Versatile Effects of GABA Oolong Tea on Improvements in Diastolic Blood Pressure, Alpha Brain Waves, and Quality of Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Teabag Preparation and Comparison of pH Values between Various Teas
2.2. Extraction and Measurement of Phytochemicals
2.3. Human Study
2.4. Alpha Brain Wave Measurement
2.5. QOL Questionnaire
2.6. Statistics
3. Results
3.1. The Comparison of pH Values between GO Tea and Various Tea Products
3.2. The Comparison of Phytochemicals between Various Tea Products
3.3. The Comparison of Compositions for Eight Catechins among Various Taiwanese Tea Extracts
3.4. The Anti-Hypertensive Effects of GO Tea Extracts
3.5. The Relaxation Effects of GO Tea Extracts
3.6. The QOL Improvement Associated with GO Tea Extracts
4. Discussion
4.1. Optimization of pH Condition in the Industrial Production of GO Teas
4.2. The Major Bioactive Phytochemicals in GO Teas: Pharmaceutical Roles of GABA
4.3. The Versatile Effects of GO Tea on Stress Relief and QOL Improvement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teed, A.R.; Feinstein, J.S.; Puhl, M.; Lapidus, R.C.; Upshaw, V.; Kuplicki, R.T.; Bodurka, J.; Ajijola, O.A.; Kaye, W.H.; Thompson, W.K.; et al. Association of Generalized Anxiety Disorder with Autonomic Hypersensitivity and Blunted Ventromedial Prefrontal Cortex Activity during Peripheral Adrenergic Stimulation. JAMA Psychiatry 2022, 79, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Gianaros, P.J.; Sheu, L.K.; Uyar, F.; Koushik, J.; Jennings, J.R.; Wager, T.D.; Singh, A.; Verstynen, T.D. A Brain Phenotype for Stressor-Evoked Blood Pressure Reactivity. J. Am. Heart Assoc. 2017, 6, 006053. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Vo, T.S. An Updated Review on Pharmaceutical Properties of Gamma-Aminobutyric Acid. Molecules 2019, 24, 2678. [Google Scholar] [CrossRef] [PubMed]
- Hepsomali, P.; Groeger, J.A.; Nishihira, J.; Scholey, A. Effects of Oral Gamma-Aminobutyric Acid(GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front. Neurosci. 2020, 14, 923. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jo, K.; Hong, K.-B.; Han, S.H.; Suh, H.J. GABA and L-Theanine Mixture Decreases Sleep Latency and Improves NREM Sleep. Pharm. Biol. 2019, 57, 64–72. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Huang, W.; Chen, H.-J.; Lin, C.-C. The Composition and Health Benefits of Mackerel Concentrate. MOJ Food Process. Technol. 2019, 7, 88–90. [Google Scholar] [CrossRef]
- Cho, J.-H.; Lee, H.-K.; Dong, K.-R.; Kim, H.-J.; Kim, Y.-S.; Cho, M.-S.; Chung, W.K. A Study of Alpha Brain Wave Characteristics from MRI Scanning in Patients with Anxiety Disorder. J. Korean Phys. Soc. 2011, 59, 2861–2868. [Google Scholar] [CrossRef]
- Abdou, A.M.; Higashiguchi, S.; Horie, K.; Kim, M.; Hatta, H.; Yokogoshi, H. Relaxation and Immunity Enhancement Effects of γ-Aminobutyric Acid(GABA) Administration in Humans. BioFactors 2006, 26, 201–208. [Google Scholar] [CrossRef]
- Wang, L.; Brennan, M.; Li, S.; Zhao, H.; Lange, K.W.; Brennan, C. How Does the Tea L-Theanine Buffer Stress and Anxiety. Food Sci. Hum. Wellness 2022, 11, 467–475. [Google Scholar] [CrossRef]
- Unno, K.; Furushima, D.; Nomura, Y.; Yamada, H.; Iguchi, K.; Taguchi, K.; Suzuki, T.; Ozeki, M.; Nakamura, Y. Antidepressant Effect of Shaded White Leaf Tea Containing High Levels of Caffeine and Amino Acids. Molecules 2020, 25, 3550. [Google Scholar] [CrossRef]
- Hinton, T.; Jelinek, H.F.; Viengkhou, V.; Johnston, G.A.; Matthews, S. Effect of GABA-Fortified Oolong Tea on Reducing Stress in a University Student Cohort. Front. Nutr. 2019, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Yogeswara, I.B.A.; Maneerat, S.; Haltrich, D. Glutamate Decarboxylase from Lactic Acid Bacteria—A Key Enzyme in GABA Synthesis. Microorganisms 2020, 8, 1923. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Lin, H.-H.; Chang, H.; Chuang, L.-T.; Hsieh, C.-Y.; Lu, S.-H.; Hung, C.-F.; Chang, J.-F. Prophylactic Effects of Purple Shoot Green Tea on Cytokine Immunomodulation through Scavenging Free Radicals and NO in LPS-Stimulated Macrophages. Curr. Issues Mol. Biol. 2022, 44, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zeng, L.; Liao, Y.; Li, J.; Zhou, B.; Yang, Z.; Tang, J. Enzymatic Reaction-Related Protein Degradation and Proteinaceous Amino Acid Metabolism during the Black Tea (Camellia Sinensis) Manufacturing Process. Foods 2020, 9, 66. [Google Scholar] [CrossRef]
- Sittiprapaporn, P.; Chang, S.-C. Electroencephalographic Study of Real-Time Arithmetic Task Recognition in Learning Disabilities Children. Asian J. Med. Sci. 2018, 10, 43–46. [Google Scholar] [CrossRef]
- Han, W.-Y.; Huang, J.-G.; Li, X.; Li, Z.-X.; Ahammed, G.J.; Yan, P.; Stepp, J.R. Altitudinal Effects on the Quality of Green Tea in East China: A Climate Change Perspective. Eur. Food Res. Technol. 2016, 243, 323–330. [Google Scholar] [CrossRef]
- Suwanmanon, K.; Hsieh, P.-C. Effect of γ-Aminobutyric Acid and Nattokinase-Enriched Fermented Beans on the Blood Pressure of Spontaneously Hypertensive and Normotensive Wistar–Kyoto Rats. J. Food Drug Anal. 2014, 22, 485–491. [Google Scholar] [CrossRef]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.P.; Salgado, H.C.; Liu, X.; Zheng, H. Exercise Training Normalizes the Blunted Central Component of the Baroreflex in Rats with Heart Failure: Role of the PVN. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H173–H181. [Google Scholar] [CrossRef]
- Won, S.-Y.; Kim, J.-S.; Lee, M.-Y.; Oh, K.-H. The Effect of GABA-Enriched Chlorella Intake and Voluntary Wheel Running on Blood Pressure, Running Distance and Antioxidant Enzyme in Spontaneously Hypertensive Rats. Exerc. Sci. 2015, 22, 34–42. [Google Scholar] [CrossRef]
- Rieiro, H.; Diaz-Piedra, C.; Morales, J.M.; Catena, A.; Romero, S.; Roca-Gonzalez, J.; Fuentes, L.J.; Di Stasi, L.L. Validation of Electroencephalographic Recordings Obtained with a Consumer-Grade, Single Dry Electrode, Low-Cost Device: A Comparative Study. Sensors 2019, 19, 2808. [Google Scholar] [CrossRef]
- Liu, N.-H.; Chiang, C.-Y.; Chu, H.-C. Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors. Sensors 2013, 13, 10273–10286. [Google Scholar] [CrossRef]
- Choe, H.; Lee, H.; Lee, J.; Kim, Y.-H. Protective Effect of Gamma-Aminobutyric Acid against Oxidative Stress by Inducing Phase II Enzymes in C2C12 Myoblast Cells. J. Food Biochem. 2021, 45, e13639. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, W.; Yu, P.; Xi, Z.; Xu, L.; Li, X.; He, N. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo. Nanoscale Res. Lett. 2013, 8, 190. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, L.; Zeng, X.; Li, Z.; Qin, B.; He, N. New perspective of GABA as an inhibitor of formation of advanced lipoxidation end-products: It’s interaction with malondiadehyde. J. Biomed. Nanotechnol. 2010, 6, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yu, R.; Zhou, Q.; Jiang, S.; Le, G. Protective effects of γ-aminobutyric acid against H2O2-induced oxidative stress in RIN-m5F pancreatic cells. Nutr. Metab. 2018, 15, 60. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, Z.; Xie, C.; Gong, W.; Hu, Z.; Peng, Y. A novel mechanism of gamma-aminobutyric acid (GABA) protecting human umbilical vein endothelial cells (HUVECs) against H2O2-induced oxidative injury. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 217, 68–75. [Google Scholar] [CrossRef] [PubMed]
- El-Hady, A.M.A.; Gewefel, H.S.; Badawi, M.A.; Eltahawy, N.A. Gamma-aminobutyric acid ameliorates gamma rays-induced oxidative stress in the small intestine of rats. J. Basic Appl. Zool. 2017, 78, 2. [Google Scholar] [CrossRef]
- Eltahawy, N.A.; Saada, H.N.; Hammad, A.S. Gamma amino butyric acid attenuates brain oxidative damage associated with insulin alteration in streptozotocin-treated rats. Indian J. Clin. Biochem. 2017, 32, 207–213. [Google Scholar] [CrossRef]
Tea | Abbreviation | Tea Cultivar | Place of Origin | pH |
---|---|---|---|---|
Wenshen Paochong tea | WP | Chin-Shin-Oolong | New Taipei | 5.84 a |
High-mountain Oolong tea | HO | Chin-Shin-Oolong | Chiayi | 5.93 a |
Oriental Beauty tea | OB | Chin-Shin-Dapan | Hsinchu | 4.95 b |
Dongding Oolong tea | DO | Sijichun | Nantou | 5.89 a |
GABA oolong tea | GO | Sijichun | Nantou | 5.07 b |
Total Phenolics mg GAE/g | Total Catechins mg GAE/g | Free Amino Acids mg TE/g | |
---|---|---|---|
WP | 404.4 ± 0.8 a | 164.9 ± 4.0 b | 73.4 ± 3.4 c |
HO | 326.6 ± 1.8 c | 140.9 ± 1.8 c | 93.7 ± 4.6 b |
OB | 328.6 ± 0.6 c | 147.2 ± 5.1 c | 68.4 ± 1.5d c,d |
DO | 353.2 ± 2.7 b | 195.4 ± 1.2 a | 65.6 ± 2.3 d |
GO | 263.0 ± 4.4 d | 91.0 ± 3.2 d | 99.0 ± 4.0 a |
Content (mg/g Extract) | |||||
---|---|---|---|---|---|
WP | HO | OB | DO | GO | |
Catechin | 4.4 ± 0.1 b | 4.2 ± 0.1 b | 4.1 ± 0.0 b | 5.2 ± 0.1 a | 3.5 ± 0.1 c |
EC | 10.6 ± 0.3 b | 11.2 ± 0.4 b | 9.7 ± 0.1 c | 12.9 ± 0.1 a | 6.2 ± 0.4 d |
ECG | 9.5 ± 0.6 c | 8.2 ± 0.4 d | 11.7 ± 0.2 b | 17.2 ± 1.0 a | 5.8 ± 0.4 e |
EGC | 66.1 ± 0.8 b | 74.6 ± 0.6 a | 9.0 ± 0.5 e | 52.3 ± 1.3 c | 12.1 ± 0.5 d |
EGCG | 64.1 ± 0.6 b | 61.7 ± 1.6 b | 18.7 ± 0.2 c | 87.1 ± 0.9 a | 11.7 ± 0.8 d |
GA | 1.3 ± 0.0 c | 0.8 ± 0.0 c | 10.8 ± 0.2 a | 0.9 ± 0.1 c | 7.6 ± 0.2 b |
GC | 25.4 ± 0.6 a | 25.1 ± 1.8 a | 7.4 ± 0.7 c | 19.1 ± 0.7 b | 7.3 ± 0.4 c |
GCG | 20.8 ± 1.9 a | 16.1 ± 1.45 b | 5.5 ± 0.2 c | 23.4 ± 2.7 a | 4.9 ± 0.1 c |
Variables | Average |
---|---|
Age (years) | 55.4 ± 10.4 |
Gender (female; n (%)) | 33 (86.8) |
History of pre-hypertension (n (%)) | 17 (51.5) |
Daily sleep time (hour) | 7.00 ± 1.06 |
Heart rate (beats per minute) | 74.9 ± 9.2 |
Systolic blood pressure (mmHg) | 120.0 ± 20.0 |
Diastolic blood pressure (mmHg) | 77.5 ± 12.4 |
Alpha brain wave score | 35.0 ± 17.3 |
Education (Bachelor’s degree or higher) | 21 (63.6) |
Types of work (white-collar worker) | 25 (75.8) |
Variables | Before | GO Consumption | |||
---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | |
Heart rate (bpm) | 74.87 ± 9.18 | 73.00 ± 9.89 | 72.30 ± 8.68 | 73.52 ± 9.05 | 72.76 ± 8.38 |
SBP (mmHg) | 120.00 ± 20.04 | 117.33 ± 16.65 | 116.39 ± 12.69 | 114.52 ± 14.53 * | 115.76 ± 12.89 |
DBP (mmHg) | 77.5 ± 12.35 | 75.06 ± 9.02 | 74.55 ± 7.27 | 74.12 ± 8.49 | 73.52 ± 7.99 * |
Item | Treatment | |
---|---|---|
Before | After | |
Euphoria | 3.4 | 4.3 * |
Relaxation feelings | 3.3 | 4.2 * |
Better sleep | 3.2 | 4.2 * |
Fewer headaches | 3.0 | 3.8 * |
Less muscle tension | 3.0 | 4.1 * |
Less physical discomfort | 3.1 | 4.0 * |
Improvement in concentration | 2.9 | 4.3 * |
Helpful for subjective enjoyment of life | 2.9 | 4.1 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-C.; Hsieh, C.-Y.; Chen, L.-F.; Chen, Y.-C.; Ho, T.-H.; Chang, S.-C.; Chang, J.-F. Versatile Effects of GABA Oolong Tea on Improvements in Diastolic Blood Pressure, Alpha Brain Waves, and Quality of Life. Foods 2023, 12, 4101. https://doi.org/10.3390/foods12224101
Lin C-C, Hsieh C-Y, Chen L-F, Chen Y-C, Ho T-H, Chang S-C, Chang J-F. Versatile Effects of GABA Oolong Tea on Improvements in Diastolic Blood Pressure, Alpha Brain Waves, and Quality of Life. Foods. 2023; 12(22):4101. https://doi.org/10.3390/foods12224101
Chicago/Turabian StyleLin, Chih-Cheng, Chih-Yu Hsieh, Li-Fen Chen, Yen-Chun Chen, Tien-Hwa Ho, Shao-Chin Chang, and Jia-Feng Chang. 2023. "Versatile Effects of GABA Oolong Tea on Improvements in Diastolic Blood Pressure, Alpha Brain Waves, and Quality of Life" Foods 12, no. 22: 4101. https://doi.org/10.3390/foods12224101