Decoding the Identity of Pinot Gris and Pinot Noir Wines: A Comprehensive Chemometric Fusion of Sensory (from Dual Panel) and Chemical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pinot Gris and Pinot Noir Wines
2.2. Climate of the Geographical Area
2.3. Sensory Analysis
2.4. HS-SPME-GCxGC-ToF/MS Analysis of the Volatile Profiles in Pinot Gris and Pinot Noir Wines
2.5. UHPLC-MS Analysis of the Non-Anthocyanic Phenolic Profiles in Pinot Noir and Pinot Gris Wines
2.6. UHPLC-MS Analysis of the Anthocyanic Phenolic Profiles in Pinot Noir Wines
2.7. Statistical Analysis
3. Results
3.1. ANOVA
3.1.1. Pinot Gris Sensory Data
3.1.2. Pinot Noir Sensory Data
3.2. Agglomerative Hierarchical Clustering (AHC)
3.3. Multiple Factor Analysis (MFA)
3.3.1. Pinot Gris Wines
3.3.2. Pinot Noir Wines
3.4. Regression Models
3.4.1. Partial Least-Squares Regression (PLS-R) for the OQJ Score of Pinot Gris Wines
3.4.2. Partial Least-Squares Regression (PLS-R) for the Olfactory Attributes of Pinot Gris Wines
3.4.3. Partial Least-Squares Regression (PLS-R) for the OQJ Score of Pinot Noir Wines
3.4.4. Partial Least-Squares Regression (PLS-R) for the Olfactory Attributes of Pinot Noir Wines
3.5. Radar Plots
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Leeuwen, C. Terroir: The effect of the physical environment on vine growth, grape ripening, and wine sensory attributes. In Managing Wine Quality; Woodhead Publishing: Sawston, UK, 2022; pp. 341–393. [Google Scholar] [CrossRef]
- Kolyesnikova, N.; Dodd, T.H.; Duhan, D.F. Consumer attitudes towards local wines in an emerging region: A segmentation approach. Int. J. Wine Bus. Res. 2008, 20, 321–334. [Google Scholar] [CrossRef]
- Ares, G.; Varela, P. Trained vs. consumer panels for analytical testing: Fueling a long-lasting debate in the field. Food Qual. 2017, 61, 79–86. [Google Scholar] [CrossRef]
- Sipos, L.; Nyitrai, Á.; Hitka, G.; Friedrich, L.F.; Kókai, Z. Sensory panel performance evaluation—Comprehensive review of practical approaches. Appl. Sci. 2021, 11, 11977. [Google Scholar] [CrossRef]
- Poggesi, S.; Dupas de Matos, A.; Longo, E.; Chiotti, D.; Pedri, U.; Eisenstecken, D.; Boselli, E. Chemosensory Profile of SouthTyrolean Pinot Blanc Wines: A Multivariate Regression Approach. Molecules 2021, 26, 6245. [Google Scholar] [CrossRef] [PubMed]
- Poggesi, S.; Darnal, A.; Ceci, A.T.; Longo, E.; Vanzo, L.; Mimmo, T.; Boselli, E. Fusion of 2DGC-MS, HPLC-MS and Sensory Data to Assist Decision-Making in the Marketing of International Monovarietal Chardonnay and Sauvignon Blanc Wines. Foods 2022, 11, 3458. [Google Scholar] [CrossRef] [PubMed]
- Sherman, E.; Coe, M.; Grose, C.; Martin, D.; Greenwood, D.R. Metabolomics approach to assess the relative contributions of the volatile and non-volatile composition to expert quality ratings of pinot noir wine quality. J. Agric. Food Chem. 2020, 68, 13380–13396. [Google Scholar] [CrossRef] [PubMed]
- Mafata, M.; Brand, J.; Kidd, M.; Medvedovici, A.; Buica, A. Exploration of Data Fusion Strategies Using Principal Component Analysis and Multiple Factor Analysis. Beverages 2022, 8, 66. [Google Scholar] [CrossRef]
- Hopfer, H.; Ebeler, S.E.; Heymann, H. How blending affects the sensory and chemical properties of red wine. Am. J. Enol. Vitic. 2012, 63, 313–324. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; OVI: Paris, France, 2022; Volume 2. [Google Scholar]
- Climate Marlborough: Temperature, Climate Graph, Climate Table for Marlborough. Available online: https://en.climatedata.org/oceania/new-zealand/marlborough-2458/ (accessed on 31 May 2022).
- Climate Gisborne: Temperature, Climate Graph, Climate Table for Gisborne—Climate-Data.org. (n.d.) Available online: https://en.climate-data.org/oceania/new-zealand/gisborne-1986/ (accessed on 1 September 2023).
- Climate Hawke’s Bay: Temperature, Climate Graph, Climate Table for Hawke’s Bay. Available online: https://en.climatedata.org/oceania/new-zealand/hawke-s-bay-1985/ (accessed on 31 May 2022).
- Mendoza Climate, Weather by Month, Average Temperature (Argentina). Available online: https://en.climate-data.org/southamerica/argentina/mendoza/mendoza-1893/ (accessed on 31 May 2022).
- Central Valley|Valley, Chile|Britannica. Available online: https://www.britannica.com/place/Central-Valley-Chile (accessed on 31 May 2022).
- Geography and Climate|South African Government. Available online: www.gov.za (accessed on 31 May 2022).
- The Sweet Sicilian Climate|Visit Sicily Official Page. Available online: https://www.visitsicily.info/dolce-clima-siciliano/ (accessed on 31 May 2022).
- Puglia, Italy. Live Weather Update. Holiday Weather. Available online: www.holiday-weather.com (accessed on 31 May 2022).
- Climate in Veneto. Available online: https://www.venetoinside.com (accessed on 31 May 2022).
- Il Clima Della Regione Friuli-Venezia Giulia|Climatologia|Il Tempo in Media e Agli Estremi. Available online: http://www.centrometeo.com (accessed on 31 May 2022).
- Nishida, M.; Lestringant, P.; Cantu, A.; Heymann, H. Comparing classical descriptive analysis with modified descriptive analysis, modified rate-all-that-apply, and modified check-all-that-apply. J. Sens. Stud. 2021, 36, e12684. [Google Scholar] [CrossRef]
- Noble, A.C.; Arnold, R.A.; Buechsenstein, J.; Leach, E.J.; Schmidt, J.O.; Stern, P.M. Modification of a Standardized System of Wine Aroma Terminology. Am. J. Enol. Vitic. 1987, 38, 143–146. [Google Scholar] [CrossRef]
- Waehrens, S.S.; Zhang, S.; Hedelund, P.I.; Petersen, M.A.; Byrne, D.V. Application of the Fast Sensory Method ‘Rate-All-That-Apply’ in Chocolate Quality Control Compared with DHS-GC-MS. Int. J. Food Sci. Technol. 2016, 51, 1877–1887. [Google Scholar] [CrossRef]
- Rabitti, N.S.; Cattaneo, C.; Appiani, M.; Proserpio, C.; Laureati, M. Describing the Sensory Complexity of Italian Wines: Application of the Rate-All-That-Apply (RATA) Method. Foods 2022, 11, 2417. [Google Scholar] [CrossRef] [PubMed]
- Pagès, J. Multiple Factor Analysis: Main Features and Application to Sensory. Rev. Colomb. De Estad. 2004, 27, 1–26. [Google Scholar]
- Aluja, T.; Morineau, A.; Sanchez, G. Principal Component Analysis for Data Science (pca4ds). 2018. Available online: https://pca4ds.github.io/ (accessed on 25 April 2022).
- Longo, E.; Rossetti, F.; Merkyte, V.; Jourdes, M.; Teissedre, P.L.; Boselli, E. Novel Cyclic Proanthocyanidins in Wines from South Tyrol: Dependance on the Grape Variety. Infowine 2020, 10, 1–9. [Google Scholar]
- Longo, E.; Rossetti, F.; Jouin, A.; Teissedre, P.L.; Jourdes, M.; Boselli, E. Distribution of crown hexameric procyanidin and itstetrameric and pentameric congeners in red and white wines. Food Chem. 2019, 299, 125125. [Google Scholar] [CrossRef]
- Lengyel, E.; Sikolya, L. The influence of aroma compounds on senzorial traits of wines from the apold depression. Manag. Sustain. Dev. 2015, 7, 23. [Google Scholar] [CrossRef]
- Morena Luna, L.H.; Reynolds, A.G.; Di Profio, F.A.; Zhang, L.; Kotsaki, E. Crop level and harvest date impact on four Ontario wine grape cultivars. II. Wine aroma compounds and sensory analysis. S. Afr. J. Enol. Vitic. 2018, 39, 246–270. [Google Scholar] [CrossRef]
- Viana, F.; Gil, J.V.; Vallés, S.; Manzanares, P. Increasing the levels of 2-phenylethyl acetate in wine through the use of a mixed culture of Hanseniaspora osmophila and Saccharomyces cerevisiae. Int. J. Food Microbiol. 2009, 135, 68–74. [Google Scholar] [CrossRef]
- Fuchs, C.; Bakuradze, T.; Steinke, R.; Grewal, R.; Eckert, G.P.; Richling, E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J. Funct. Foods 2020, 70, 103988. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Jungfer, E.; Ritter, C.; Santiago-Schübel, B.; Thiele, B.; Fett, R.; Galensa, R. Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS. Food Res. Int. 2012, 48, 848–855. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Antonopoulou, S.; Nomikos, T.; Demopoulos, C.A. Structure elucidation of phenolic compounds from red/white wine with antiatherogenic properties. Biochim Biophy Acta Mol Cell Biol Lipids. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2003, 1632, 90–99. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Revilla, I.; González-SanJosé, M.L.; Beltrán, S. Various applications of liquid chromatography–mass spectrometry to the analysis of phenolic compounds. J. Chromatogr. A 1999, 847, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, Y.; Black, C.A.; Hack, J.; Smith, P. Structural characterization of reaction products of caftaric acid and bisulfite present in a commercial wine using high resolution mass spectrometric and nuclear magnetic resonance techniques. Food Chem. 2017, 230, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Mazerolles, G.; Preys, S.; Bouchut, C.; Meudec, E.; Fulcrand, H.; Souquet, J.M.; Cheynier, V. Combination of several mass spectrometry ionization modes: A multiblock analysis for a rapid characterization of the red wine polyphenolic composition. Anal. Chim. Acta 2010, 678, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Dupas de Matos, A.; Longo, E.; Chiotti, D.; Pedri, U.; Eisenstecken, D.; Sanoll, C.; Boselli, E. Pinot blanc: Impact of the winemaking variables on the evolution of the phenolic, volatile and sensory profiles. Foods 2020, 9, 499. [Google Scholar] [CrossRef] [PubMed]
- Dresen, S.; Weinmann, W.; Wurst, F.M. Forensic confirmatory analysis of ethyl sulfate—A new marker for alcohol consumption—By liquid-chromatography/electrospray ionization/tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1644–1648. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 2007, 12, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Noguerol-Pato, R.; González-Rodríguez, R.M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Influence of tebuconazole residues on the aroma composition of Mencía red wines. Food Chem. 2011, 124, 1525–1532. [Google Scholar] [CrossRef]
- Girard, B.; Kopp, T.G.; Reynolds, A.G.; Cliff, M. Influence of vinification treatments on aroma constituents and sensory descriptors of Pinot noir wines. Am. J. Enol. Vitic. 1997, 48, 198–206. [Google Scholar] [CrossRef]
- Canturk, S.; Kunter, B.; Coksari, G. Effects of kaolin and dicarboxylic acid based stress inhibitors on aroma composition of two table grape cultivars (V. vinifera L.). Acta Sci. Pol. Hortorum Cultus 2018, 17, 37–46. [Google Scholar] [CrossRef]
- Komes, D.; Ulrich, D.; Lovric, T. Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje. Eur. Food Res. Technol. 2006, 222, 1–7. [Google Scholar] [CrossRef]
- Licker, J.L.; Acree, T.E.; Henick-Kling, T. What is” Brett” (Brettanomyces) flavor?: A preliminary investigation. Chem. Wine Flavor 1998, 714, 96–115. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Dungey, K.A.; Baldock, G.A.; Kennison, K.R.; Wilkinson, K.L. Identification of a β-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Anal. Chim. Acta 2010, 660, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Grati, W.; Samet, S.; Bouzayani, B.; Ayachi, A.; Treilhou, M.; Téné, N.; Mezghani-Jarraya, R. HESI-MS/MS Analysis of phenolic compounds from Calendula aegyptiaca fruits extracts and evaluation of their antioxidant activities. Molecules 2022, 27, 2314. [Google Scholar] [CrossRef] [PubMed]
- Taamalli, A.; Iswaldi, I.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Zarrouk, M. UPLC–QTOF/MS for a Rapid Characterisation of Phenolic Compounds from Leaves of Myrtus communis L. Phytochem. Anal. 2014, 25, 89–96. [Google Scholar] [CrossRef]
- Nemadziva, B.; Le Roes-Hill, M.; Koorbanally, N.; Kudanga, T. Small laccase-catalyzed synthesis of a caffeic acid dimer with high antioxidant capacity. Process Biochem. 2018, 69, 99–105. [Google Scholar] [CrossRef]
- Mass Bank High Quality Mass Spectral Database. Limocitrin Mass Spectrum. Available online: https://massbank.jp/ (accessed on 17 November 2023).
- Charters, S.; Pettigrew, S. The dimensions of wine quality. Food Qual Prefer. 2007, 18, 997–1007. [Google Scholar] [CrossRef]
- Lyu, X.; Araujo, L.D.; Quek, S.Y.; Kilmartin, P.A. Effects of antioxidant and elemental sulfur additions at crushing on aroma profiles of Pinot Gris, Chardonnay and Sauvignon Blanc wines. Food Chem. 2021, 346, 128914. [Google Scholar] [CrossRef]
- Chigo-Hernandez, M.M.; Tomasino, E. Aroma Perception of Limonene, Linalool and α-Terpineol Combinations in Pinot Gris Wine. Foods 2023, 12, 2389. [Google Scholar] [CrossRef]
- Guinard, J.X.; Cliff, M. Descriptive analysis of Pinot noir wines from Carneros, Napa, and Sonoma. Am. J. Enol. Vitic. 1987, 38, 211–215. [Google Scholar] [CrossRef]
- Ledderhof, D.; Reynolds, A.G.; Manin, L.; Brown, R. Influence of water status on sensory profiles of Ontario Pinot noir wines. LWT-Food Sci. Technol. 2014, 57, 65–82. [Google Scholar] [CrossRef]
- Grigorica, L.G.; Niculaua, M.; Nechita, C.B.; Nistor, A.M.; Cotea, V.V. The impact of some commercial yeast strains on aroma compounds and sensorial analysis on two white wine varieties made in PGI Dealurile Olteniei, Romania. In Proceedings of the BIO Web of Conferences, Sofia, Bulgaria, 29 May–2 June 2017; EDP Sciences: Les Ulis, France, 2017; Volume 9, p. 02006. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.A.; Graña, M.; Oliveira, J.M. Determination of odorants in varietal wines from international grape cultivars (Vitis vinifera) grown in NW Spain. ISAJEV South Afr. Soc. Enol. Vitic. 2013, 34, 212–222. [Google Scholar] [CrossRef]
- Herrero, P.; Sáenz-Navajas, P.; Culleré, L.; Ferreira, V.; Chatin, A.; Chaperon, V.; Litoux-Desrues, F.; Escudero, A. Chemosensory characterization of Chardonnay and Pinot Noir base wines of Champagne. Two very different varieties for a common product. Food Chem. 2016, 207, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Brander, C.F.; Kepner, R.E.; Webb, A.D. Identification of some volatile compounds of wine of Vitis vinifera cultivar Pinot noir. Am. J. Enol. Vitic. 1980, 31, 69–75. [Google Scholar] [CrossRef]
- Brizuela, N.S.; Bravo-Ferrada, B.M.; Pozo-Bayón, M.Á.; Semorile, L.; Tymczyszyn, E.E. Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni strains. Food Res Int. 2018, 106, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Sherman, E.; Harbertson, J.F.; Greenwood, D.R.; Villas-Bôas, S.G.; Fiehn, O.; Heymann, H. Reference samples guide variable selection for correlation of wine sensory and volatile profiling data. Food Chem. 2018, 267, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, M.; Genisheva, Z.; Masa, A.; Oliveira, J.M. Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchem. J. 2010, 95, 240–246. [Google Scholar] [CrossRef]
- San-Juan, F.; Ferreira, V.; Cacho, J.; Escudero, A. Quality and aromatic sensory descriptors (mainly fresh and dry fruit character) of Spanish red wines can be predicted from their aroma-active chemical composition. J. Agric. Food Chem. 2011, 59, 7916–7924. [Google Scholar] [CrossRef]
- Rodrigues, H.; Rolaz, J.; Franco-Luesma, E.; Sáenz-Navajas, M.P.; Behrens, J.; Valentin, D.; Depetris-Chauvin, N. How the country-of-origin impacts wine traders’ mental representation about wines: A study in a world wine trade fair. Food Res. Int. 2020, 137, 109480. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.P.; Ballester, J.; Pêcher, C.; Peyron, D.; Valentin, D. Sensory drivers of intrinsic quality of red wines: Effect of culture and level of expertise. Food Res. Int. 2013, 54, 1506–1518. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.P.; Ballester, J.; Peyron, D.; Valentin, D. Extrinsic attributes responsible for red wine quality perception: A cross-cultural study between France and Spain. Food Qual. Prefer. 2014, 35, 70–85. [Google Scholar] [CrossRef]
- Hopfer, H.; Nelson, J.; Ebeler, S.E.; Heymann, H. Correlating wine quality indicators to chemical and sensory measurements. Molecules 2015, 20, 8453–8483. [Google Scholar] [CrossRef] [PubMed]
Code | Origin of Wines | Country of Origin | Vintage | Alcohol (% Vol) | RS (g/L) | TA (g/L Tartaric Acid) | pH | Time and Temperature of Fermentation |
---|---|---|---|---|---|---|---|---|
PG_NZL-MA | Marlborough (South Island) | New Zealand | 2020 | 13.0 | 3.7 | 5.7 | 3.3 | 14 to 21 days at 15 °C |
PG_NZL_GI | Gisborne/East Coast (North Island) | New Zealand | 2020 | 13.0 | 5.9 | 5.2 | 3.4 | 14 days at 12–14 °C |
PG_ARG_ME | Mendoza | Argentina | 2020 | 14.0 | 2.0 | 5.6 | 3.4 | 12 days at 13 °C |
PG_RSA_DL | Western Cape (Dry land) | South Africa | 2020 | 12.5 | 3.4 | 5.3 | 3.3 | 13 °C |
PG_RSA_IL | Western Cape (Irrigated area) | South Africa | 2020 | 13.0 | 1.6 | 5.4 | 4.0 | n/a |
PG_ITA_SP | Sicily/Puglia | Southern Italy | 2020 | 12.0 | 3.2 | 5.4 | 3.3 | 8 days at 14–16 °C |
PG_ITA_VF | Veneto/Friuli | Northern Italy | 2020 | 12.7 | 2.9 | 6.4 | 3.3 | 8–10 days at 18 to 20 °C |
Code | Origin of Wines | Country of Origin | Vintage | Alcohol (% Vol) | RS (g/L) | TA (g/L Tartaric Acid) | pH | Time and Temperature of Fermentation |
---|---|---|---|---|---|---|---|---|
PN_NZL_MA | Marlborough (South Island) | New Zealand | 2020 | 13.5 | 1.5 | 4.9 | 3.7 | 7 days at 30 °C |
PN_NZL_HA | Hawkes Bay (North Island) | New Zealand | 2019 | 13.0 | 2.1 | 6.23 | 3.6 | 10–14 days at 20–25 °C |
PN_ARG_ME | Mendoza | Argentina | 2020 | 15.4 | 3.2 | 7.5 | 3.6 | 8 days at 25 °C |
PN_RSA_WC | Western Cape (Dry land) | South Africa | 2020 | 13.5 | 2.3 | 5.7 | 3.4 | 7 days at 23 °C |
PN_CLE_CV | Central Valley | Chile | 2020 | 12.7 | 2.8 | 5.5 | 3.4 | 6 days at 25–28 °C |
PN_ITA_SP | Sicily/Puglia | Southern Italy | 2020 | 12.7 | 6.5 | 6.0 | 3.4 | 15 days at 18–20 °C |
PN_ITA_VF | Veneto/Friuli | Northern Italy | 2020 | 13.3 | 0.9 | 4.8 | 3.5 | 8–10 days at 28 °C |
Origins | Zone | Climate Description | Temperature Range (Yearly/°C) | Rainfall (Yearly/mm) | Climate Classification |
---|---|---|---|---|---|
Marlborough | South Island, New Zealand | Warm and temperate. Heavy rainfall even in driest months. Oceanic climate [11] | 12.0 °C (53.7 °F) | 874 mm (34.4 inches) | Cfb |
Gisborne | North Island, East Coast, New Zealand | Oceanic climate. Warm and temperate. Significant rainfall throughout the year. Even the driest month still has a lot of rainfall. Climate is considered to be Cfb according to the Köppen–Geiger classification [12] | 13.9 °C (56.9 °F) | 929 mm (36.6 inches) | Cfb |
Hawkes Bay | North Island, New Zealand | Mild, generally warm, and temperate with a significant amount of rainfall during the year [13] | 7.2–19.5 °C (45–56.9 °F) | 59–110 mm (2–4 inches) | Cfb |
Mendoza | Argentina | Hot and clear summer, cold and cloudy winter, and dry all year round [14] | 16.3 °C (61.4 °F) | 492 mm (19.4 inches) | Cfb |
Central Valley | Chile | Mediterranean climate with cool, dry summers. Mild rainy winters [15] | 10–12 °C (50–53.6 °F) | 72–99 mm (2.8–3.9 inches) | Csb |
Western Cape (dry land) | South Africa | Dry, summer rainfall, relatively warm in winter [16] | Below 30 °C | 464 mm (18 inches) | BWk |
Western Cape (irrigated area) | South Africa | Mediterranean with warm and dry summers. Mild and moist winters. Low summer rainfall [16] | Below 30 °C | 464 mm (18 inches) | BWk |
Sicily/Puglia | Southern Italy | Mediterranean with hot summers and short mild winters [17] Mediterranean climate with hot sunny summers and mild winters, dry [18] | 18.25 °C (64.85 °F)/9–24 °C (48–75 °F) | 55.03 mm (2.17 inches)/99.3 mm (4 inches) | Csa/Csa |
Veneto/Friuli | Northern Italy | Moderately continental hill and plain areas; alpine region characterized by cool summers and cold winters with frequent snowfalls [19] The climate in Friuli Venezia Giulia ranges from the sub-Mediterranean climate of the coastal areas to the more humid temperate climate of the plains, to the Alpine climate in the mountains [20] | 15.93 °C (60.67 °F)/14.93 °C (58.87 °F) | 152.54 mm (6.01 inches)/163.49 mm (6.44 inches) | Cfa/Cfb |
Wine | Attributes | Descriptors | Description |
---|---|---|---|
PINOT GRIS | VISUAL | ||
GREENISH | From pale grass to an intense green | ||
YELLOWISH | From pale straw to a rich yellow | ||
OLFACTORY | |||
Pome tree fruit-a | Green apple, pear | Tree fruit (green apple, pear) | |
Caramelized-a | Chestnut honey | Chestnut–honey | |
Woody-a | Oak wood | Fresh or burnt wood | |
Pungent-a | Alcohol | Strong sensation from alcohol | |
Tropical fruit-a | Banana, pineapple | Tropical fruit (banana, pineapple) | |
Vegetative-a | Green bell pepper | Cut green bell pepper | |
Spicy-a | Clove, white pepper | Cloves and white pepper | |
Floral-a | Rose, Jasmine green tea | Rose water and fresh scent of wildflowers, jasmine, green tea (infused) | |
GUSTATORY | |||
Warmness | Alcohol | Burning sensation in the mouth | |
Sourness | Acid (tartaric, malic, lactic acid) | Acid taste resembling vinegar, ripe apple | |
Bitterness | Caffeine | Bitter taste typical for coffee beverage | |
Saltiness | Sodium chloride | Salty taste typical for salt | |
FLAVOR | |||
Pome tree fruit-f | Apple/pear | Typical of pome tree fruits (apple, pear) | |
Stone fruit-f | Apricot/peach | Typical of stone fruits (apricot, peach) | |
OVERALL QUALITY JUDGEMENT (OQJ) | A score given by the panel on the sensory quality of the product |
Wine | Attributes | Descriptors | Description |
---|---|---|---|
PINOT NOIR | VISUAL | ||
Violet-red | From violet to ruby red | ||
Red-brown | From red to brown | ||
OLFACTORY | |||
Woody-a | Fresh wood | Fresh oak wood (woody) | |
Coffee | Coffee | ||
Spicy-a | Cloves | Cloves | |
Black pepper | Black pepper | ||
Licorice | Licorice | ||
Red fruit-a | Cherry | Cherries | |
Strawberry | Strawberries | ||
Dried fruit-a | Strawberry jam | Strawberry jam (cooked) | |
Floral-a | Rose | Rose water | |
Vegetative-a | Green bell pepper | Fresh-cut green bell pepper | |
GUSTATORY | |||
Bitterness | Caffeine | Bitter taste typical from coffee beverage | |
Astringency | Alum | Astringent somesthetic sensation (tannins) | |
Sweetness | Sweetness (glucose, fructose, and sucrose) | Sweet taste in the mouth | |
Warmness | Alcohol | Burning sensation in the mouth | |
Sourness | Acid (tartaric, malic, lactic acid) | Acid taste resembling vinegar, ripe apple | |
FLAVOR | |||
Woody-f | Fresh oak and toasted tannins | Typical from toasted barrique | |
Red fruit-f | Cherry and strawberry | Red fruits (strawberry and cherry) | |
Vegetative-f | Green bell pepper | Fresh vegetable (green bell pepper) | |
Spicy-f | Cloves | Cloves | |
Nutmeg | Typical of nutmeg | ||
Licorice | Typical of licorice, anise | ||
OVERALL QUALITY JUDGEMENT (OQJ) | A score given by the panel on the sensory quality of the product |
Green Bell Pepper | Cherry | Licorice | Fresh Wood | |
---|---|---|---|---|
R2 | 0.810 | 0.664 | 0.603 | 0.838 |
Std. deviation | 0.235 | 0.266 | 0.259 | 0.302 |
RMSE | 0.202 | 0.231 | 0.224 | 0.246 |
MSE | 0.041 | 0.053 | 0.050 | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darnal, A.; Poggesi, S.; Longo, E.; Arbore, A.; Boselli, E. Decoding the Identity of Pinot Gris and Pinot Noir Wines: A Comprehensive Chemometric Fusion of Sensory (from Dual Panel) and Chemical Analysis. Foods 2024, 13, 18. https://doi.org/10.3390/foods13010018
Darnal A, Poggesi S, Longo E, Arbore A, Boselli E. Decoding the Identity of Pinot Gris and Pinot Noir Wines: A Comprehensive Chemometric Fusion of Sensory (from Dual Panel) and Chemical Analysis. Foods. 2024; 13(1):18. https://doi.org/10.3390/foods13010018
Chicago/Turabian StyleDarnal, Aakriti, Simone Poggesi, Edoardo Longo, Annagrazia Arbore, and Emanuele Boselli. 2024. "Decoding the Identity of Pinot Gris and Pinot Noir Wines: A Comprehensive Chemometric Fusion of Sensory (from Dual Panel) and Chemical Analysis" Foods 13, no. 1: 18. https://doi.org/10.3390/foods13010018
APA StyleDarnal, A., Poggesi, S., Longo, E., Arbore, A., & Boselli, E. (2024). Decoding the Identity of Pinot Gris and Pinot Noir Wines: A Comprehensive Chemometric Fusion of Sensory (from Dual Panel) and Chemical Analysis. Foods, 13(1), 18. https://doi.org/10.3390/foods13010018