Scenario Analysis of Food Phosphorus Footprint in Kisumu, a Lakeside East African City in Lake Victoria (Kenya)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Substance Flow Analysis
2.3. Data Uncertainty and Error
2.4. Definition of Food Phosphorus Footprint
2.5. Scenarios and Indicators
3. Results
3.1. Food Phosphorus Flows in Kisumu Food System
3.2. Food Phosphorus Footprint in Kisumu Food System
3.3. Food Phosphorus Footprint in Different Scenarios in Kisumu Food System
4. Discussion
4.1. Global Comparison of Food Phosphorus Footprint
4.2. Measures of Phosphorus Footprint
4.3. Limitations and Implications of Model Choices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Cooper, J.; Carliell-Marquet, C.A. Substance flow analysis of phosphorus in the UK food production and consumption system. Resour. Conserv. Recycl. 2013, 74, 82–100. [Google Scholar] [CrossRef]
- Firmansyah, I.; Spiller, M.; Ruijter, F.J.D.; Carsjens, G.J.; Zeeman, G. Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability. Sci. Total Environ. 2016, 574, 1521–1532. [Google Scholar] [CrossRef]
- Brownlie, W.J.; Sutton, M.A.; Reay, D.S.; Heal, K.V.; Spears, B.M. Global actions for a sustainable phosphorus future. Nat. Food 2021, 2, 71–74. [Google Scholar] [CrossRef]
- UNEP. Take Effective, Inclusive, and Sustainable Multilateral Actions to Address Climate Change, Biodiversity Loss, and Pollution; United Nations Environment Programme: Nairobi, Kenya, 2024; Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/44927/UNEA-EA6-ED-Report.pdf?sequence=1 (accessed on 2 October 2023).
- Kattel, G.; Reeves, J.; Western, W.A.; Zhang, W.J.; McGowan, S.; Cuo, L.; Scales, P.; Dowling, K.; He, Q.; Wang, L.; et al. Healthy waterways and ecologically sustainable cities in Beijing-Tianjin-Hebei urban agglomeration (northern China): Challenges and future directions. WIREs Water 2020, 8, e1500. [Google Scholar] [CrossRef]
- Bi, J.; Yuan, Z.; Zhang, L.; Chen, Q. Quantifying Phosphorus Flow Pathways Through Socioeconomic Systems at the County Level in China. J. Ind. Ecol. 2013, 17, 452–460. [Google Scholar] [CrossRef]
- Huang, C.; Gao, B.; Xu, S.; Huang, Y.; Yan, X.; Cui, S. Changing phosphorus metabolism of a global aquaculture city. J. Clean. Prod. 2019, 225, 1118–1133. [Google Scholar] [CrossRef]
- Jiang, S.; Hua, H.; Sheng, H.; Jarvie, H.P.; Liu, X.; Zhang, Y.; Yuan, Z.; Zhang, L.; Liu, X. Phosphorus footprint in China over the 1961–2050 period: Historical perspective and future prospect. Sci. Total Environ. 2019, 650, 687–695. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef]
- Oita, A.; Wirasenjaya, F.; Liu, J.; Webeck, E.; Matsubae, K. Trends in the food nitrogen and phosphorus footprints for Asia’s giants: China, India, and Japan. Resour. Conserv. Recycl. 2020, 157, 104752. [Google Scholar] [CrossRef]
- Wang, F.; Sims, J.T.; Ma, L.; Ma, W.; Dou, Z.; Zhang, F. The phosphorus footprint of China’s food chain: Implications for food security, natural resource management, and environmental quality. J. Environ. Qual. 2011, 40, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Elrys, A.S.; Desoky, E.S.M.; Ali, A.; Zhang, J.B.; Cheng, Y. Sub-Saharan Africa’s food nitrogen and phosphorus footprints: A scenario analysis for 2050. Sci. Total Environ. 2021, 752, 141964. [Google Scholar] [CrossRef]
- Bizimana, F.; Dong, W.X.; Li, X.X.; Timilsina, A.; Zhang, Y.M.; Aluoch, S.O.; Qin, S.; Hu, C.S. Estimating food nitrogen and phosphorus footprints and budgeting nitrogen and phosphorus flows of Rwanda’s agricultural food system during 1961–2020. Sci. Total Environ. 2024, 906, 167693. [Google Scholar] [CrossRef] [PubMed]
- Wirasenjaya, F.; Dhar, A.R.; Oita, A.; Matsubae, K. Assessment of food-related nitrogen and phosphorus footprints in Indonesia. Sustain. Prod. Consum. 2023, 39, 30–41. [Google Scholar] [CrossRef]
- Papangelou, A.; Towa, E.; Achten, W.M.J.; Mathijs, E. A resource-based phosphorus footprint for urban diets. Environ. Res. Lett. 2021, 16, 075002. [Google Scholar] [CrossRef]
- Metson, G.S.; MacDonald, G.K.; Leach, A.M.; Compton, J.E.; Harrison, J.A.; Galloway, J.N. The U.S. consumer phosphorus footprint: Where do nitrogen and phosphorus diverge? Environ. Res. Lett. 2020, 15, 105022. [Google Scholar] [CrossRef]
- Grönman, K.; Ypyä, J.; Virtanen, Y.; Kurppa, S.; Soukka, R.; Seuri, P.; Finér, A.; Linnanen, L. Nutrient footprint as a tool to evaluate the nutrient balance of a food chain. J. Clean. Prod. 2016, 112, 2429–2440. [Google Scholar] [CrossRef]
- Joensuu, K.; Pulkkinen, H.; Kurppa, S.; Ypyä, J.; Virtanen, Y. Applying the nutrient footprint method to the beef production and consumption chain. Int. J. Life Cycle Assess. 2019, 24, 26–36. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, S.S.; Kattel, G.R.; Mkumbo, A.C.; Xiong, C.; Gao, Q.; Shen, Q. Scenario analysis of phosphorus flow in food production and consumption system in the Mwanza region, Tanzania. Sci. Total Environ. 2023, 879, 162991. [Google Scholar] [CrossRef]
- Laner, D.; Feketitsch, J.; Rechberger, H.; Fellner, J. A Novel Approach to Characterize Data Uncertainty in Material Flow Analysis and its Application to Plastics Flows in Austria. J. Ind. Ecol. 2015, 20, 1050–1063. [Google Scholar] [CrossRef]
- Alukwe, I.A. Evaluating Implications of Vision 2030 on Nutrient Fluxes in Nairobi, Kenya. Am. J. Environ. Eng. 2015, 5, 90–105. [Google Scholar] [CrossRef]
- Swilling, M.; Robinson, B.; Marvin, S.; Hodson, M. City-Level Decoupling: Urban Resource Flows and the Governance of Infrastructure Transitions. Environ. Dev. 2013, 8, 152–153. Available online: https://wedocs.unep.org/20.500.11822/8488 (accessed on 12 October 2023).
- UN-HABITAT. Urbanization and Structural Transformation. Structural Transformation 2, Nairobi, Kenya. 2016. Available online: https://population.un.org/wup/ (accessed on 20 November 2023).
- Watson, V. Seeing from the South: Refocusing Urban Planning on the Globe’s Central Urban Issues. Urban Stud. 2009, 46, 2259–2275. [Google Scholar] [CrossRef]
- UNEP/WAP. UNEP/WAP: State of the Mediterranean Marine and Coastal Environment. United Nations Environment Programme/Mediterranean Action Plan. 2012. Available online: https://www.unep.org/resources/report/state-mediterranean-marine-and-coastal-environment-highlights-policy-makers (accessed on 2 October 2023).
- Regmi, A.; Dyck, J. Effects of Urbanization on Global Food Demand. In Changing Structure of Global Food Consumption and Trade; Economic Research Service/USDA: Washington, DC, USA, 2001; pp. 23–30. Available online: https://www.ers.usda.gov/webdocs/outlooks/40303/14974_wrs011e_1_.pdf?v=1365 (accessed on 2 November 2023).
- Mnthambala, F.; Tilley, E.; Tyrrel, S.; Sakrabani, R. Phosphorus flow analysis for Malawi: Identifying potential sources of renewable phosphorus recovery. Resour. Conserv. Recycl. 2021, 173, 105744. [Google Scholar] [CrossRef]
- UN-WPP. World Population Prospects: The 2019 Revision. United Nations, Department of Economic and Social Affairs, Population Division (2019). United Nations World Population Prospects. 2019. Available online: https://population.un.org/wpp/ (accessed on 2 October 2023).
- Musungu, P.C.; Lalah, J.O.; Jondiko, I.O.; Ongeri, D.M.K. The impact of nitrogenous and phosphorous nutrients from selected point sources in Kisumu City on River Kisat and Nyalenda Wigwa Stream before their discharge into Winam Gulf, Lake Victoria. Environ. Earth Sci. 2014, 71, 5121–5127. [Google Scholar] [CrossRef]
- Kulekana, A. Levels of nitrate and phosphate in some satellite lakes within the Lake Victoria basin, Tanzania. Tanzan. J. Sci. 2008, 30, 1–10. [Google Scholar] [CrossRef]
- Zong, Y.; Chen, S.S.; Kattel, G.R.; Guo, Z. Spatial distribution of non-point source pollution from total nitrogen and total phosphorous in the African city of Mwanza (Tanzania). Front. Environ. Sci. 2023, 11, 1084031. [Google Scholar] [CrossRef]
- Matzinger, A.; Schmid, M.; Veljanoska-Sarafiloska, E.; Patceva, S.; Guseska, D.; Wagner, B. Eutrophication of ancient Lake Ohrid: Global warming amplifies detrimental effects of increased nutrient inputs. Limnoloy Oceanogr. 2007, 52, 338–353. [Google Scholar] [CrossRef]
- Odada, E.O.; Olago, D.O.; Kulindwa, K.; Ntiba, M.; Wandiga, S.O. Mitigation of environmental problems in Lake Victoria, eastAfrica: Causal chain and policy options analyses. R. Swed. Acad. Sci. 2004, 33, 14–18. [Google Scholar] [CrossRef]
- Cui, S.; Shi, Y.; Malik, A.; Lenzen, M.; Gao, B.; Huang, W. A hybrid method for quantifying China’s nitrogen footprint during urbanisation from 1990 to 2009. Environ. Int. 2016, 97, 137–145. [Google Scholar] [CrossRef]
- Stern, D.I. Environmental Kuznets Curve. In Encyclopedia of Energy; Cleveland, C.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 517–525. [Google Scholar] [CrossRef]
- CGK (County Government of Kisumu). Kisumu County Annual Development Plan 2021/2022; CGK: Nairobi, Kenya, 2022. Available online: https://repository.kippra.or.ke/handle/123456789/3918 (accessed on 10 November 2023).
- KNBS (Kenya National Bureau Statistical). Statistical Abstract 2023; KNBS: Nairobi, Kenya, 2023. Available online: https://www.knbs.or.ke/wp-content/uploads/2023/12/2023-Statistical-Abstract-Final-PDF_2.pdf (accessed on 5 October 2023).
- Hedbrant, J.; Sörme, L. Data Vagueness and Uncertainties in Urban Heavy-Metal Data Collection. Water Air Soil Pollut. Focus 2001, 1, 43–53. [Google Scholar] [CrossRef]
- Klinglmair, M.; Lemming, C.; Jensen, L.S.; Rechberger, H.; Astrupa, T.F.; Scheutz, C. Phosphorus in Denmark: National and regional anthropogenic flows. Resour. Conserv. Recycl. 2015, 105, 311–324. [Google Scholar] [CrossRef]
- Antikainen, R.; Lemola, R.; Nousiainen, J.I.; Sokka, L.; Esala, M.; Huhtanen, P.; Rekolainen, S. Stocks and flows of nitrogen and phosphorus in the Finnish food production and consumption system. Agric. Ecosyst. Environ. 2005, 107, 287–305. [Google Scholar] [CrossRef]
- City Facts. Population in Kisumu, Kenya 2030. Available online: https://www.city-facts.com/kisumu/population (accessed on 17 November 2023).
- Shinozaki, N.; Murakami, K.; Asakura, K.; Uechi, K.; Kobayashi, S.; Masayasu, S.; Sasaki, S. Dietary phosphorus intake estimated by 4-day dietary records and two 24-hour urine collections and their associated factors in Japanese adults. Eur. J. Clin. Nutr. 2018, 72, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Oloko, M.; Capuano, M.L.; Ness, B.; Otiende, F. Solid Waste Management: Recommendations for Kisumu, Kenya. Mistra Urban Futures Policy Brief, 2019:1. Available online: https://www.mistraurbanfutures.org/en/publication/solid-waste-management-recommendations-kisumu-kenya (accessed on 2 December 2023).
- Sibanda, L.K.; Obange, N.; Awuor, F.O. Challenges of Solid Waste Management in Kisumu, Kenya. Urban Forum 2017, 28, 387–402. Available online: https://link.springer.com/article/10.1007/s12132-017-9316-1 (accessed on 6 October 2023). [CrossRef]
- Kalmykova, Y.; Harder, R.; Borgestedt, H.; Svanäng, I. Pathways and management of phosphorus in urban areas. J. Ind. Ecol. 2012, 16, 928–939. [Google Scholar] [CrossRef]
- Jonsson, H.; Stinzing, A.R.; Vinneras, B. Guidelines on the Use of Urine and Faeces in Crop Production; EcoSanRes Publication Series; Stockholm Environment Institute: Stockholm, Sweden, 2004; Available online: http://www.ecosanres.org/pdf_files/ESR-factsheet-06.pdf (accessed on 2 October 2023).
- CGK (County Government of Kisumu). Sanitation Polices Practices and Preferences in Kisumu, Kenya; CGK: Nairobi, Kenya, 2019. Available online: https://www.aquaya.org/wp-content/uploads/2019_Research-Brief_SanCost_Kisumu.pdf (accessed on 10 November 2023).
- Wu, J.C.; Franzén, D.; Malmström, M.E. Anthropogenic phosphorus flows under different scenarios for the city of Stockholm, Sweden. Sci. Total Environ. 2015, 542, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- West, P.C.; Gerber, J.S.; Engstrom, P.M.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving global food security and the environment. Science 2014, 345, 325–328. [Google Scholar] [CrossRef]
- Sumithra, R.; Thushyanthy, M.; Srivaratharasan, T. Assessment of soil loss and nutrient depletion due to cassava harvesting: A case study from low input traditional agriculture. Int. Soil Water Conserv. Res. 2013, 1, S2095–S6339. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Tsang, C.K.; Wong, R.S.K.; Chu, L.M. Is Landfill Leachate a Potential Source of Nitrogen for Plant Growth? In International Conference on Environment and Industrial Innovation; IACSIT Press: Singapore, 2011; Volume 12, pp. 286–295. Available online: https://www.researchgate.net/publication/268292676_Is_Landfill_Leachate_a_Potential_Source_of_Nitrogen_for_Plant_Growth (accessed on 4 October 2023).
- Vila-Real, C.P.M.; Pimenta-Martins, A.S.; Kunyanga, C.N.; Mbugua, S.K.; Katina, K.; Maina, N.H.; Gomes, A.M.P.; Pinto, E.C.B. Nutritional intake and food sources in an adulturban Kenyan population. Nutr. Bull. 2022, 47, 423–437. [Google Scholar] [CrossRef]
- Boulanger, P.; Dudu, H.; Ferrari, E.; Mainar-Causapé, A.J.; Ramos, M.P. Effectiveness of fertilizer policy reforms to enhance food security in Kenya: A macro–micro simulation analysis. Appl. Econ. 2020, 54, 841–861. [Google Scholar] [CrossRef]
- Schönfeldt, H.C.; Hall, N.G. Dietary protein quality and malnutrition in Africa. Br. J. Nutr. 2012, 108, 69–76. [Google Scholar] [CrossRef]
- Metson, G.S.; Hale, R.L.; Iwaniec, D.M.; Cook, E.M.; Corman, J.R.; Galletti, C.S.; Childers, D.L. Phosphorus in Phoenix: A budget and spatial representation of phosphorus in an urban ecosystem. Ecol. Appl. Publ. Ecol. Soc. Am. 2012, 22, 705–721. [Google Scholar] [CrossRef]
- Santos, A.F.; Lopes, D.V.; Alvarenga, P.; Gando-Ferreira, L.M.; Quina, M.J. Phosphorus removal from urban wastewater through adsorption using biogenic calcium carbonate. J. Environ. Manag. 2024, 351, 119875. [Google Scholar] [CrossRef]
- Garske, B.; Stubenrauch, J.; Ekardt, F. Sustainable phosphorus management in European agricultural and environmental law. Rev. Eur. Comp. Int. Environ. Law 2024, 29, 1–144. [Google Scholar] [CrossRef]
- Bateman, A.; Horst, D.V.D.; Boardman, D.; Kansal, A.; Carliell-Marquet, C. Closing the phosphorus loop in England: The spatio-temporal balance of phosphorus capture from manure versus crop demand for fertiliser. Resour. Conserv. Recycl. 2011, 55, 1146–1153. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidelines for the Safe Use of Wastewater, Excreta, and Grey Water; Excreta and Greywater Use in Agriculture; World Health Organization: Geneva, Switzerland, 2013; Volume 4, Available online: https://www.who.int/publications/i/item/9241546859 (accessed on 2 December 2023).
- Mara, D.; Drangert, J.O.; Anh, N.V.; Tonderski, A.; Gulyas, A.; Tonderski, K. Selection of sustainable sanitation arrangements. Water Policy 2007, 9, 305–318. [Google Scholar] [CrossRef]
- Kujawa-Roeleveld, K.; Fernandes, T.; Wiryawan, Y.; Tawfik, A.; Visser, M.; Zeeman, G. Performance of UASB septic tank for treatment of concentrated black water within DESAR concept. Waterence Technol. 2005, 52, 307–313. [Google Scholar] [CrossRef]
- Buathong, T.; Boontanon, S.K.; Boontanon, N.; Surinkul, N.; Harada, H.; Fujii, S. Nitrogen Flow Analysis in Bangkok City, Thailand: Area Zoning and Questionnaire Investigation Approach. Procedia Environ. Sci. 2013, 17, 586–595. [Google Scholar] [CrossRef]
- Roefs, I.; Meulman, B.; Vreeburg, J.H.G.; Spiller, M. Centralised, decentralised or hybrid sanitation systems? Economic evaluation under urban development uncertainty and phased expansion. Water Res. 2017, 109, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.D.; Sullivan, T.; Carney, C.; Batstone, D.J. Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion. Appl. Energy 2014, 136, 23–31. [Google Scholar] [CrossRef]
- Erni, M. Modelling Urban Water Flows: An Insight into Current and Future Water Availability and Pollution of a Fast-Growing City. Case Study of Kumasi, Ghana. (MSc.) Swiss Federal Institute of Technology, Zurich. 2015. Available online: http://e-collection.library.ethz.ch/eserv/eth:29522/eth-29522-01.pdf (accessed on 2 August 2023).
- FAO. Cropland in Kisumu, Kenya (2021). Kenya, Nairobi. 2021. Available online: https://www.fao.org/3/cc0911en/cc0911en.pdf (accessed on 2 October 2023).
- FAO. Tropical Livestock Unit (TLU). 2015. Available online: http://www.fao.org/family-farming/data-sources/dataportrait/livestock/en/ (accessed on 2 October 2023).
- LVSWWDA (Lake Victoria South Water Works Development Agency). Kisumu County Water Master Plan Developed. Lake Victoria South Water Works Development Agency. 2022. Available online: https://www.lvswwda.go.ke/kisumu-county-water-master-plan-developed/ (accessed on 2 October 2023).
- Mbwele, L. Microbial Phosphorus Removal in Waste Stabilization Pond Wastewater Treatment Systems. Ph.D. Thesis, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden, 2006. Available online: https://www.semanticscholar.org/paper/Microbial-Phosphorus-Removal-in-Waste-Stabilisation-Mbwele/11a694e77c927cb1f65889945ccb77de5b4f02a4 (accessed on 5 October 2023).
- NRC. Nutrient Requirements of Beef Cattle, Update 2000; The National Academies Press: Washington, DC, USA, 2000; Available online: https://nap.nationalacademies.org/catalog/9791/nutrient-requirements-of-beef-cattle-seventh-revised-edition-update-2000 (accessed on 5 October 2023).
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. National Research Council. Committee on Nutrient Requirements of Small Ruminants. 2007. Available online: https://nap.nationalacademies.org/catalog/11654/nutrient-requirements-of-small-ruminants-sheep-goats-cervids-and-new (accessed on 15 October 2023).
- NRP. National Research Council. Nutrient Requirements of Poultry: Ninth Revised Edition; The National Academies Press: Washington, DC, USA, 1994; Available online: https://nap.nationalacademies.org/catalog/2114/nutrient-requirements-of-poultry-ninth-revised-edition-1994 (accessed on 15 October 2023).
- Stadlmayr, B.; Charrondiere, U.R.; Enujiugha, V.N.; Bayili, R.G.; Fagbohoun, E.G.; Samb, B. West African Food Composition Table-Table de Composition des Aliments d’Afrique de l’Ouest. FAO, Rome. 2012. Available online: https://www.academia.edu/20337868/Nutrient_Requirements_of_Beef_Cattle_Kebutuhan_Nutrisi_Sapi (accessed on 12 October 2023).
- Wang, X.Y. The Flow of Nitrogen, Phosphorus, and Carbon in the Food Production and Consumption System of Kunming City and Its Environmental Load. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2017. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=1r6202508m2u06h0cf350rf0h7028927 (accessed on 12 October 2023).
- WEDC. SFD Promotion Initiative Kisumu Kenya. 2016. Kenya, Nairobi. 2016. Available online: https://www.susana.org/_resources/documents/default/3-2622-7-1471944664.pdf (accessed on 20 October 2023).
- Zheng, W.T. Research on Resource Utilization of Crop Straw in Henan Province. Ph.D. Thesis, Henan Normal University, Zhengzhou, China, 2018. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=1k3c0xm0bp170pc0bb7x0ca0dt770858&site=xueshu_se (accessed on 20 October 2023). (In Chinese).
- ONEP. Depollution de la 2010 Marchica. Assainissement du Grand Nador, Interception, Transfert et Epuration des Eaux Usées. Extension des reseaux d’assainissement liquide des Municipalités et Centres du Grand Nador. Royaume du Maroc. Office National de l’Eau Potable. 2010. Available online: http://www.onep.ma/news/2010/In_Nador_31-05-2010/plaquette_Ass.GdNADOR_28-05-2010.pdf (accessed on 15 October 2023).
Level | Interval Factor | Information Source |
---|---|---|
1 | ×÷1.02 | Kenya or Kisumu Bureau of Statistics; field survey in Kisumu; scientific literature/reports on Kenya/Kisumu |
2 | ×÷1.03 | Scientific literature/reports on African countries/tropical regions |
3 | ×÷1.04 | Scientific literature/reports on other parts of the world outside Africa/tropical regions |
4 | ×÷1.07 | Information provided by head of enterprise |
5 | ×÷1.12 | Estimates/values based on typical/average figures |
Scenario | Year | Subsystem | Focus | Population a | Other Changes b |
---|---|---|---|---|---|
0.Reference | 2023 | - | - | Current | None |
1. BAU scenario | 2030 | All subsystem | population | Increase | None |
2. Vegetarian scenario | 2030 | Household subsystem | Human behaviour | Increase | Vegetarian P uptake |
3. Kitchen waste scenario | 2030 | Household subsystem | Collection | Increase | Improvement of kitchen waste collection rate |
4. Urine separation scenario | 2030 | Pit latrine subsystem | Collection | Increase | Urine collected separately |
5. Wastewater treatment scenario | 2030 | WWTP subsystem | Treatment | Increase | 40% of P in sewage sludge recovered for agricultural use |
6. Waste incineration scenario | 2030 | Landfill subsystem | Treatment | Increase | Recovery of P from solid waste incineration ash |
7. Combined scenario | 2030 | All subsystem | Combined 1–6 scenario | Increase | Combined 1–6 scenario |
Study | Local | Year | Scale | Method | Food Phosphorus Footprint (Kg P cap−1yr−1) |
---|---|---|---|---|---|
[16] | Brussels | 2011 | City | Based on SFA | 7.70 |
[56] | Luxembourg | 2007 | Country | P-Calculator model | 7.64 |
[56] | USA | 2007 | Country | P-Calculator model | 6.09 |
[56] | Belgium | 2007 | Country | P-Calculator model | 5.21 |
[11] | Japan | 2013 | Country | P-Calculator model | 6.05 |
[11] | China | 2013 | Country | P-Calculator model | 4.77 |
[11] | India | 2013 | Country | P-Calculator model | 1.60 |
[15] | Indonesia | 2013 | Country | P-Calculator model | 0.40 |
[14] | Rwanda | 2020 | Country | P-Calculator model | 0.31 |
This study | Kisumu | 2023 | City | Based on SFA | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Chen, S.S.; Kattel, G.R.; Qiao, W.; Lu, L.; Li, R.; Mkumbo, A.C. Scenario Analysis of Food Phosphorus Footprint in Kisumu, a Lakeside East African City in Lake Victoria (Kenya). Foods 2024, 13, 2225. https://doi.org/10.3390/foods13142225
Guo Z, Chen SS, Kattel GR, Qiao W, Lu L, Li R, Mkumbo AC. Scenario Analysis of Food Phosphorus Footprint in Kisumu, a Lakeside East African City in Lake Victoria (Kenya). Foods. 2024; 13(14):2225. https://doi.org/10.3390/foods13142225
Chicago/Turabian StyleGuo, Zheng, Sophia Shuang Chen, Giri Raj Kattel, Wenyi Qiao, Linglong Lu, Rong Li, and Anna Charles Mkumbo. 2024. "Scenario Analysis of Food Phosphorus Footprint in Kisumu, a Lakeside East African City in Lake Victoria (Kenya)" Foods 13, no. 14: 2225. https://doi.org/10.3390/foods13142225
APA StyleGuo, Z., Chen, S. S., Kattel, G. R., Qiao, W., Lu, L., Li, R., & Mkumbo, A. C. (2024). Scenario Analysis of Food Phosphorus Footprint in Kisumu, a Lakeside East African City in Lake Victoria (Kenya). Foods, 13(14), 2225. https://doi.org/10.3390/foods13142225