Did the International Trade in Crops Lead to Global Cropland Saving or Wasting in the Period 2000–2022?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Methods
2.2.1. Cropland Footprint
2.2.2. Virtual Cropland Trade
2.2.3. Global Cropland Use Efficiency Due to the International Crop Trade
3. Results
3.1. International Crop Trade Dynamics between 2000 and 2022
3.2. The Cropland Footprint Trend for Crops and Countries between 2000 and 2022
3.3. Virtual Cropland Trade for Different Crops between 2000 and 2022
3.4. Global Cropland Saving or Wasting Due to the International Crop Trade between 2000 and 2022
4. Discussion
4.1. Global and Regional Socio-Economic Circumstances, International Crop Trade, and Food Security
4.2. International Crop Trade and Its Associated Environmental Issues
4.3. Limitations and Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). The Future Alternative Pathways to 2050; FAO: Rome, Italy, 2018; Available online: https://www.fao.org/3/ca1553en/ca1553en.pdf (accessed on 10 June 2024).
- Falcon, W.P.; Naylor, R.L.; Shankar, N.D. Rethinking Global Food Demand for 2050. Popul. Dev. Rev. 2022, 48, 921–957. [Google Scholar] [CrossRef]
- Fukase, E.; Martin, W. Economic growth, convergence, and world food demand and supply. World Dev. 2020, 132, 104954. [Google Scholar] [CrossRef]
- Musemwa, L.; Muchenje, V.; Mushunje, A.; Aghdasi, F.; Zhou, L. Household food insecurity in the poorest province of South Africa: Level, causes and coping strategies. Food Secur. 2015, 7, 647–655. [Google Scholar] [CrossRef]
- Lun, F.; Sardans, J.; Sun, D.; Xiao, X.; Liu, M.; Li, Z.; Wang, C.; Tang, J.; Ciais, P.; Janssens, I.A.; et al. Influences of international agricultural trade on the global phosphorus cycle and its associated issues. Glob. Environ. Chang. 2021, 69, 102282. [Google Scholar] [CrossRef]
- Economist Intelligence Unit. Global Food Security Index 2022; Economist Intelligence Unit: London, UK, 2022. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets; Food and Agriculture Organization (FAO): Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Rockstrom, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Smith, A. The Wealth of Nations, 5th ed.; Hu, C.M., Translator; People’s Daily Press: Beijing, China, 2009; p. 525. ISBN 9787802087880. [Google Scholar]
- Ricardo, D. On the Principles of Political Economy and Taxation, 1st ed.; Feng, J.G., Translator; Guangming Daily Press: Beijing, China, 2009; ISBN 9787802068865. [Google Scholar]
- Chung, M.G.; Liu, J. International food trade benefits biodiversity and food security in low-income countries. Nat. Food 2022, 3, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wu, W.; Jabbar, A.; Wolde, Z. Dynamic Evolution and Spatial Convergence of the Virtual Cultivated Land Flow Intensity in China. Int. J. Environ. Res. Public Health 2021, 18, 7113. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, P.; Bisen, J.; Nimbrayan, P. Turn the wheel from waste to wealth: Economic and environmental gain of sustainable rice straw management practices over field burning in reference to India. Sci. Total Environ. 2021, 775, 145863. [Google Scholar] [CrossRef]
- Qiang, W.L.; Zhang, L.L.; Liu, A.M.; Niu, S.W.; Cheng, S.K. Evolution of virtual cultivated land resources flow in global agricultural trade and its influencing factors. Resour. Sci. 2020, 42, 1704–1714. [Google Scholar]
- Jia, Y.; Wu, J.; Cheng, M.; Xia, X. Global transfer of salinization on irrigated land: Complex network and endogenous structure. J. Environ. Manag. 2023, 336, 117592. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Hughes, A.C.; Kaplan, J.O.; Maeda, E.E. Bio-geophysical feedback to climate caused by the conversion of Amazon Forest to soybean plantations. Sci. Total Environ. 2023, 905, 166802. [Google Scholar] [CrossRef] [PubMed]
- Marin, F.R.; Zanon, A.J.; Monzon, J.P.; Andrade, J.F.; Silva, E.H.F.M.; Richter, G.L.; Antolin, L.A.S.; Ribeiro, B.S.M.R.; Ribas, G.G.; Battisti, R.; et al. Protecting the Amazon forest and reducing global warming via agricultural intensification. Nat. Sustain. 2022, 5, 1018–1027. [Google Scholar] [CrossRef]
- Luo, Z.L.; Long, A.H.; Huang, H.; Xu, Z.M. Virtual land strategy and socialization of management of sustainable utilization of land resources. J. Glaciol. Geocryol. 2004, 26, 624–631. [Google Scholar]
- Bai, Z.; Ma, W.; Zhao, H.; Guo, M.; Oenema, O.; Smith, P.; Velthof, G.; Liu, X.; Hu, C.; Wang, P.; et al. Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961–2017. Nat. Food 2021, 2, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Zhao, N.Z.; Liu, X.J.; Liu, Y. Global virtual-land flow and saving through international cereal trade. J. Resour. Ecol. 2016, 26, 619–639. [Google Scholar] [CrossRef]
- Qiang, W.; Liu, A.; Cheng, S.; Xie, G.; Zhao, M. A quantitative study on virtual cultivated land resources in China’s agricultural trade. J. Nat. Resour. 2013, 28, 1289–1297. [Google Scholar] [CrossRef]
- Wang, J.Y.; Dai, C. Evolution of Global Food Trade Patterns and Its Implications for Food Security Based on Complex Network Analysis. Foods 2021, 10, 2657. [Google Scholar] [CrossRef]
- Tian, P.P.; Lu, H.W.; Liu, J.G.; Feng, K.S. The pattern of virtual water transfer in China: From the perspective of the virtual water hypothesis. J. Clean. Prod. 2022, 346, 131053. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Virtual Water Flows between Nations in Relation to Trade in Livestock and Livestock Products; UNESCO-IHE: Delft, The Netherlands, 2003. [Google Scholar]
- Tamea, S.; Carr, J.A.; Laio, F.; Ridolfi, L. Drivers of the virtual water trade. Water Resour. Res. 2014, 50, 17–28. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. Long term drivers of global virtual water trade: A trade gravity approach for 1965–2010. Ecol. Econ. 2019, 156, 318–326. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y. Trade between China and countries along the Belt and Road and its influencing factors. Trop. Geogr. 2019, 39, 855–868. [Google Scholar] [CrossRef]
- Ali, T.; Huang, J.K.; Wang, J.X.; Xie, W. Global footprints of water and land resources through China’s food trade. Glob. Food Secur. 2017, 12, 139–145. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Fang, Q.C.; Dai, G.C.; Wang, J.M.; van Ittersum, M.K.; Wang, H.L.; Hou, Y. Driving Forces of the Agricultural Land Footprint of China’s Food Supply. J. Clean. Prod. 2024, 449, 141794. [Google Scholar] [CrossRef]
- Tortajada, C.; Zhang, H.Z. When food meets BRI: China’s emerging food silk road. Glob. Food Secur. 2021, 29, 100541. [Google Scholar] [CrossRef]
- Kerr, W.A. The COVID-19 pandemic and agriculture: Short- and long-run implications for international trade relations. Can. J. Agric. Econ. Rev. Can. D’agroeconomie 2020, 68, 225–229. [Google Scholar] [CrossRef]
- Shahzad, A.M. Determinants and Impacts of COVID-19 Pandemic on Food Security in Pakistan: The Nexus of Food Accessibility, Affordability, and Food Consumption Pattern. Ph.D. Dissertation, Huazhong Agricultural University, Wuhan, China, 2022. [Google Scholar]
- World Food Programme. COVID-19 Will Double Number of People Facing Food Crises Unless Swift Action Is Taken; World Food Programme: Rome, Italy, 2020; pp. 3–5. [Google Scholar]
- Glauben, T.; Svanidze, M.; Gotz, L.; Prehn, S.; Jaghdani, T.J.; Đurić, I.; Kuhn, L. The war in Ukraine, agricultural trade, and risks to global food security. Intereconomics 2022, 57, 157–163. [Google Scholar] [CrossRef]
- Fajgelbaum, P.; Goldberg, P.; Taglioni, D. The US-China Trade War and Global Reallocations; Policy Research Working Paper; World Bank: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Bilska, B.; Tomaszewska, M.; Kołożyn-Krajewska, D.; Szczepański, K.; Łaba, R.; Laba, S. Environmental aspects of food wastage in trade—A case study. Environ. Prot. Nat. Resour. 2020, 31, 24–34. [Google Scholar] [CrossRef]
- Pawlak, K.; Sowa, K. Changes in soybean production and trade in Poland and selected EU countries. Zesz. Nauk. Szkoły Głównej Gospod. Wiej. W Warszawie-Probl. Rol. Swiat. 2020, 20, 26–35. [Google Scholar]
- Da Silva, R.F.B.; Moran, E.F.; Liu, J.G. Complex relationships between soybean trade destination and tropical deforestation. Sci. Rep. 2023, 13, 10496. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Chang. 2019, 56, 1–10. [Google Scholar] [CrossRef]
- Raven, P.H.; Wagner, D.L. Agricultural intensification and climatechange are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 2021, 188, e2002548117. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.F.U.; van Groenigen, J.W.; Jensen, L.S.; Sander, B.O.; de Neergaard, A. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Sci. Total Environ. 2018, 612, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Kritee, K.; Nair, D.; Zavala-Araiza, D.; Proville, J.; Rudek, J.; Adhya, T.K.; Loecke, T.; Esteves, T.; Balireddygari, S.; Dava, O.; et al. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proc. Natl. Acad. Sci. USA 2018, 115, 9720–9725. [Google Scholar] [CrossRef] [PubMed]
- Josh, G. Rice Farming up to Twice as Bad for Climate Change as Previously Thought, Study Reveals. The Independent. 2018. Available online: https://www.independent.co.uk/environment/rice-farming-climate-change-global-warming-india-nitrous-oxide-methane-a85314 (accessed on 10 June 2024).
- Mathur, R.; Srivastava, V.K. Crop residue burning: Effects on environment. In Greenhouse Gas Emissions; Mishra, R.S., Singh, M.N., Saraswat, J.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 127–140. [Google Scholar]
- Murali, S.; Shrivastava, R.; Morchhale, R.K. Agricultural residue-based power generation: A viable option in India. In Energy Security and Development; Mishra, S., Singh, M., Saraswat, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 393–409. [Google Scholar]
- Parmar, M.; Solanki, H. Greenhouse gas emissions from the field burning of crop residues for the state of Gujarat. Int. Assoc. Biol. Comput. Dig. 2016, 1, 47–59. [Google Scholar]
- Kuo, L. Wasted Rice in Asia Emits over 600 Million Tonnes of Greenhouse Gases a Year. Quartz. 2013. Available online: https://qz.com/130051/wasted-rice-in-asia-emits-over-600-million-tonnes-of-greenhouse-gases-a-year (accessed on 10 June 2024).
- Imran, A.B.; Roshan, A.; Naeem, A.; Zulfiqar, A. Traditional Rice farming accelerate CH4N2O emissions functioning as a stronger contributors of climate change. Agric. Res. Technol. J. 2017, 9, 555765. [Google Scholar] [CrossRef]
- Ade, A.; Sebastien, B.; Patrick, R.; Udin, H. Impact of open burning of crop residues on air pollution and climate change in Indonesia. Curr. Sci. 2018, 115, 2259–2266. [Google Scholar] [CrossRef]
- Sembhi, H.; Wooster, M.J.; Zhang, T.; Sharma, S.; Singh, N.; Agarwal, S.; Boesch, H.; Gupta, S.; Misra, A.; Tripathi, S.N.; et al. Post-monsoon air quality degradation across Northern India: Assessing the impact of policy-related shifts in timing and amount of crop residue burnt. Environ. Res. Lett. 2020, 15, 104067. [Google Scholar] [CrossRef]
- Chowdhury, S.; Dey, S.; Di Girolamo, L.; Smith, K.R.; Pillarisetti, A.; Lyapustin, A. Tracking ambient PM2.5 build-up in Delhi national capital region during the dry season over 15 years using a high-resolution (1 km) satellite aerosol dataset. Atmos. Environ. 2019, 204, 142–150. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, D.K.; Singh, D.R.; Biswas, H.; Praveen, K.V.; Sharma, V. Estimating loss of ecosystem services due to paddy straw burning in North-west India. Int. J. Agric. Sustain. 2019, 17, 146–157. [Google Scholar] [CrossRef]
- Dobermann, A.; Fairhurst, T.H. Rice straw management. Better Crop. Int. 2002, 16, 7–11. [Google Scholar]
- Bhattacharyya, P.; Bhaduri, D.; Adak, T.; Munda, S.; Satapathy, B.; Dash, P.; Padhy, S.; Pattanayak, A.; Routray, S.; Chakraborti, M.; et al. Characterization of rice straw from major cultivars for best alternative industrial uses to cutoff the menace of straw burning. Ind. Crop. Prod. 2020, 143, 111919. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L. Land use planning and green environment services: The contribution of trail paths to sustainable development. Land 2023, 12, 1091. [Google Scholar] [CrossRef]
- Karlsson, J.O.; Parodi, A.; van Zanten, H.H.E.; Hansson, P.-A.; Roos, E. Halting European Union soybean feed imports favours ruminants over pigs and poultry. Nat. Food 2021, 2, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Arrutia, F.; Binner, E.; Williams, P.; Waldron, K.W. Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends Food Sci. Technol. 2020, 100, 88–102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Hu, Q.; Li, T.; Gao, X.; Zhou, Y.; Liu, X.; Lun, F. Did the International Trade in Crops Lead to Global Cropland Saving or Wasting in the Period 2000–2022? Foods 2024, 13, 2371. https://doi.org/10.3390/foods13152371
Zhang T, Hu Q, Li T, Gao X, Zhou Y, Liu X, Lun F. Did the International Trade in Crops Lead to Global Cropland Saving or Wasting in the Period 2000–2022? Foods. 2024; 13(15):2371. https://doi.org/10.3390/foods13152371
Chicago/Turabian StyleZhang, Tianbao, Qiyuan Hu, Tanglu Li, Xiang Gao, Yi Zhou, Xiaojie Liu, and Fei Lun. 2024. "Did the International Trade in Crops Lead to Global Cropland Saving or Wasting in the Period 2000–2022?" Foods 13, no. 15: 2371. https://doi.org/10.3390/foods13152371
APA StyleZhang, T., Hu, Q., Li, T., Gao, X., Zhou, Y., Liu, X., & Lun, F. (2024). Did the International Trade in Crops Lead to Global Cropland Saving or Wasting in the Period 2000–2022? Foods, 13(15), 2371. https://doi.org/10.3390/foods13152371