2.7.1. Determination of the Viscosity-Temperature Curve
2.7.2. Dynamic Frequency Sweep Tests
2.8. Analysis of Thermal Properties
2.9. Determination of Antioxidant Capacity
2.9.1. Total Polyphenolic Content (TPC)
2.9.2. Antioxidant Capacity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Appearance and Microstructure of Rice Noodles
3.2. Texture Profile of Rice Noodles
3.3. Cooking Quality of Rice Noodles
3.4. Starch Characteristics of Rice Noodles
3.4.1. Chain Length Distribution of Amylopectin
3.4.2. Short-Range Ordered Structure of Starch
3.4.3. In Vitro Digestibility of Starch
3.5. Rheological Properties of Rice Noodles
3.6. Thermodynamic Property of Rice Noodles
3.7. Antioxidant Capacity of Rice Noodles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; You, Y.; Chen, D.; Gu, Z.; Zhang, Y.; Holler, T.P.; Ban, X.; Hong, Y.; Cheng, L.; Li, Z. A systematic review of rice noodles: Raw material, processing method and quality improvement. Trends Food Sci. Technol. 2021, 107, 389–400. [Google Scholar] [CrossRef]
- Qin, C.; Lian, L.; Xu, W.; Jiang, Z.; Wen, M.; Han, Z.; Zhang, L. Comparison of the chemical composition and antioxidant, anti-inflammatory, α-amylase and α-glycosidase inhibitory activities of the supernatant and cream from black tea infusion. Food Funct. 2022, 13, 6139–6151. [Google Scholar] [CrossRef] [PubMed]
- Jachimowicz, K. Antioxidant, anti-inflammatory, and immunomodulatory properties of tea—The positive impact of tea consumption on patients with autoimmune diabetes. Nutrients 2021, 13, 3972. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, C.; Xiang, J.; Gao, R.; Wang, G.; Yu, W. Functional Tea Extract Inhibits Cell Growth, Induces Apoptosis, and Causes G0/G1 Arrest in Human Hepatocellular Carcinoma Cell Line Possibly through Reduction in Telomerase Activity. Foods 2024, 13, 1867. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, J.; Zheng, Y.; Guan, X.; Lai, C.; Gao, H.; Ho, C.; Lin, B. Selenium-enriched oolong tea (Camellia sinensis) extract exerts anti-inflammatory potential via targeting NF-κB and MAPK pathways in macrophages. Food Sci. Hum. Wellness 2022, 11, 635–642. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, J.; Tu, J.; Yu, L.; Niu, L. Matcha-fortified rice noodles: Characteristics of in vitro starch digestibility, antioxidant and eating quality. LWT 2021, 149, 111852. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Qian, C.; Feng, B.; Xiong, G.; Jiang, J.; Chen, Q. Processing quality and aroma characteristics of fresh noodles intermingled with large-leaf yellow tea powder. LWT 2023, 174, 114391. [Google Scholar] [CrossRef]
- Zhu, F.; Sakulnak, R.; Wang, S. Effect of black tea on antioxidant, textural, and sensory properties of Chinese steamed bread. Food Chem. 2016, 194, 1217–1223. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Li, P.; Yang, J.; Wang, F.; Kim, E.; Wu, Y.; He, P.; Li, B.; Tu, Y. Chemical characterization of Wuyi rock tea with different roasting degrees and their discrimination based on volatile profiles. Rsc Adv. 2021, 11, 12074–12085. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, W.; Wang, Q.; Guan, X.; Lin, B. Effect of adding Wuyi rock tea on quality, in vitro digestive characteristics and antioxidant activity of rice noodles. Sci. Technol. Food Ind. 2024, 45, 101–109. [Google Scholar]
- Li, N.; Zhang, B.; Zhao, S.; Niu, M.; Jia, C.; Huang, Q.; Liu, Y.; Lin, Q. Influence of Lactobacillus/Candida fermentation on the starch structure of rice and the related noodle features. Int. J. Biol. Macromol. 2019, 121, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Liang, T.; Yang, M.; Wang, L.; Zhou, X.; Sun, X.; Liu, L.; Zhou, S.; Tong, L. Effects of Lactobacillus combined with semidry flour milling on the quality and flavor of fermented rice noodles. Food Res. Int. 2019, 126, 108612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, P.; Lee, S.; Wang, Y.; Tan, C.; Shang, N. Weizmannia coagulans: An ideal probiotic for gut health. Food Sci. Hum. Wellness 2024, 13, 16–26. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, X.; Zhou, Q.; Huang, Y.; Rao, X.; Tu, J.; Xiao, H.; Liu, D. Bacillus coagulans 13002 and fructo-oligosaccharides improve the immunity of mice with immunosuppression induced by cyclophosphamide through modulating intestinal-derived and fecal microbiota. Food Res. Int. 2021, 140, 109793. [Google Scholar] [CrossRef]
- Gupta, A.K.; Maity, C. Efficacy and safety of Bacillus coagulans LBSC in irritable bowel syndrome: A prospective, interventional, randomized, double-blind, placebo-controlled clinical study [CONSORT Compliant]. Medicine 2021, 100, e23641. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, Z.; Zhang, S.; Li, P. Complete Genome Sequencing Revealed the Potential Application of a Novel Weizmannia coagulans PL-W Production with Promising Bacteriocins in Food Preservative. Foods 2023, 12, 216. [Google Scholar] [CrossRef]
- Maresca, E.; Aulitto, M.; Contursi, P. Harnessing the dual nature of Bacillus (Weizmannia) coagulans for sustainable production of biomaterials and development of functional food. Microb. Biotechnol. 2024, 17, e14449. [Google Scholar] [CrossRef]
- Zou, C.; Wang, L.; Luo, Y.; Wang, P.; Tian, J.; Qin, L.; Jia, Y. The structural characteristics and in vitro starch digestibility of rice noodles as affected by the addition of ultrafine whole pulp of bamboo shoots. J. Funct. Foods 2023, 109, 105809. [Google Scholar] [CrossRef]
- Bae, I.Y.; Oh, I.K.; Jung, D.S.; Lee, H.G. Influence of arabic gum on in vitro starch digestibility and noodle-making quality of Segoami. Int. J. Biol. Macromol. 2019, 125, 668–673. [Google Scholar] [CrossRef]
- Qiao, C.; Tian, X.; Wang, L.; Jiang, P.; Zhai, X.; Wu, N.; Tan, B. Quality characteristics, texture properties and moisture migration of fresh brown rice noodles under different storage and temperatures conditions. J. Cereal Sci. 2022, 104, 103434. [Google Scholar] [CrossRef]
- GB/T 23587; General Administration of Quality Supervision, Inspection and Quarantine (GAQSIQ), and Standardization Administration of the People’s Republic of China (SAC). National Standards of People’s Republic of China: Beijing, China, 2009.
- Cuiping, Y.; Youwang, Y.; Sumei, Z.; Yinghe, H. Role of lactic acid bacteria in the eating qualities of fermented rice noodles. Cereal Chem. 2017, 94, 349–356. [Google Scholar]
- Lu, Z.; Yuan, M.; Sasaki, T.; Li, L.; Kohyama, K. Rheological Properties of Fermented Rice Flour Gel. Cereal Chem. 2007, 84, 620–625. [Google Scholar] [CrossRef]
- Shen, S.; Chi, C.; Zhang, Y.; Li, L.; Chen, L.; Li, X. New insights into how starch structure synergistically affects the starch digestibility, texture, and flavor quality of rice noodles. Int. J. Biol. Macromol. 2021, 184, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Thuengtung, S.; Niwat, C.; Tamura, M.; Ogawa, Y. In vitro examination of starch digestibility and changes in antioxidant activities of selected cooked pigmented rice. Food Biosci. 2018, 23, 129–136. [Google Scholar] [CrossRef]
- Jia, F.; Ma, Z.; Hu, X. Controlling dough rheology and structural characteristics of chickpea-wheat composite flour-based noodles with different levels of Artemisia sphaerocephala Krasch. gum addition. Int. J. Biol. Macromol. 2020, 150, 605–616. [Google Scholar] [CrossRef]
- Sun, Z.; Lyu, Q.; Zhuang, K.; Chen, L.; Wang, G.; Wang, Y.; Chen, X.; Ding, W. Impact of different preparation methods on the properties of brown rice flour and the cooking stability of brown rice noodles and the underlying mechanism: Microstructure, starch-protein distribution, moisture migration. LWT 2023, 181, 114697. [Google Scholar] [CrossRef]
- Park, J.; Sung, J.M.; Choi, Y.; Park, J. Effect of natural fermentation on milled rice grains: Physicochemical and functional properties of rice flour. Food Hydrocoll. 2020, 108, 106005. [Google Scholar] [CrossRef]
- Tong, Z.; Xiaoping, L.; Ruizhen, Z.; Zhen, M.; Liu, L.; Xiaolong, W.; Xinzhong, H. Effect of natural fermentation on the structure and physicochemical properties of wheat starch. Carbohydr. Polym. 2019, 218, 163–169. [Google Scholar]
- Li, G.; Zhu, F. Molecular structure of quinoa starch. Carbohydr. Polym. 2017, 158, 124–132. [Google Scholar] [CrossRef]
- Radhika Reddy, K.; Zakiuddin Ali, S.; Bhattacharya, K.R. The fine structure of rice-starch amylopectin and its relation to the texture of cooked rice. Carbohydr. Polym. 1993, 22, 267–275. [Google Scholar] [CrossRef]
- Liu, L.; Yang, M.; Wang, L.; Xu, J.; Wang, Q.; Fan, X.; Gao, W. Effect of pullulan on molecular chain conformations in the process of starch retrogradation condensed matter. Int. J. Biol. Macromol. 2019, 138, 736–743. [Google Scholar] [CrossRef]
- Lu, Z.; Collado, L.S. 17—Rice noodles. In Rice, 4th ed.; Bao, J., Ed.; AACC International Press: Washington, DC, USA, 2019; pp. 557–588. ISBN 978-0-12-811508-4. [Google Scholar]
- Zhuang, Y.; Wang, Y.; Yang, H. Characterizing digestibility of potato starch with cations by SEM, X-ray, LF-NMR, FTIR. Food Chem. 2023, 424, 136396. [Google Scholar] [CrossRef]
- Huang, S.; Chi, C.; Li, X.; Zhang, Y.; Chen, L. Understanding the structure, digestibility, texture and flavor attributes of rice noodles complexation with xanthan and dodecyl gallate. Food Hydrocoll. 2022, 127, 107538. [Google Scholar] [CrossRef]
- Bernazzani, P.; Peyyavula, V.K.; Agarwal, S.; Tatikonda, R.K. Evaluation of the phase composition of amylose by FTIR and isothermal immersion heats. Polymer 2008, 49, 4150–4158. [Google Scholar] [CrossRef]
- Soest, J.J.G.V.; Tournois, H.; Wit, D.D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef]
- Lu, X.; Guo, X.; Zhu, K. Effect of Fermentation on the Quality of Dried Hollow Noodles and the Related Starch Properties. Foods 2022, 11, 3685. [Google Scholar] [CrossRef]
- Fu, T.; Niu, L.; Wu, L.; Xiao, J. The improved rehydration property, flavor characteristics and nutritional quality of freeze-dried instant rice supplemented with tea powder products. LWT 2021, 141, 110932. [Google Scholar] [CrossRef]
- Tao, K.; Yu, W.; Prakash, S.; Gilbert, R.G. High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference. Carbohydr. Polym. 2019, 219, 251–260. [Google Scholar] [CrossRef]
- Biliaderis, C.G.; Juliano, B.O. Thermal and mechanical properties of concentrated rice starch gels of varying composition. Food Chem. 1993, 48, 243–250. [Google Scholar] [CrossRef]
- Lu, Z.H.; Li, L.T.; Cao, W.; Li, Z.G.; Tatsumi, E. Influence of natural fermentation on physico-chemical characteristics of rice noodles. Int. J. Food Sci. Technol. 2003, 38, 505–510. [Google Scholar] [CrossRef]
- Lu, Z.H.; Li, L.T.; Min, W.H.; Wang, F.; Tatsumi, E. The effects of natural fermentation on the physical properties of rice flour and the rheological characteristics of rice noodles. Int. J. Food Sci. Technol. 2005, 40, 985–992. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Bernal, C.; Famá, L. Influence of Green Tea and Basil Extracts on Cassava Starch Based Films as Assessed by Thermal Degradation, Crystalline Structure, and Mechanical Properties. Starch-Stärke 2020, 72, 1900155. [Google Scholar] [CrossRef]
Characteristic | Control | W. coagulans PR06 Fermented Samples with Different IA | ||
---|---|---|---|---|
1% | 3% | 5% | ||
Hardness (g) | 3468.95 ± 576.28 a | 3679.43 ± 454.88 a | 4019.51 ± 449.28 a | 4264.92 ± 220.53 a |
Springiness | 0.70 ± 0.06 a | 0.81 ± 0.09 ab | 0.97 ± 0.09 b | 0.91 ± 0.04 b |
Cohesiveness | 0.83 ± 0.06 a | 0.95 ± 0.08 a | 0.99 ± 0.05 a | 0.94 ± 0.09 a |
Gumminess | 2914.50 ± 696.11 a | 3469.07 ± 413.03 a | 3972.56 ± 508.05 a | 4007.82 ± 520.39 a |
Chewiness | 2025.55 ± 455.00 a | 2803.27 ± 303.67 a | 3798.74 ± 199.48 b | 3731.31 ± 546.70 b |
Resilience | 1.18 ± 0.09 a | 1.37 ± 0.09 a | 1.35 ± 0.08 a | 1.33 ± 0.07 a |
Characteristic | Control | W. coagulans PR06 Fermented Samples with Different IA | ||
---|---|---|---|---|
1% | 3% | 5% | ||
Broken strip rate (%) | 5.7 ± 0.4 d | 4.5 ± 0.6 c | 3.2 ± 0.3 b | 2.4 ± 0.4 a |
Cooking loss (%) | 4.8 ± 0.2 b | 4.3 ± 0.2 b | 3.3 ± 0.5 a | 3.6 ± 0.4 a |
Water absorption (%) | 191.7 ± 3.1 b | 185.7 ± 6.0 ab | 179.3 ± 5.1 a | 178.7 ± 6.5 a |
Cooking time (s) | 164.3 ± 4.0 a | 187.7 ± 2.1 b | 225.3 ± 4.5 d | 216.0 ± 5.3 c |
Characteristic | Control | W. coagulans PR06 Fermented Samples with Different IA | ||
---|---|---|---|---|
1% | 3% | 5% | ||
Chain length distribution of amylopectin (%) | ||||
A (DP 6~12) | 24.66 ± 1.33 b | 24.79 ± 1.12 b | 21.90 ± 1.37 a | 20.16 ± 1.80 a |
B1 (DP 13~24) | 52.44 ± 1.17 a | 52.53 ± 2.39 a | 55.13 ± 2.12 ab | 57.13 ± 1.39 b |
B2 (DP 25~36) | 12.81 ± 1.18 a | 12.91 ± 1.01 a | 12.75 ± 0.77 a | 12.69 ± 0.80 a |
B3 (DP ≥ 37) | 10.10 ± 0.38 a | 9.78 ± 0.61 a | 10.22 ± 1.47 a | 10.03 ± 0.84 a |
Starch short-range ordered structure | ||||
FTIR ratio (R 995/1022) | 0.43 ± 0.05 a | 0.47 ± 0.05 a | 0.57 ± 0.06 b | 0.58 ± 0.10 b |
Starch fractions | ||||
RDS (%) | 67.82 ± 2.16 c | 63.72 ± 1.94 bc | 58.49 ± 1.84 a | 60.53 ± 2.37 ab |
SDS (%) | 19.72 ± 1.28 ab | 21.19 ± 1.18 ab | 22.70 ± 1.87 b | 18.76 ± 1.25 a |
RS (%) | 12.46 ± 1.07 a | 15.09 ± 1.44 a | 18.81 ± 2.01 b | 20.71 ± 1.27 b |
Characteristic | Control | W. coagulans PR06 Fermented Samples with Different IA | ||
---|---|---|---|---|
1% | 3% | 5% | ||
To (°C) | 46.96 ± 0.32 a | 47.34 ± 1.03 a | 46.55 ± 0.65 a | 46.31 ± 1.05 a |
Tp (°C) | 55.12 ± 0.53 a | 56.04 ± 0.99 a | 55.76 ± 1.25 a | 56.56 ± 1.01 a |
Tc (°C) | 64.13 ± 0.92 a | 64.81 ± 1.16 a | 65.45 ± 1.39 a | 65.37 ± 1.56 a |
Tc-To (°C) | 17.17 ± 0.63 a | 17.47 ± 0.56 a | 18.91 ± 0.76 b | 19.06 ± 0.56 b |
ΔH (J/g) | 0.78 ± 0.02 a | 0.84 ± 0.04 a | 1.31 ± 0.04 b | 1.34 ± 0.08 b |
TPC (mg GAE/g DW) | 2.53 ± 0.21 a | 2.51 ± 0.19 a | 2.59 ± 0.23 a | 2.54 ± 0.17 a |
T-AOC (mM Fe2SO4/g) | 9.16 ± 0.63 a | 9.11 ± 0.57 a | 9.33 ± 0.72 a | 9.24 ± 0.68 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Lai, P.; Xiang, L.; Lin, B.; Li, W.; Yu, W.; Wang, Q. Influences of Weizmannia coagulans PR06 Fermentation on Texture, Cooking Quality and Starch Digestibility of Oolong Tea-Fortified Rice Noodles. Foods 2024, 13, 2673. https://doi.org/10.3390/foods13172673
Huang J, Lai P, Xiang L, Lin B, Li W, Yu W, Wang Q. Influences of Weizmannia coagulans PR06 Fermentation on Texture, Cooking Quality and Starch Digestibility of Oolong Tea-Fortified Rice Noodles. Foods. 2024; 13(17):2673. https://doi.org/10.3390/foods13172673
Chicago/Turabian StyleHuang, Juqing, Pufu Lai, Lihui Xiang, Bin Lin, Weibin Li, Wenquan Yu, and Qi Wang. 2024. "Influences of Weizmannia coagulans PR06 Fermentation on Texture, Cooking Quality and Starch Digestibility of Oolong Tea-Fortified Rice Noodles" Foods 13, no. 17: 2673. https://doi.org/10.3390/foods13172673
APA StyleHuang, J., Lai, P., Xiang, L., Lin, B., Li, W., Yu, W., & Wang, Q. (2024). Influences of Weizmannia coagulans PR06 Fermentation on Texture, Cooking Quality and Starch Digestibility of Oolong Tea-Fortified Rice Noodles. Foods, 13(17), 2673. https://doi.org/10.3390/foods13172673