Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Collection and Preparations
2.3. Sample Preprocessing
2.3.1. Pb, Cd, and As Analysis
2.3.2. Me-Hg Analysis
2.4. Instrument Optimization for ICP-MS Analysis
2.5. Instrument Optimization for DMA Analysis
2.6. Method Validation for Quality Assurance of Analysis
2.7. Health Risk Assessment
2.7.1. Non-CR
2.7.2. CR
2.8. Statistical Analysis
3. Results and Discussion
3.1. Method Validation for Heavy Metals Analysis
3.2. Heavy Metal Contents in Fishery Products
3.3. Health Risk Assessment
3.3.1. Exposure Assessment
3.3.2. Non-CR
3.3.3. CR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Channing, D.; Young, G. 503. Amino-acids and peptides. Part X. The nitrogenous constituents of some marine algae. J. Chem. Soc. 1953, 2481–2491. [Google Scholar] [CrossRef]
- Robledo, D.; Freile Pelegrín, Y. Chemical and mineral composition of six potentially edible seaweed species of Yucatan. Bot. Mar. 1997, 40, 301–306. [Google Scholar] [CrossRef]
- Sargent, J.; Bell, G.; McEvoy, L.; Tocher, D.; Estevez, A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 1999, 177, 191–199. [Google Scholar] [CrossRef]
- Zupanc, G. Neurogenesis and neuronal regeneration in the adult fish brain. J. Comp. Physiol. A 2006, 192, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Kromhout, D.; Bosschieter, E.B.; Coulander, C.d.L. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N. Engl. J. Med. 1985, 312, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2020.
- Korea Rural Economic Institute (KREI). 2019 Food Balance Sheet; Korea Rural Economic Institute (KREI): Naju-si, Republic of Korea, 2019. [Google Scholar]
- Amiard, J.; Amiard-Triquet, C.; Berthet, B.; Metayer, C. Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and coastal organisms. J. Exp. Mar. Biol. 1987, 106, 73–89. [Google Scholar] [CrossRef]
- Stoeppler, M. Hazardous Metals in the Environment, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Bryan, G.; Langston, W. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ. Pollut. 1992, 76, 89–131. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Kim, Y.-N.; Cho, K.-D.; Kim, M.Y.; Kim, E.J.; Baek, O.-H.; Lee, B.-H. Blood heavy metal concentrations of Korean adults by seafood consumption frequency: Using the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV), 2008. Korean J. Nut 2011, 44, 518–526. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Loveland, K.A.; Ardjomand-Hessabi, M.; Chen, Z.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Bloom, K.; Pearson, D.A. Seafood consumption and blood mercury concentrations in Jamaican children with and without autism spectrum disorders. Neurotox. Res. 2013, 23, 22–38. [Google Scholar] [CrossRef]
- Blakley, B. The effect of cadmium chloride on the immune response in mice. Can. J. Comp. Med. 1985, 49, 104. [Google Scholar]
- Voors, A.W.; Johnson, W.D.; Shuman, M.S. Additive statistical effects of cadmium and lead on heart related disease in a North Carolina autopsy series. Arch. Environ. Health 1982, 37, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, G.A.; Liu, X.; Lolacono, N.J.; Factor-Litvak, P.; Kline, J.K.; Popovac, D.; Morina, N.; Musabegovic, A.; Vrenezi, N.; Capuni-Paracka, S. Lead exposure and intelligence in 7-year-old children: The Yugoslavia Prospective Study. Environ. Health Perspect. 1997, 105, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Elinder, C.-G.; Kjellström, T.; Friberg, L.; Linnman, B.L.L. Cadmium in kidney cortex, liver, and pancreas from Swedish autopsies. Arch. Environ. Health 1976, 31, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Friberg, L. Cadmium and the kidney. Environ. Health Perspect. 1984, 54, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, M.P. Cadmium carcinogenesis in review. J. Inorg. Biochem. 2000, 79, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Graeme, K.A.; Pollack, C.V., Jr. Heavy metal toxicity, part I: Arsenic and mercury. J. Emerg. Med. 1998, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.; Russell, D.S. Focal cerebral and cerebellar atrophy in a human subject due to organic mercury compounds. J. Neurol. Neurosurg. Psychiatry 1954, 17, 235. [Google Scholar] [CrossRef] [PubMed]
- O’shea, J. ‘Two minutes with venus, two years with mercury’-mercury as an antisyphilitic chemotherapeutic agent. J. R. Soc. Med. 1990, 83, 392–395. [Google Scholar] [CrossRef]
- Powell, P.P. Minamata disease: A story of mercury’s malevolence. South Med. J. 1991, 84, 1352–1358. [Google Scholar] [CrossRef]
- Obiri, S.; Dodoo, D.; Essumang, D.; Armah, F. Cancer and non-cancer risk assessment from exposure to arsenic, copper, and cadmium in borehole, tap, and surface water in the Obuasi municipality, Ghana. Hum Ecol Risk Assess 2010, 16, 651–665. [Google Scholar] [CrossRef]
- Djedjibegovic, J.; Marjanovic, A.; Tahirovic, D.; Caklovica, K.; Turalic, A.; Lugusic, A.; Omeragic, E.; Sober, M.; Caklovica, F. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Sci. Rep. 2020, 10, 13238. [Google Scholar] [CrossRef] [PubMed]
- Pandion, K.; Khalith, S.M.; Ravindran, B.; Chandrasekaran, M.; Rajagopal, R.; Alfarhan, A.; Chang, S.W.; Ayyamperumal, R.; Mukherjee, A.; Arunachalam, K.D. Potential health risk caused by heavy metal associated with seafood consumption around coastal area. Environ. Pollut. 2022, 294, 118553. [Google Scholar] [CrossRef] [PubMed]
- Yabanli, M.; Tay, S. Selenium and mercury balance in sea bream obtained from different living environments in Turkey: A risk assessment for the consumer health. Environ. Sci. Pollut. Res. 2021, 28, 36069–36075. [Google Scholar] [CrossRef] [PubMed]
- Yabanli, M.; Tay, S.; Giannetto, D. Human health risk assessment from arsenic exposure after sea bream (Sparus aurata) consumption in Aegean Region, Turkey. Bulg. J. Vet. Med. 2016, 19, 127–136. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund, Vol. 1. Human Health Evaluation Manual (Part A). EPA/540/1-89/02. Office of Emergency and Remedial Response; U.S. Environmental Protection Agency (USEPA): Washington, DC, USA, 1989.
- Hwang, H.-J.; Hwang, G.-H.; Ahn, S.-M.; Kim, Y.-Y.; Shin, H.-S. Risk assessment and determination of heavy metals in home meal replacement products by using inductively coupled plasma mass spectrometry and direct mercury analyzer. Foods 2022, 11, 504. [Google Scholar] [CrossRef]
- de Souza-Araujo, J.; Hussey, N.E.; Hauser-Davis, R.A.; Rosa, A.H.; de Oliveira Lima, M.; Giarrizzo, T. Human risk assessment of toxic elements (As, Cd, Hg, Pb) in marine fish from the Amazon. Chemosphere 2022, 301, 134575. [Google Scholar] [CrossRef] [PubMed]
- Korea Disease Control and Prevention Agency (KDCA). Korea National Health and Nutrition Examination Survey; Korea Disease Control and Prevention Agency (KDCA): Cheongju-si, Republic of Korea, 2020.
- National Health Insurance Service (NHIS). National Health Check-Up Statistical Data; National Health Insurance Service (NHIS): Wonju-si, Republic of Korea, 2022.
- U.S. Environmental Protection Agency (USEPA). Integrated Risk Information System; U.S. Environmental Protection Agency (USEPA): Washington, DC, USA, 2022.
- Luo, L.; Wang, B.; Jiang, J.; Fitzgerald, M.; Huang, Q.; Yu, Z.; Li, H.; Zhang, J.; Wei, J.; Yang, C. Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments, and solutions. Front. Pharmacol. 2021, 11, 595335. [Google Scholar] [CrossRef] [PubMed]
- Kopru, S.; Cadir, M.; Soylak, M. Investigation of trace elements in vegan foods by ICP-MS after microwave digestion. Biol. Trace Elem. Res. 2022, 200, 5298–5306. [Google Scholar] [CrossRef]
- Habte, G.; Choi, J.Y.; Nho, E.Y.; Oh, S.Y.; Khan, N.; Choi, H.; Park, K.S.; Kim, K.S. Determination of toxic heavy metal levels in commonly consumed species of shrimp and shellfish using ICP-MS/OES. Food Sci. Biotechnol. 2015, 24, 373–378. [Google Scholar] [CrossRef]
- Döker, S.; Uslu, M. Aerosol dilution technique for direct determination of ultra-trace levels of Cr, Mn, Fe, Co, Ni, Cu, and Zn in edible salt samples by collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS). Food Anal. Methods 2014, 7, 683–689. [Google Scholar] [CrossRef]
- AOAC. AOAC International Methods Committee Guidelines for Validation of Qualitative and Quantitative Food Microbiological Official Methods of Analysis; AOAC: Rockville, MD, USA, 2012; pp. 1060–3271. [Google Scholar]
- Ministry of Food and Drug Safety (MFDS). Food Standards and Specification; Ministry of Food and Drug Safety (MFDS): Cheongju-si, Republic of Korea, 2022.
- EU. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; EU: Brussels, Belgium, 2006. [Google Scholar]
- CODEX. General Standard for Contaminants and Toxins in Food and Feed. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 25 May 2023).
- China Food & Drug Administration (CFDA). GB 2762-2022 National Food Safety Standard—Maximum Levels of Contaminants in Foods; China Food & Drug Administration (CFDA): Beijing, China, 2022.
- Kim, H.-Y.; Kim, J.-I.; Kim, J.-C.; Park, J.-E.; Lee, K.-J.; Kim, S.-I.; Oh, J.-H.; Jang, Y.-M. Survey of heavy metal contents of circulating agricultural products in Korea. Korean J. Food Sci. Technol. 2009, 41, 238–244. [Google Scholar] [CrossRef]
- Masuda, H. Arsenic cycling in the Earth’s crust and hydrosphere: Interaction between naturally occurring arsenic and human activities. Prog. Earth Planet. Sci. 2018, 5, 1–11. [Google Scholar] [CrossRef]
- Hwang, I.M.; Lee, H.M.; Lee, H.-W.; Jung, J.-H.; Moon, E.W.; Khan, N.; Kim, S.H. Determination of toxic elements and arsenic species in salted foods and sea salt by ICP–MS and HPLC–ICP–MS. ACS Omega 2021, 6, 19427–19434. [Google Scholar] [CrossRef] [PubMed]
- Craig, P.J.; Jenkins, R. Organometallic compounds in the environment: An overview. In Organic Metal and Metalloid Species in the Environment: Analysis, Distribution, Processes and Toxicological Evaluation, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–15. [Google Scholar]
- Mason, R.P.; Reinfelder, J.R.; Morel, F.M. Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut. 1995, 80, 915–921. [Google Scholar] [CrossRef]
- Jensen, S.; Jernelöv, A. Biological methylation of mercury in aquatic organisms. Nature 1969, 223, 753–754. [Google Scholar] [CrossRef] [PubMed]
- Agah, H.; Leermakers, M.; Elskens, M.; Fatemi, S.M.R.; Baeyens, W. Total mercury and methyl mercury concentrations in fish from the Persian Gulf and the Caspian Sea. Water Air Soil Pollut. 2007, 181, 95–105. [Google Scholar] [CrossRef]
- Yamashita, Y.; Omura, Y.; Okazaki, E. Total mercury and methylmercury levels in commercially important fishes in Japan. Fish. Sci. 2005, 71, 1029–1035. [Google Scholar] [CrossRef]
- Fernández, B.; Campillo, J.; Martínez-Gómez, C.; Benedicto, J. Antioxidant responses in gills of mussel (Mytilus galloprovincialis) as biomarkers of environmental stress along the Spanish Mediterranean coast. Aquat. Toxicol. 2010, 99, 186–197. [Google Scholar] [CrossRef]
- Kamimura, S. Influence of Copper and Zinc in Food Substance on the Accumulation of Cultured Oysters. Bull. Jpn. Soc. Sci. Fish. 1980, 46, 83–85. (In Japanese) [Google Scholar] [CrossRef]
- Phillips, D.J. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments—A review. Environ. Pollut. 1977, 13, 281–317. [Google Scholar] [CrossRef]
- Bustamante, P.; Grigioni, S.; Boucher-Rodoni, R.; Caurant, F.; Miramand, P. Bioaccumulation of 12 trace elements in the tissues of the nautilus Nautilus macromphalus from New Caledonia. Mar. Pollut. Bull. 2000, 40, 688–696. [Google Scholar] [CrossRef]
- Je, J.G. Preliminary study on the cephalopod molluscs of the Korean waters. Rep. Korea Ocean. Res. Dev. Inst. 1990. [Google Scholar]
- Kim, K.H.; Kim, Y.J.; Heu, M.S.; Kim, J.-S. Contamination and risk assessment of lead and cadmium in commonly consumed fishes as affected by habitat. Korean J. Fish Aquat. Sci. 2016, 49, 541–555. [Google Scholar] [CrossRef][Green Version]
- Liu, Q.; Liao, Y.; Shou, L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Mar. Pollut. Bull. 2018, 131, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Sunlu, U. Trace metal levels in mussels (Mytilus galloprovincialis L. 1758) from Turkish Aegean Sea coast. Environ. Monit. Assess. 2006, 114, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Almela, C.; Algora, S.; Benito, V.; Clemente, M.; Devesa, V.; Suner, M.; Velez, D.; Montoro, R. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J. Agric. Food Chem. 2002, 50, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Hajrić, D.; Smajlović, M.; Antunović, B.; Smajlović, A.; Alagić, D.; Tahirović, D.; Brenjo, D.; Članjak-Kudra, E.; Djedjibegović, J.; Porobić, A. Risk assessment of heavy metal exposure via consumption of fish and fish products from the retail market in Bosnia and Herzegovina. Food Control 2022, 133, 108631. [Google Scholar] [CrossRef]
- Bonsignore, M.; Manta, D.S.; Mirto, S.; Quinci, E.M.; Ape, F.; Montalto, V.; Gristina, M.; Traina, A.; Sprovieri, M. Bioaccumulation of heavy metals in fish, crustaceans, molluscs and echinoderms from the Tuscany coast. Ecotoxicol. Environ. Saf. 2018, 162, 554–562. [Google Scholar] [CrossRef]
- Makedonski, L.; Peycheva, K.; Stancheva, M. Determination of heavy metals in selected black sea fish species. Food Control 2017, 72, 313–318. [Google Scholar] [CrossRef]
- Leatherland, T.; Burton, J.; Culkin, F.; McCartney, M.; Morris, R. Concentrations of some trace metals in pelagic organisms and of mercury in Northeast Atlantic Ocean water. Deep Sea Res. Oceanogr. Abstr. 1973, 20, 679–685. [Google Scholar] [CrossRef]
- Monteiro, L.; Costa, V.; Furness, R.; Santos, R. Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Mar. Ecol. Prog. Ser. 1996, 141, 21–25. [Google Scholar] [CrossRef]
- Velez, C.; Figueira, E.; Soares, A.; Freitas, R. Spatial distribution and bioaccumulation patterns in three clam populations from a low contaminated ecosystem. Estuar. Coast. Shelf Sci. 2015, 155, 114–125. [Google Scholar] [CrossRef]
- Liu, J.; Cao, L.; Dou, S. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Mar. Pollut. Bull. 2017, 117, 98–110. [Google Scholar] [CrossRef]
- The Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of Certain Food Additives and Contaminants: Ninety Third Report of the Joint FAO/WHO Expert Committee on Food; The Joint FAO/WHO Expert Committee on Food Additives (JECFA): Geneva, Switzerland, 2022. [Google Scholar]
- Shaheen, N.; Irfan, N.M.; Khan, I.N.; Islam, S.; Islam, M.S.; Ahmed, M.K. Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere 2016, 152, 431–438. [Google Scholar] [CrossRef]
- Cho, I.-S.; Kim, S.-J.; Park, A.-S.; Kim, J.-A.; Jang, J.-I.; Lee, S.-D.; Yu, I.-S.; Shin, Y.-S. The Content and Risk Assessment of Heavy Metals in Herbal Medicines used for Food and Drug. J. Food Hyg. Saf. 2020, 35, 354–364. [Google Scholar] [CrossRef]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [PubMed]
No. | Category | Name | Number | |
---|---|---|---|---|
Common | Scientific | |||
1 | Sea algae (n = 105) | Laver | Porphyra purpurea | 15 |
Kelp | Saccharina japonica | 15 | ||
Seaweed fulvescens | Capsosiphon fulvescens | 15 | ||
Gulfweed | Sargassum fulvellum | 15 | ||
Sea mustard | Undaria pinnatifida | 15 | ||
Hijiki | Hizikia fusiforme | 15 | ||
Green laver | Enteromorpha | 15 | ||
2 | Freshwater fish (n = 87) | Catfish | Silurus asotus | 14 |
Carp | Cyprinus carpio | 14 | ||
Mudfish | Misgurnus mizolepis | 15 | ||
Mandarin fish | Siniperca scherzeri | 14 | ||
Cherry salmon | Oncorhynchus masou | 15 | ||
Salmon | Oncorhynchus keta | 15 | ||
3 | Marine fish (n = 559) | Ray | Batoidea | 30 |
Cutlassfish | Trichiurus lepturus | 32 | ||
Mackerel | Scomber japonicus | 30 | ||
Striped marlin | Tetrapturus audax | 15 | ||
Swordfish | Xiphias gladius | 15 | ||
Pacific saury | Cololabis saira | 32 | ||
Flatfish | Paralichthys olivaceus | 25 | ||
Patagonian toothfish | Dissostichus eleginoides | 20 | ||
Bigeye tuna | Thunnus obesus | 25 | ||
Sailfin sandfish | Arctoscopus japonicus | 30 | ||
Black rock fish | Sebastes inermis | 20 | ||
Anchovy | Engraulis japonicus | 35 | ||
Pollack | Theragra chalcogramma | 30 | ||
Japanese icefish | Salangichthys microdon | 30 | ||
Blowfish | Tetraodontiformes | 35 | ||
Croaker | Larimichthys polyactis | 35 | ||
Bluefin tuna | Thunnus thynnus | 30 | ||
Pacific herring | Clupea pallasii | 30 | ||
Sciaenoid fish | Miichthys miiuy | 30 | ||
Shark | Carcharodon carcharias | 30 | ||
4 | Crustaceans (n = 65) | Shrimp | Caridea | 20 |
Crab | Brachyura | 15 | ||
Lobster | Nephropidae | 15 | ||
King crab | Paralithodes | 15 | ||
5 | Mollusks (n = 320) | Squid | Todarodes pacificus | 25 |
Beka squid | Loliolus beka | 25 | ||
Octopus | Enteroctopus dofleini | 25 | ||
Webfoot octopus | Amphioctopus fangsiao | 25 | ||
Small octopus | Octopus minor | 25 | ||
Mussel | Mytilus unguiculatus | 25 | ||
Oyster | Crassostrea gigas | 25 | ||
Cockle | Tegillarca granosa | 25 | ||
Abalone | Haliotis discus | 25 | ||
Razor clam | Solen strictus | 25 | ||
Short-neck clam | Ruditapes philippinarum | 25 | ||
Ark shell | Scapharca broughtonii | 25 | ||
Fat innkeeper worm | Urechis unicinctus | 20 | ||
6 | Tunicates (n = 30) | Sea squirt | Halocynthia roretzi | 15 |
Warty sea squirt | Styela clava | 15 | ||
7 | Echinoderms (n = 20) | Sea urchin | Echinoidea | 10 |
Sea cucumber | Holothuroidea | 10 |
Heavy Metals | Food Matrix | |||
---|---|---|---|---|
Mackerel | ||||
LOD a (mg/kg) | LOQ b (mg/kg) | Linearity Equation | R2 | |
Pb | 0.001 | 0.004 | y = 129850x + 4690.1 | 1.0000 |
Cd | 0.001 | 0.004 | y = 2585x + 263.64 | 1.0000 |
As | 0.002 | 0.005 | y = 2585x + 263.64 | 0.9995 |
Hg | 0.001 | 0.003 | y = −0.0007x2 + 0.051x − 0.0019 | 0.9998 |
Me-Hg | 0.003 | 0.010 | y = −0.0007x2 + 0.0556x − 0.0025 | 0.9999 |
Heavy Metals | Accuracy (%) | Precision (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 3) | Inter-Day (n = 3) | Intra-Day (n = 3) | Inter-Day (n = 3) | |||||||||
Low | Middle | High | Low | Middle | High | Low | Middle | High | Low | Middle | High | |
Pb | 106.40 | 88.24 | 95.90 | 108.70 | 111.30 | 99.90 | 2.30 | 2.06 | 0.29 | 5.17 | 6.42 | 1.83 |
Cd | 95.60 | 93.50 | 100.10 | 97.40 | 100.10 | 99.90 | 0.52 | 1.48 | 0.07 | 6.84 | 5.13 | 0.11 |
As | 113.00 | 102.04 | 91.720 | 104.53 | 108.31 | 102.29 | 2.51 | 0.85 | 0.53 | 5.95 | 6.02 | 5.17 |
Hg | 108.71 | 104.01 | 110.29 | 113.80 | 104.86 | 110.52 | 2.51 | 1.55 | 0.61 | 3.06 | 2.42 | 0.91 |
Me-Hg | 102.90 | 103.81 | 97.37 | 103.30 | 103.86 | 97.6 | 0.72 | 0.44 | 0.11 | 0.94 | 0.43 | 0.28 |
Category | Heavy Metals (mg/kg) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Cd | As | Hg | Me-Hg | |||||||||||
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | |
Sea algae | 0.048 (0.052) | 0.109 | 0.0178 | 0.079 (0.085) | 0.156 | 0.012 | 3.626 (3.921) | 10.063 | 0.397 | 0.002 (0.01) | 0.012 | ND | ND | ND | ND |
Freshwater fish | 0.012 (0.018) | 0.03 | 0.003 | 0.003 (0.01) | 0.018 | ND | 0.151 (0.26) | 0.398 | 0.037 | 0.066 (0.108) | 0.236 | 0.004 | 0.023 (0.066) | 0.084 | ND |
Marine fish | 0.014 (0.03) | 0.047 | 0.002 | 0.013 (0.027) | 0.098 | ND | 1.776 (2.828) | 10.258 | 0.232 | 0.205 (0.639) | 2.245 | 0.003 | 0.035 (0.111) | 0.322 | ND |
Crustaceans | 0.041 (0.143) | 0.161 | 0.008 | 0.18 (0.505) | 0.408 | 0.0003 | 2.969 (3.143) | 4.754 | 0.252 | 0.021 (0.035) | 0.049 | 0.005 | 0.004 (0.008) | 0.007 | ND |
Mollusks | 0.067 (0.114) | 0.2653 | 0.004 | 0.202 (0.334) | 0.563 | ND | 3.272 (7.827) | 21.919 | 0.024 | 0.021 (0.056) | 0.227 | 0.001 | 0.007 (0.035) | 0.074 | ND |
Tunicates | 0.047 (0.052) | 0.09 | 0.03 | 0.015 (0.01) | 0.02 | 0.019 | 0.311 (0.278) | 0.513 | 0.347 | 0.0003 (0.001) | 0.001 | 0.001 | ND | ND | ND |
Echinoderms | 0.009 (0.009) | 0.01 | 0.008 | 0.022 (0.05) | 0.037 | 0.006 | 0.782 (0.84) | 1.118 | 0.445 | 0.0002 (0.001) | 0.0004 | ND | ND | ND | ND |
Category | Heavy Metal | |||||||
---|---|---|---|---|---|---|---|---|
Pb | Cd | As | Hg | Me-Hg | ||||
EDI (µg/kg/day) | EDI (µg/kg/day) | EMI (µg/kg/month) | EDI (µg/kg/day) | EDI (µg/kg/day) | EWI (µg/kg/week) | EDI (µg/kg/day) | EWI (µg/kg/week) | |
Sea algae | 3.27 × 10−4 | 5.39 × 10−4 | 1.62 × 10−2 | 2.47 × 10−2 | 1.36 × 10−5 | 9.55 × 10−5 | - | - |
Freshwater fish | 2.24 × 10−5 | 5.59 × 10−6 | 1.68 × 10−4 | 2.81 × 10−4 | 1.23 × 10−4 | 8.61 × 10−4 | 4.29 × 10−5 | 3.00 × 10−4 |
Marine fish | 1.07 × 10−4 | 9.96 × 10−5 | 2.99 × 10−3 | 1.36 × 10−2 | 1.57 × 10−3 | 1.10 × 10−2 | 2.68 × 10−4 | 1.88 × 10−3 |
Crustaceans | 5.84 × 10−4 | 2.56 × 10−3 | 7.69 × 10−2 | 4.23 × 10−2 | 2.99 × 10−4 | 2.09 × 10−3 | 5.70 × 10−5 | 3.99 × 10−4 |
Mollusks | 4.71 × 10−4 | 1.42 × 10−3 | 4.26 × 10−2 | 2.30 × 10−2 | 1.48 × 10−4 | 1.03 × 10−3 | 4.92 × 10−5 | 3.45 × 10−4 |
Tunicates | 1.31 × 10−4 | 4.17 × 10−5 | 1.25 × 10−3 | 8.65 × 10−4 | 8.34 × 10−7 | 5.84 × 10−6 | - | - |
Echinoderms | 2.03 × 10−5 | 4.96 × 10−5 | 1.49 × 10−3 | 1.76 × 10−3 | 4.51 × 10−7 | 3.16 × 10−6 | - | - |
Category | HQ | HI | ||||
---|---|---|---|---|---|---|
Pb | Cd | As | Hg | Me-Hg | Total | |
Sea algae | 9.36 × 10−5 | 1.80 × 10−4 | 8.25 × 10−2 | 4.55 × 10−5 | 0.00 × 100 | 8.28 × 10−2 |
Freshwater fish | 6.39 × 10−6 | 1.86 × 10−6 | 9.38 × 10−4 | 4.10 × 10−4 | 1.07 × 10−4 | 1.36 × 10−3 |
Marine fish | 3.07 × 10−5 | 3.32 × 10−5 | 4.54 × 10−2 | 5.24 × 10−3 | 6.71 × 10−4 | 5.07 × 10−2 |
Crustaceans | 1.67 × 10−4 | 8.55 × 10−4 | 1.41 × 10−1 | 9.97 × 10−4 | 1.42 × 10−4 | 1.43 × 10−1 |
Mollusks | 1.35 × 10−4 | 4.74 × 10−4 | 7.67 × 10−2 | 4.92 × 10−4 | 1.23 × 10−4 | 7.78 × 10−2 |
Tunicates | 3.73 × 10−5 | 1.39 × 10−5 | 2.88 × 10−3 | 2.78 × 10−6 | 0.00 × 100 | 2.94 × 10−3 |
Echinoderms | 5.80 × 10−6 | 1.65 × 10−5 | 5.88 × 10−3 | 1.50 × 10−6 | 0.00 × 100 | 5.90 × 10−3 |
Category | CR | |
---|---|---|
Pb | As | |
Sea algae | 2.78 × 10−9 | 3.71 × 10−5 |
Freshwater fish | 1.90 × 10−10 | 4.22 × 10−7 |
Marine fish | 9.12 × 10−10 | 2.04 × 10−5 |
Crustaceans | 4.96 × 10−9 | 6.34 × 10−5 |
Mollusks | 4.00 × 10−9 | 3.45 × 10−5 |
Tunicates | 1.11 × 10−9 | 1.30 × 10−6 |
Echinoderms | 1.72 × 10−10 | 2.64 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-Y.; Jeon, H.; Shin, H.-S. Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea. Foods 2023, 12, 3750. https://doi.org/10.3390/foods12203750
Kim D-Y, Jeon H, Shin H-S. Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea. Foods. 2023; 12(20):3750. https://doi.org/10.3390/foods12203750
Chicago/Turabian StyleKim, Do-Yeong, Hyewon Jeon, and Han-Seung Shin. 2023. "Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea" Foods 12, no. 20: 3750. https://doi.org/10.3390/foods12203750
APA StyleKim, D.-Y., Jeon, H., & Shin, H.-S. (2023). Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea. Foods, 12(20), 3750. https://doi.org/10.3390/foods12203750