Brewer’s Spent Grain, Coffee Grounds, Burdock, and Willow–Four Examples of Biowaste and Biomass Valorization through Advanced Green Extraction Technologies
Abstract
:1. Introduction
2. Brewer´s Spent Grain
2.1. BSG Chemical Composition
2.2. BSG Valorization Technologies
3. Spent Coffee Grounds
3.1. Importance of Spent Coffee Grounds
3.2. Extraction of Lipids from SCGs with scCO2
3.3. Influence of Operating Conditions on Lipidic Composition of SCG Extracts
4. Burdock
4.1. Burdock’s Physiological and Pharmacological Effects
4.2. Burdock Biomass Transformation into High-Value Bioactives by Innovative Techniques
- The techniques and operating conditions applied for the recovery of bioactives might influence the quality of the extract.
- The genotype, seasonality, and cultivation conditions of the burdock plant in different countries can directly influence their chemical composition and metabolite content, as changes in the conditions of the place where the plant grows can significantly alter its capacity for metabolic homeostasis [63,64,65].
4.3. Influence of Techniques and Operating Conditions on Extracts’ Composition
5. Willow
5.1. Willow Extract’s Pharmacological Effects
5.2. Willow Extract Concentration and Purification Steps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seider, W.D.; Lewin, D.R.; Seader, J.D.; Widago, S.; Gani, R.; Ng, K.M. Product and Process Design Principles. Synthesis, Analysis, and Evaluation, 4th ed.; John Wiley & Sons Inc.: New York, NY, USA, 2017. [Google Scholar]
- Linnhoff, B.; Flower, J.R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE J. 1978, 24, 633–642. [Google Scholar] [CrossRef]
- Linnhoff, B.; Flower, J.R. Synthesis of heat exchanger networks: II. Evolutionary generation of networks with various criteria of optimality. AIChE J. 1978, 24, 642–654. [Google Scholar] [CrossRef]
- Heck, L.; Poth, N.; Soni, V. Pinch Technology; Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Green Transition. Available online: https://reform-support.ec.europa.eu/what-we-do/green-transition_en#ecl-inpage-253 (accessed on 11 January 2023).
- BarthHass, Press Release, BarthHass-Report 2021/2022. Available online: https://www.barthhaas.com/fileadmin/user_upload/01-barthhaas-2022/Company/News/2022/2022_07_25/PR_World-beer-market.pdf (accessed on 17 January 2023).
- Briggs, D.E.; Boulton, C.A.; Brookes, P.A.; Stevens, R. Brewing Science and Practice; Woodhead Publishing Limited: Cambridge, UK; CRC Press LLC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Bianco, A.; Budroni, M.; Zara, S.; Mannazzu, I.; Fancello, F.; Zara, G. The role of microorganisms on biotransformation of brewers’spent grain. Appl. Microbiol. Biotechnol. 2020, 104, 8661–8678. [Google Scholar] [CrossRef]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- The “Beer Index”: What the Price of a Schooner Can Tell You about the Markets. Available online: https://www.etoro.com/au/news-and-analysis/market-insights/etoro-beer-index/ (accessed on 19 January 2023).
- Taylor, H. UK Beer Costs Soar as Average Price of Pint Tops £ 8 in One London Pub. The Guardian. Available online: https://www.theguardian.com/food/2022/jun/04/uk-beer-costs-soar-average-price-pint-tops-8-pounds-one-london-pub (accessed on 7 February 2023).
- The Denver Post, Beer Mash Fattening Cows, Trimming Costs in Colorado. Available online: https://www.denverpost.com/2012/05/04/beer-mash-fattening-cows-trimming-costs-in-colorado-2/ (accessed on 19 January 2023).
- Fernandez, M.P.; Rodriguez, J.F.; Garcia, M.T.; de Lucas, A.; Gracia, I. Application of supercritical fluid extraction to brewer’s spent grain management. Ind. Eng. Chem. Res. 2008, 47, 1614–1619. [Google Scholar] [CrossRef]
- Lisci, S.; Tronci, S.; Grosso, M.; Karring, H.; Hajrizaj, R.; Errico, M. Brewer’s spent grain: Its value as renewable biomass and its possible applications. Chem. Eng. Trans. 2022, 92, 259–264. [Google Scholar]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Milew, K.; Manke, S.; Grimm, S.; Haseneder, R.; Herdegen, V.; Braeuer, A.S. Application, characterization and economic assessment of brewers’spent grain and liquor. J. Inst. Brew. 2022, 128, 96–108. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Roberto, I.C. Chemical characterization and liberation of pentose sugars from brewer’s spent grain. J. Chem. Technol. Biotechnol. 2006, 81, 268–274. [Google Scholar] [CrossRef]
- Connolly, A.; Piggott, C.O.; FitzGerald, R.J. Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers’spent grain. Int. J. Food Sci. Technol. 2013, 48, 1670–1681. [Google Scholar] [CrossRef]
- Paz, A.; da Silva Sabo, S.; Vallejo, M.; Marguet, E.; Pinheiro de Souza Oliveira, R.; Dominguez, J.M. Using brewer’s spent grain to formulate culture media for the production of bacteriocins using Patagonian strains. LWT 2018, 96, 166–174. [Google Scholar] [CrossRef]
- Guiarda, E.C.; Oliveira, A.C.; Antunes, S.; Freitas, F.; Castro, P.M.L.; Duque, A.F.; Reis, M.A.M. A two-stage process for conversion of brewer’s spent grain into volatile fatty acid through acidogenic fermentation. Appl. Sci. 2021, 11, 3222. [Google Scholar] [CrossRef]
- Zeko-Pivac, A.; Bosnjakovic, A.; Planinic, M.; Parlov Vukovic, J.; Novak, P.; Jednacak, T.; Tisma, M. Improvement of the nutraceutical profile of brewer’s spent grain after treatment with Trametes versicolor. Microorganisms 2022, 10, 2295. [Google Scholar] [CrossRef]
- Agrawal, D.; Gopaliya, D.; Willoughby, N.; Khare, S.K.; Kumar, V. Recycling potential of brewer’s spent grains for circular biorefineries. Curr. Opin. Green Sustain. Chem. 2023, 40, 100748. [Google Scholar] [CrossRef]
- Meneses, N.G.T.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Krausova, I.; Cejnar, R.; Kucera, J.; Dostalek, P. Impact of the brewing process on the concentration of silicon in lager beer. Inst. Brew. Distill. 2014, 120, 433–437. [Google Scholar] [CrossRef]
- Vieira, E.; Rocha, M.A.M.; Coelho, E.; Pinho, O.; Saraiva, J.A.; Ferreira, I.M.P.L.V.O.; Coimbra, M.A. Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Ind. Crops Prod. 2014, 52, 136–143. [Google Scholar] [CrossRef]
- Niemi, P.; Tamminen, T.; Smeds, A.; Viljanen, K.; Ohra-aho, T.; Holopainen-Mantila, U.; Faulds, C.B.; Poutanen, K.; Buchert, J. Characterization of lipids and lignans in brewer’s spent grain and its enzymatically extracted fraction. J. Agric. Food Chem. 2012, 60, 9910–9917. [Google Scholar] [CrossRef] [PubMed]
- del Rio, J.C.; Prinsen, P.; Gutierrez, A. Chemical composition of lipids in brewer’s spent grain: A promising source of valuable phytochemicals. J. Cereal Sci. 2013, 58, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio-Lopez, T.; Boas, A.A.V.; Coscueta, E.R.; Costa, E.M.; Silva, S.; Campos, D.; Teixeira, J.A.; Pintado, M. Bioactive extracts from brewer’s spent grain. Food Funct. 2020, 11, 8963–8977. [Google Scholar] [CrossRef]
- Zuorro, A.; Iannone, A.; Lavecchia, R. Water-organic solvent extraction of phenolic antioxidants from brewers’spent grain. Processes 2019, 7, 126. [Google Scholar] [CrossRef] [Green Version]
- Socaci, S.A.; Farcas, A.C.; Diaconeasa, Z.M.; Vodnar, D.C.; Rusu, B.; Tofana, M. Influence of extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers’spent grain. J. Cereal Sci. 2018, 80, 180–187. [Google Scholar] [CrossRef]
- Moreira, M.M.; Morais, S. A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Anal. Bioanal. Chem. 2012, 403, 1019–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso-Riano, P.; Sanz Diez, M.T.; Blanco, B.; Beltran, S.; Trigueros, E.; Benito-Roman, O. Compounds from brewer’s spent grain: Kinetic study, extract characterization, and concentration. Antioxidants 2020, 9, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasounds: Current status and trends. Ultrason. Sonochem. 2021, 74, 105584. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Rosello-Soto, E.; Marszalek, K.; Bursac Kovacevic, D.; Rezek Jambrak, A.; Lorenzo, J.M.; Chemat, F.; Putnik, P. Green food processing: Concepts, strategies, and tools. In Green Food Processing Techniques. Preservation, Transformation and Extraction; Chemat, F., Vorobiev, E., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 1–21. [Google Scholar]
- Spinelli, S.; Conte, A.; Lecce, L.; Padalino, L.; Del Nobile, M.A. Supercritical carbon dioxide of brewer’s spent grain. J. Supercrit. Fluids 2016, 107, 69–74. [Google Scholar] [CrossRef]
- Ferrentino, G.; Ndayishimiye, J.; Haman, N.; Scampicchio, M. Functional activity of oils from brewer’s spent grain extracted by supercritical carbon dioxide. Food Bioprocess Technol. 2019, 12, 789–798. [Google Scholar] [CrossRef]
- Alonso-Riano, P.; Melgosa, R.; Trigueros, E.; Illera, A.E.; Beltran, S. Valorization of brewer’s spent grain by consecutive supercritical carbon dioxide extraction and enzymatic hydrolysis. Food Chem. 2022, 396, 133493. [Google Scholar] [CrossRef]
- The International Coffee Organization. Available online: https://www.ico.org/trade_statistics.asp?section=Statistics (accessed on 6 January 2023).
- Cruz, R.; Mendes, E.; Torrinha, A.; Morais, S.; Pereira, J.A.; Baptista, P.; Casal, S. Revalorization of spent coffee residues by a direct agronomic approach. Int. Food Res. J. 2015, 73, 190–196. [Google Scholar] [CrossRef]
- Loyao, A.S.; Villasica, S.L.G.; Dela Peña, P.L.L.; Go, A.W. Extraction of lipids from spent coffee grounds with non-polar renewable solvents as alternative. Ind. Crops Prod. 2018, 119, 152–161. [Google Scholar] [CrossRef]
- Andrade, C.; Perestrelo, R.; Câmara, J. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022, 27, 7504. [Google Scholar] [CrossRef] [PubMed]
- Bijla, L.; Aissa, R.; Laknifli, A.; Bouyahya, A.; Harhar, H.; Gharby, S. Spent coffee grounds: A sustainable approach toward novel perspectives of valorization. J. Food Biochem. 2022, 46, e14190. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.M.A.; Sandi, D. Extraction of coffee diterpenes and coffee oil using supercritical carbon dioxide. Food Chem. 2006, 101, 1087–1094. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Bravo, J.; Monente, C.; Juániz, I.; De Peña, M.P.; Cid, C. Influence of extraction process on antioxidant capacity of spent coffee. Food Res. Int. 2013, 50, 610–616. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Aparicio García, N.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Velázquez Escobar, F.; Blanch, G.P.; San Andres, M.I.; Sanchez-Fortun, S.; del Castillo, M.D. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. Technol. 2019, 5, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recycl. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Rajesh Banu, J.R.; Kavitha, S.; Kannah, Y.R.; Kumar, D.M.; Preethi; Atabani, A.E.; Kumar, G. Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresour. Technol. 2020, 302, 122821. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Biorefinery approach for spent coffee grounds valorization. Bioresour. Technol. 2018, 247, 1077–1084. [Google Scholar] [CrossRef]
- Coelho, J.P.; Filipe, R.M.; Robalo, M.P.; Boyadzhieva, S.; Cholakov, G.S.; Stateva, R.P. Supercritical CO2 extraction of spent coffee grounds. Influence of co-solvents and characterization of the extracts. J. Supercrit. Fluids 2020, 161, 104825. [Google Scholar] [CrossRef]
- de Melo, M.M.; Barbosa, H.M.; Passos, C.P.; Silva, C.M. Supercritical fluid extraction of spent coffee grounds: Measurement of extraction curves, oil characterization and economic analysis. J. Supercrit. Fluids 2014, 86, 150–159. [Google Scholar] [CrossRef]
- Andrade, K.S.; Goncalvez, R.T.; Maraschin, M.; Ribeiro-do-Valle, R.M.; Martínez, J.; Ferreira, S.R.S. Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta 2012, 88, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Couto, R.M.; Fernandes, J.; da Silva, M.D.R.G.; Simões, P.C. Supercritical fluid extraction of lipids from spent coffee grounds. J. Supercrit. Fluids 2009, 51, 159–166. [Google Scholar] [CrossRef]
- Araujo, M.N.; Azevedo, A.Q.P.L.; Hamerski, F.; Voll, F.A.P.; Corazza, M.L. Enhanced extraction of spent coffee grounds oil using high-pressure CO2 plus ethanol solvents. Ind. Crops Prod. 2019, 141, 111723. [Google Scholar] [CrossRef]
- Gao, X.M.; Xu, Z.M.; Li, Z.W. Traditional Chinese Medicines; People’s Health Publishing House: Beijing, China, 2000; pp. 263–266. [Google Scholar]
- Liu, J.; Cai, Y.-Z.; Wong, R.N.S.; Lee, C.K.-F.; Tang, S.C.W.; Sze, S.C.W.; Tong, Y.; Zhang, Y. Comparative analysis of caffeoylquinic acids and lignans in roots and seeds among various burdock (Arctium lappa) genotypes with high antioxidant activity. J. Agric. Food Chem. 2012, 60, 4067–4075. [Google Scholar] [CrossRef] [PubMed]
- Yosri, N.; Alsharif, S.M.; Xiao, J.; Musharraf, S.G.; Zhao, C.; Saeed, A.; Gao, R.; Said, N.S.; Di Minno, A.; Daglia, M.; et al. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed. Pharmacother. 2023, 158, 114104. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, J.; Li, Y.; Wang, L.; Hu, L.; Zhang, L.; Zhou, Y. Extraction and antioxidant activities of poly-saccharides from roots of Arctium lappa L. Int. J. Biol. Macromol. 2019, 123, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Zhu, S.; Chen, S.; Zhang, M.; Wang, Z. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves. Anal. Chim. Acta 2012, 716, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Aboutabl, E.A.; El Mahdy, M.E.; Sokkar, N.M.; Sleem, A.A.; Shams, M.M. Bioactive lignans and other phenolics from the roots, leaves and seeds of Arctium lappa L. grown in Egypt. Egypt Pharm. J. 2012, 11, 59–65. [Google Scholar]
- Wang, D.; Badarau, A.S.; Swamy, M.K.; Shaw, S.; Maggi, F.; da Silva, L.E.; Lopez, V.; Yeung, A.W.K.; Mocan, A.; Atanasov, A.G. Arctium species secondary metabolites chemodiversity and bioactivities. Front. Plant Sci. 2019, 9, 834. [Google Scholar] [CrossRef]
- Golbaz, F.; Zarei, S.; Garakani, F.; Majab, F. The essential oil composition of Arctium Lappa root and leaf. Iran. J. Pharm. Sci. 2018, 14, 1–6. [Google Scholar]
- Gobbo-Neto, L.; Lopes, N.P. Online identification of chlorogenic acids, sesquiterpene lactones, and flavonoids in the Brazilian Arnica Lychnophora ericoides Mart. (Asteraceae) Leaves by HPLC-DAD-MS and HPLC-DAD-MS/MS and a validated HPLC-DAD method for their simultaneous analysis. J. Agric. Food Chem. 2008, 56, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Bundy, J.G.; Davevy, M.P.; Viant, M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics 2009, 5, 3–21. [Google Scholar] [CrossRef]
- Shulaev, V.; Cortes, D.; Miller, G.; Mittler, R. Metabolomics for plant stress response. Physiol. Plant. 2008, 132, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, S.M.; Fetzer, D.E.; de Souza, A.R.; Corazza, M.L.; Hamerski, F.; Yankov, D.S.; Stateva, R.P. Valorization by compressed fluids of Arctium lappa seeds and roots as a sustainable source of valuable compounds. J. CO2 Util. 2022, 56, 101821. [Google Scholar] [CrossRef]
- Rodriguez, J.M.F.; de Souza, A.R.C.; Krüger, R.L.; Bombardelli, M.C.M.; Machado, C.S.; Corazza, M.L. Kinetics, composition and antioxidant activity of burdock (Arctium lappa) root extracts obtained with supercritical CO2 and co-solvent. J. Supercrit. Fluids 2018, 135, 25–33. [Google Scholar] [CrossRef]
- de Souza, A.R.C.; Guedes, A.R.; Rodriguez, J.M.F.; Bombardelli, M.C.M.; Corazza, M.L. Extraction of Arctium Lappa leaves using supercritical CO2 + ethanol: Kinetics, chemical composition, and bioactivity assessments. J. Supercrit. Fluids 2018, 140, 137–146. [Google Scholar] [CrossRef]
- de Souza, A.R.C.; Stefanov, S.; Bombardelli, M.C.M.; Corazza, M.L.; Stateva, R.P. Assessment of composition and biological activity of Arctium lappa leaves extracts obtained with pressurized liquid and supercritical CO2 extraction. J. Supercrit. Fluids 2019, 152, 104573. [Google Scholar] [CrossRef]
- Montinari, M.R.; Minelli, S.; De Caterina, R. The first 3500 years of aspirin history from its roots—A concise summary. Vasc. Pharmacol. 2019, 113, 1–8. [Google Scholar] [CrossRef]
- Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NASIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 2121–2132. [Google Scholar] [CrossRef]
- Chrubasik, S.; Eisenberg, E.; Balan, E.; Weinberger, T.; Luzzati, R.; Conradt, C. Treatment of Low Back Pain Exacerbations with Willow Bark Extract: A Randomized Double-Blind Study. Am. J. Med. 2000, 109, 9–14. [Google Scholar] [CrossRef]
- Hedner, T.; Everts, B. The Early Clinical History of Salicylates in Rheumatology and Pain. Clin. Rheumatol. 1998, 17, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Bonaterra, G.A.; Heinrich, E.U.; Kelber, O.; Weiser, D.; Metz, J.; Kinscherf, R. Anti-inflammatory effect of the willow bark extract STW 33-I (Proaktiv®) in LPS-activated human monocytes and differentiated macrophages. Phytomedicine 2010, 17, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Julkunen-Tiitto, R.; Sorsa, S. Testing the effects of drying methods on willow flavonoids, tannins and salicylates. J. Chem. Ecol. 2001, 27, 779–789. [Google Scholar] [CrossRef]
- Ruuhola, T.M.; Julkunen-Tiitto, R. Salicylates of Intact Salix myrsinifolia Plantlets Do Not Undergo Rapid Metabolic Turnover. Plant Physiol. 2000, 122, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Orians, C.M.; Griffiths, M.E.; Roche, B.M.; Fritz, R.S. Phenolic glycosides and condensed tannins in Salix sericea, S. eriocephala and their F1 hybrids: Not all hybrids are created equal. Biochem. Syst. Ecol. 2000, 28, 619–632. [Google Scholar] [CrossRef]
- Grujic, M.; Dzamic, A.-M.; Mitic, V.D.; Atankov-Jovanovic, V.M.; Stojanovic, G.S. Effects of solvent extraction system on antioxidant activity of Lamium purpureum L. Hem. Ind. 2017, 71, 361–370. [Google Scholar] [CrossRef]
- Gligoric, E.; Igic, R.; Suvajdzic, L.; Teofilovic, B. Methodological Aspects of Extraction, Phytochemical Characterization and Molecular Docking Studies of Salix caprea L. Bark and Leaves. Acta Chim. Slov. 2019, 66, 821–830. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R. Phenolic constituents in leaves of northern willows: Methods for analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Ostolski, M.; Adamczak, M.; Brzozowski, B.; Wiczkowski, W. Antioxidant activity and chemical characteristics of supercritical CO2 and water extracts from willow and poplar. Molecules 2021, 26, 545. [Google Scholar] [CrossRef]
- Gligoric, E.; Igic, R.; Conic, B.S.; Kladar, N.; Teofilovic, B.; Grujic, N. Chemical profiling and biological activities of “green” extracts of willow species (Salix L., Salicaceae): Experimental and chemometric approaches. Sustain. Chem. Pharm. 2023, 32, 100981. [Google Scholar] [CrossRef]
- Christensen, K.V.; Ohm, M.L.; Horn, V.G. Towards a membrane process based parth to concentrate willow extract. Procedia Eng. 2012, 44, 1736–1738. [Google Scholar] [CrossRef] [Green Version]
- Dou, J.; Heinonen, J.; Vuorinen, J.; Xu, C.; Sainio, T. Chromatographic recovery and purification of natural phytochemicals from underappreciated willow bark water extracts. Sep. Purif. Technol. 2021, 261, 118247. [Google Scholar] [CrossRef]
Reference | |||||
---|---|---|---|---|---|
Component (% DW) | [17] | [18] | [19] | [20] | [21] |
Cellulose | 16.8 | nd | 25.58 ± 6.27 | nd | 21.47 ± 1.22 |
Hemicellulose | 28.4 | nd | 21.51 ± 0.73 | nd | 30.95 ± 1.55 |
| nd | nd | 12.47 ± 1.30 | nd | nd |
| nd | nd | 5.85 ± 0.82 | nd | nd |
Lignin | 27.8 | 23.39 ± 0.56 | 12.72 ± 2.00 | 12.0 b | 6.94 ± 0.95 |
Carbohydrate | nd | 34 a | nd | 46.2 ± 0.06 a | nd |
Starch | nd | 1.48 ± 0.01 | nd | nd | nd |
Proteins | 15.2 | 23.10 ± 0.09 | 31.81 ± 0.46 | 26.9 ± 0.1 | 23.07 ± 0.13 |
Lipids | nd | 13.51 ± 0.78 | nd | 11.5 ± 0.03 | 8.09 ± 0.17 |
Acetyl groups | 1.4 | nd | nd | nd | nd |
Extractives | 5.8 a | nd | nd | nd | nd |
Polyphenols | nd | 1.70 ± 0.02 | nd | nd | |
Ashes | 4.6 | 3.29 ± 0.06 | 3.07 ± 0.03 | 3.40 ± 0.04 | 3.86 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Errico, M.; Coelho, J.A.P.; Stateva, R.P.; Christensen, K.V.; Bahij, R.; Tronci, S. Brewer’s Spent Grain, Coffee Grounds, Burdock, and Willow–Four Examples of Biowaste and Biomass Valorization through Advanced Green Extraction Technologies. Foods 2023, 12, 1295. https://doi.org/10.3390/foods12061295
Errico M, Coelho JAP, Stateva RP, Christensen KV, Bahij R, Tronci S. Brewer’s Spent Grain, Coffee Grounds, Burdock, and Willow–Four Examples of Biowaste and Biomass Valorization through Advanced Green Extraction Technologies. Foods. 2023; 12(6):1295. https://doi.org/10.3390/foods12061295
Chicago/Turabian StyleErrico, Massimiliano, Jose A. P. Coelho, Roumiana P. Stateva, Knud V. Christensen, Rime Bahij, and Stefania Tronci. 2023. "Brewer’s Spent Grain, Coffee Grounds, Burdock, and Willow–Four Examples of Biowaste and Biomass Valorization through Advanced Green Extraction Technologies" Foods 12, no. 6: 1295. https://doi.org/10.3390/foods12061295
APA StyleErrico, M., Coelho, J. A. P., Stateva, R. P., Christensen, K. V., Bahij, R., & Tronci, S. (2023). Brewer’s Spent Grain, Coffee Grounds, Burdock, and Willow–Four Examples of Biowaste and Biomass Valorization through Advanced Green Extraction Technologies. Foods, 12(6), 1295. https://doi.org/10.3390/foods12061295