Detection and Control of Foodborne Pathogens
1. Introduction
2. Microbial Ecology and Foodborne Pathogens
3. Control of Foodborne Pathogens by Emerging Technologies
4. Epidemiology of Emerging Foodborne Diseases
Conflicts of Interest
References
- Schirone, M.; Paparella, A. Prevalence of foodborne diseases in the European Union. In Food Safety Encyclopedia: Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Aladhadh, M. A review of modern methods for the detection of foodborne pathogens. Microorganisms 2023, 11, 1111. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, F.; Visciano, P.; Krasteva, I.; Torresi, M.; Tittarelli, M.; Pomilio, F.; Iannetti, L.; Di Febo, T.; Paparella, A.; Schirone, M.; et al. Immunoproteome profiling of Listeria monocytogenes under mild acid and salt stress conditions. Proteomics 2022, 22, e2200082. [Google Scholar] [CrossRef] [PubMed]
- Gram, L.; Ravn, L.; Rasch, M.; Bruhn, J.B.; Christensen, A.B.; Givskov, M. Food spoilage—Interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Pittia, P.; Paparella, A. Safety by control of water activity: Drying, smoking, salt or sugar addition. In Regulating Safety of Traditional and Ethnic FOODS; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2, pp. 7–28. [Google Scholar] [CrossRef]
- Maggio, F.; Rossi, C.; Chaves-López, C.; Serio, A.; Valbonetti, L.; Pomilio, F.; Chiavaroli, A.P.; Paparella, A. Interactions between L. monocytogenes and P. fluorescens in dual-species biofilms under simulated dairy processing conditions. Foods 2021, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, T.; Kümmerli, R.; Dobay, A. Understanding policing as a mechanism of cheater control in cooperating bacteria. J. Evol. Biol. 2019, 32, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Abisado, R.G.; Benomar, S.; Klaus, J.R.; Dandekar, A.A.; Chandler, J.R. Bacterial Quorum Sensing and microbial community interactions. mBio 2018, 9, e02331-17. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Macleod, J.; Blaxland, J. The use of ozone technology to control microorganism growth, enhance food safety and extend shelf life: A promising food decontamination technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Ding, C.; Han, N.; Cui, Y.; Liu, X.; Zhang, C. Evaluation of pulsed light for inactivation of foodborne pathogens on fresh-cut lettuce: Effects on quality attributes during storage. Food Packag. Shelf Life 2019, 21, 100358. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, Q.; Denoya, G.I.; Yang, C.; Barba, F.J.; Yu, H.; Chen, X. High hydrostatic pressure-based combination strategies for microbial inactivation of food products: The cases of emerging combination patterns. Front. Nutr. 2022, 9, 878904. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, F.; Siroli, L.; Braschi, G.; Lanciotti, R. Combined use of natural antimicrobial based nanoemulsions and ultra high pressure homogenization to increase safety and shelf-life of apple juice. Food Control 2020, 111, 107051. [Google Scholar] [CrossRef]
- Rossi, C.; Chaves-López, C.; Serio, A.; Casaccia, M.; Maggio, F.; Paparella, A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2172–2191. [Google Scholar] [CrossRef] [PubMed]
- Babu Rajendran, N.; Mutters, N.T.; Marasca, G.; Conti, M.; Sifakis, F.; Vuong, C.; Voss, A.; Baño, J.R.; Tacconelli, E. Mandatory surveillance and outbreaks reporting of the WHO priority pathogens for research & discovery of new antibiotics in European countries. Clin. Microbiol. Infect. 2020, 26, 943.e1–943.e6. [Google Scholar] [CrossRef]
- O’Neill, J. Review on Antimicrobial Resistance. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; HM Government: London, UK, 2014.
- World Health Organization (WHO). Food Safety. Key Facts. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 19 May 2022).
- Grudlewska-Buda, K.; Bauza-Kaszewska, J.; Wiktorczyk-Kapischke, N.; Budzyńska, A.; Gospodarek-Komkowska, E.; Skowron, K. Antibiotic resistance in selected emerging bacterial foodborne pathogens—An issue of concern? Antibiotics 2023, 12, 880. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paparella, A.; Maggio, F. Detection and Control of Foodborne Pathogens. Foods 2023, 12, 3521. https://doi.org/10.3390/foods12193521
Paparella A, Maggio F. Detection and Control of Foodborne Pathogens. Foods. 2023; 12(19):3521. https://doi.org/10.3390/foods12193521
Chicago/Turabian StylePaparella, Antonello, and Francesca Maggio. 2023. "Detection and Control of Foodborne Pathogens" Foods 12, no. 19: 3521. https://doi.org/10.3390/foods12193521
APA StylePaparella, A., & Maggio, F. (2023). Detection and Control of Foodborne Pathogens. Foods, 12(19), 3521. https://doi.org/10.3390/foods12193521