A New Method of Extracting Polygonatum sibiricum Polysaccharide with Antioxidant Function: Ultrasound-Assisted Extraction-Deep Eutectic Solvents Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Main Instruments and Equipment
2.3. Preparation of DESs
2.4. Extraction and Purification
2.5. Chemical Composition Analysis
2.6. Single-Factor Experiments
2.7. Response Surface Method (RSM)
2.8. Molecular Weight Determination of PsP
2.9. Monosaccharide Component Detection
2.10. Antioxidant Activity In Vitro
2.10.1. Scavenging Rate of DPPH Radical
2.10.2. Scavenging Rate of ABTS Radical
2.10.3. Scavenging Rate of Hydroxyl Radical
2.10.4. Ferric Ion Reducing Ability
2.10.5. Total Oxyradical Scavenging Capacity
2.10.6. Catalase Activity Determination In Vitro
2.11. Statistical Analysis
3. Results
3.1. Single-Factor Experiments Results
3.2. RSM Results
3.2.1. Model Establishment and Data Fitting
3.2.2. RSM Analysis
3.2.3. RSM Analysis and Optimization of Extraction Process
3.2.4. Verification Test of the Best Process Conditions
3.3. Purity, Protein and Nucleic Acid Content of PsP
3.4. Composition Analysis, Molecular Weight Determination and Monosaccharide Composition of PsP
3.5. Analysis of Antioxidant Activity of PsP
3.5.1. DPPH, ABTS and Hydroxyl Radical Scavenging Rate Analysis
3.5.2. Ferric Ion Reducing Ability and Total Oxyradical Scavenging Capacity Analysis
3.5.3. Catalase Activity In Vitro Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
P.sibiricum | Polygonatum sibiricum |
PsP | Polygonatum sibiricum Polysaccharide |
DESs | Deep eutectic solvents |
UAE-DESs | Ultrasound-assisted extraction-deep eutectic solvents |
RSM | Response surface method |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
BSA | Bovine serum albumin |
UP | Ultrapure |
TFA | Trifluoroacetic acid |
PMP | 1-phenyl-3-methyl-5-pyrazolone |
References
- Liu, J.J.; Si, J.P. Herbal textual research on Chinese medicine “Huangjing” (Polygonati rhizoma) and some enlightenments. Zhongguo Zhong Yao Za Zhi 2018, 43, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhao, C.; Li, X.; Gao, Q.; Huang, L.; Xiao, P.; Gao, W. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 214, 274–291. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, Q.L.; Hou, S.B.; Chen, G. Chemical constituents from the rhizomes of Polygonatum sibiricum Red. and anti-inflammatory activity in RAW264.7 macrophage cells. Nat. Prod. Res. 2019, 33, 2359–2362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cai, X.T.; Tian, Q.H.; Xiao, L.X.; Zeng, Z.; Cai, X.T.; Yan, J.Z.; Li, Q.Y. Microwave-Assisted Degradation of Polysaccharide from Polygonatum sibiricum and Antioxidant Activity. J. Food Sci. 2019, 84, 754–761. [Google Scholar] [CrossRef]
- Duan, W.X.; Yang, X.H.; Zhang, H.F.; Feng, J.; Zhang, M.Y. Chemical Structure, Hypoglycemic Activity, and Mechanism of Action of Selenium Polysaccharides. Biol. Trace Elem. Res. 2022, 200, 4404–4418. [Google Scholar] [CrossRef]
- Huang, G.; Mei, X.; Hu, J. The Antioxidant Activities of Natural Polysaccharides. Curr. Drug Targets. 2017, 18, 1296–1300. [Google Scholar] [CrossRef]
- Shen, F.; Song, Z.; Xie, P.; Li, L.; Wang, B.; Peng, D.; Zhu, G. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. J. Ethnopharmacol. 2021, 275, 114164. [Google Scholar] [CrossRef]
- Cui, X.; Wang, S.; Cao, H.; Guo, H.; Li, Y.; Xu, F.; Zheng, M.; Xi, X.; Han, C. A Review: The Bioactivities and Pharmacological Applications of Polygonatum sibiricum polysaccharides. Molecules 2018, 23, 1170. [Google Scholar] [CrossRef]
- Wan, P.; Liu, H.; Zhu, Y.; Xin, H.; Ma, Y.; Chen, Z. Effects of Polygonatum sibiricum on Physicochemical Properties, Biological Compounds, and Functionality of Fermented Soymilk. Foods 2023, 12, 2715. [Google Scholar] [CrossRef]
- Hromádková, Z.; Ebringerová, A.; Valachovič, P. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.). Ultrason. Sonochem. 2002, 9, 37–44. [Google Scholar] [CrossRef]
- Hashemifesharaki, R.; Xanthakis, E.; Altintas, Z.; Guo, Y.; Gharibzahedi, S.M.T. Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity. Carbohydr. Polym. 2020, 240, 116301. [Google Scholar] [CrossRef]
- Shu, X.; Zhang, Y.; Jia, J.; Ren, X.; Wang, Y. Extraction, purification and properties of water-soluble polysaccharides from mushroom Lepista nuda. Int. J. Biol. Macromol. 2019, 128, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wu, Q.; Luo, Y.; Yang, Q.; Wei, X.; Kan, J. High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: Extraction, structure, antioxidant activity and hypoglycemic. Int. J. Biol. Macromol. 2019, 137, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cai, F.; Yu, Z.; Zhang, L.; Li, X.; Yang, Y.; Liu, G. Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity. Food Chem. 2016, 194, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.Y.; Yu, J.; Chen, X.Y.; Liu, A.J. Extraction, optimization and bioactivities of alcohol-soluble polysaccharide from Grifola frondosa. J. Food Meas. Charact. 2019, 13, 1645–1651. [Google Scholar] [CrossRef]
- Jing, Y.; Yan, M.; Zhang, H.; Liu, D.; Qiu, X.; Hu, B.; Zhang, D.; Zheng, Y.; Wu, L. Effects of Extraction Methods on the Physicochemical Properties and Biological Activities of Polysaccharides from Polygonatum sibiricum. Foods 2023, 12, 2088. [Google Scholar] [CrossRef]
- Kakar, M.U.; Naveed, M.; Saeed, M.; Zhao, S.; Rasheed, M.; Firdoos, S.; Manzoor, R.; Deng, Y.; Dai, R. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja. Int. J. Biol. Macromol. 2020, 156, 420–429. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Xu, S.; Shao, P.; Li, J.; Chen, Z.; Wang, X.; Lin, Y.; Renard, C.M.G.C. Advances in green solvents for production of polysaccharide-based packaging films: Insights of ionic liquids and deep eutectic solvents. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1030–1057. [Google Scholar] [CrossRef]
- Liang, J.; Zeng, Y.; Wang, H.; Lou, W. Extraction, purification and antioxidant activity of novel polysaccharides from Dendrobium officinale by deep eutectic solvents. Nat. Prod. Res. 2019, 33, 3248–3253. [Google Scholar] [CrossRef]
- Li, D. Natural deep eutectic solvents in phytonutrient extraction and other applications. Front. Plant Sci. 2022, 13, 1004332. [Google Scholar] [CrossRef]
- Morais, E.S.; Lopes, A.M.D.C.; Freire, M.G.; Freire, C.S.R.; Coutinho, J.A.P.; Silvestre, A.J.D. Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules 2020, 25, 3652. [Google Scholar] [CrossRef]
- Luo, L.; Fan, W.; Qin, J.; Guo, S.; Xiao, H.; Tang, Z. Study on Process Optimization and Antioxidant Activity of Polysaccharide from Bletilla striata Extracted via Deep Eutectic Solvents. Molecules 2023, 28, 5538. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Rachiero, G.P.; Berton, P.; Shamshina, J. Deep Eutectic Solvents: Alternative Solvents for Biomass-Based Waste Valorization. Molecules 2022, 27, 6606. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.F. Study on Extraction Technology, Characteristic of Polysaccharides from Polygonatum sibirium Extracted by Deep Eutectic Solvents and Application. Master’s Thesis, Hunan Agriculture University, Changsha, China, 2021. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, D.; Zhang, Q.A.; Sun, D.W. Ultrasound-assisted extraction of phenolics from wine lees: Modeling, optimization and stability of extracts during storage. Ultrason. Sonochem. 2014, 21, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.C.; Wu, J.Y. Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochem. Eng. J. 2013, 79, 214–220. [Google Scholar] [CrossRef]
- Liao, N.; Zhong, J.; Ye, X.; Lu, S.; Wang, W.; Zhang, R.; Xu, J.; Chen, S.; Liu, D. Ultrasonic-assisted enzymatic extraction of polysaccharide from Corbicula fluminea: Characterization and antioxidant activity. LWT-Food Sci. Technol. 2015, 60, 1113–1121. [Google Scholar] [CrossRef]
- Raza, A.; Li, F.; Xu, X.; Tang, J. Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int. J. Biol. Macromol. 2017, 94 Pt A, 335–344. [Google Scholar] [CrossRef]
- Ji, H.Y.; Yu, J.; Jiao, J.S.; Dong, X.D.; Yu, S.S.; Liu, A.J. Ultrasonic-Assisted Extraction of Codonopsis pilosula Glucofructan: Optimization, Structure, and Immunoregulatory Activity. Nutrients 2022, 14, 927. [Google Scholar] [CrossRef]
- Li, Q.; Yu, N.; Wang, Y.; Sun, Y.; Lu, K.; Guan, W. Extraction optimization of Bruguiera gymnorrhiza polysaccharides with radical scavenging activities. Carbohydr. Polym. 2013, 96, 148–155. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B. Ultrasound-assisted extraction of polysaccharide from Nephelium lappaceum L. fruit peel. Int. J. Biol. Macromol. 2014, 70, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.B.; Yang, X.; Wang, J.; Zhao, H.T.; Lu, W.H.; Cui, J.; Cheng, C.L.; Zou, P.; Huang, W.W.; Wang, P.; et al. Chemical composition and antioxidant activities of three polysaccharide fractions from pine cones. Int. J. Mol. Sci. 2012, 13, 14262–14277. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ding, S.; Yan, Z.; Liu, H.; Tu, J.; Chen, Y.; Zhang, X. Structural Characteristic and In-Vitro Anticancer Activities of Dandelion Leaf Polysaccharides from Pressurized Hot Water Extraction. Nutrients 2022, 15, 80. [Google Scholar] [CrossRef] [PubMed]
- Deore, U.V.; Mahajan, H.S. Isolation and structural characterization of mucilaginous polysaccharides obtained from the seDES of Cassia uniflora for industrial application. Food Chem. 2021, 351, 129262. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Zhang, D.; Huang, B.; Yi, P.; Yan, C. Structural characterization and DPPH· radical scavenging activity of a polysaccharide from Guara fruits. Carbohydr. Polym. 2014, 103, 143–147. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, B.; Wei, W.; Tian, X.; Wu, Z. Antioxidant and Anti-Diabetic Activities of Polysaccharides from Guava Leaves. Molecules 2019, 24, 1343. [Google Scholar] [CrossRef]
- Deka, H.; Sarmah, P.P.; Devi, A.; Tamuly, P.; Karak, T. Changes in major catechins, caffeine, and antioxidant activity during CTC processing of black tea from North East India. RSC Adv. 2021, 11, 11457–11467. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 2010, 5, 51–66. [Google Scholar] [CrossRef]
- Mo, X.; Guo, D.; Jiang, Y.; Chen, P.; Huang, L. Isolation, structures and bioactivities of the polysaccharides from Radix Hedysari: A review. Int. J. Biol. Macromol. 2022, 199, 212–222. [Google Scholar] [CrossRef]
- Li, L.X.; Feng, X.; Tao, M.T.; Paulsen, B.S.; Huang, C.; Feng, B.; Liu, W.; Yin, Z.Q.; Song, X.; Zhao, X.; et al. Benefits of neutral polysaccharide from rhizomes of Polygonatum sibiricum to intestinal function of aged mice. Front. Nutr. 2022, 9, 992102. [Google Scholar] [CrossRef] [PubMed]
- Tural, R.; Karakaya, C.; Erdem, M.; Aykol, Z.; Karabacak, R.O.; Kavutçu, M. Investigation of oxidative stress status in cumulus cells in patients with in vitro fertilization. Turk. J. Med. Sci. 2021, 51, 1969–1975. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Song, M. Polygonatum sibiricum polysaccharide inhibits high glucose-induced oxidative stress, inflammatory response, and apoptosis in RPE cells. J. Recept. Signal Transduct. Res. 2022, 42, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Gebicki, J.M. Oxidative stress, free radicals and protein peroxides. Arch. Biochem. Biophys. 2016, 595, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yin, J.; Yang, Z.; Qin, W.; Huo, J.; Huang, J.; Sun, J.; Piao, W. Construction and Application of Hepatocyte Model Based on Microfluidic Chip Technique in Evaluating Emodin. Nutrients 2022, 14, 2768. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yin, J.; Huo, J.; Sun, J.; Huang, J.; Li, T.; Sun, C.; Yang, Z.; Qin, W. Optimization and Application of a Bionic System of Dynamic Co-Culture with Hepatocytes and Renal Cells Based on Microfluidic Chip Technique in Evaluating Materials of Health Food. Nutrients 2022, 14, 4728. [Google Scholar] [CrossRef]
The Name of Product | The Code of Product | Company (City, State, Country) |
---|---|---|
2,2-diphenyl-1-picrylhydrazyl (DPPH) (see Abbreviations) | BSF220911 | Shanghai Shifeng biological technology Co., Ltd. (Shanghai China) |
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (see Abbreviations) | 221899 | Aladdin, Inc. (Shanghai, China) |
Bovine serum albumin (BSA) (see Abbreviations) | WXBC7961V | Sigma Co., Ltd. (St. Louis, MO, USA) |
D-Glucose anhydrous-RM | RMT13890 | Beijing Manhagebio-tech, Co., Ltd. (Beijing China) |
Coomassie brilliant blue G-250 | 727Y032 | Beijing Solarbio life science, Inc. (Beijing, China) |
Catalase (CAT) Assay Kit | 20221008 | Beijing Solarbio life science, Inc. (Beijing, China) |
Catalase | 1129Y021 | Beijing Solarbio life science, Inc. (Beijing, China) |
TSK-gel G3000 PWXL column | 0008033 | Guangzhou Lubex Scientific Instrument, Co., Ltd. (Guangzhou, China) |
Eclipse XDB-C18 | 7995118-585 | Agilent Technologies, Inc.(Santa Clara, CA, USA) |
Bio-Gel PMel | 1504140 | Bio-Rad Laboratories, Inc. (Hercules, CA, USA) |
Levels | Factors | ||
---|---|---|---|
A Liquid-Solid Ratio(mL:g) | B Ultrasonic Power/W | C Ultrasonic Time/min | |
−1 | 20:1 | 40 | 40 |
0 | 30:1 | 80 | 50 |
1 | 40:1 | 120 | 60 |
Number | A/(mL:g) | B/W | C/min | Y/% |
---|---|---|---|---|
1 | 20:1 | 40 | 50 | 40.21 |
2 | 40:1 | 40 | 50 | 35.18 |
3 | 20:1 | 120 | 50 | 39.52 |
4 | 40:1 | 120 | 50 | 36.85 |
5 | 20:1 | 80 | 40 | 41.64 |
6 | 40:1 | 80 | 40 | 35.76 |
7 | 20:1 | 80 | 60 | 41.64 |
8 | 40:1 | 80 | 60 | 38.24 |
9 | 30:1 | 40 | 40 | 38.02 |
10 | 30:1 | 120 | 40 | 39.31 |
11 | 30:1 | 40 | 60 | 38.78 |
12 | 30:1 | 120 | 60 | 40.43 |
13 | 30:1 | 80 | 50 | 43.77 |
14 | 30:1 | 80 | 50 | 43.32 |
15 | 30:1 | 80 | 50 | 43.14 |
16 | 30:1 | 80 | 50 | 42.48 |
17 | 30:1 | 80 | 50 | 43.13 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 115.26 | 9 | 12.81 | 52.84 | <0.0001 | Significant |
A-A | 36.02 | 1 | 36.02 | 148.64 | <0.0001 | ** |
B-B | 1.93 | 1 | 1.93 | 7.96 | 0.0257 | |
C-C | 2.39 | 1 | 2.39 | 9.84 | 0.0164 | |
AB | 1.38 | 1 | 1.38 | 5.70 | 0.0483 | |
AC | 1.53 | 1 | 1.53 | 6.33 | 0.0401 | |
BC | 0.0331 | 1 | 0.0331 | 0.1365 | 0.7228 | |
A2 | 26.79 | 1 | 26.79 | 110.53 | <0.0001 | ** |
B2 | 30.86 | 1 | 30.86 | 127.35 | <0.0001 | ** |
C2 | 7.45 | 1 | 7.45 | 30.75 | 0.0009 | ** |
Residual | 1.70 | 7 | 0.2424 | |||
Lack of Fit | 0.8371 | 3 | 0.2790 | 1.30 | 0.3900 | Not significant |
Pure Error | 0.8593 | 4 | 0.2148 | |||
Cor Total | 119.96 | 16 |
Type of Experiment | PsP (mg/mL) | Vitamin C (ug/mL) |
---|---|---|
Scavenging rate of DPPH radical | 20.79 | 23.3 |
Scavenging rate of ABTS radical | 20.97 | 9.61 |
Scavenging rate of hydroxyl radical | 118.16 | 827.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Wang, G.; Sun, J.; Yin, J.; Huang, J.; Li, Z.; Mu, D.; He, M.; Liu, T.; Cheng, J.; et al. A New Method of Extracting Polygonatum sibiricum Polysaccharide with Antioxidant Function: Ultrasound-Assisted Extraction-Deep Eutectic Solvents Method. Foods 2023, 12, 3438. https://doi.org/10.3390/foods12183438
Sun C, Wang G, Sun J, Yin J, Huang J, Li Z, Mu D, He M, Liu T, Cheng J, et al. A New Method of Extracting Polygonatum sibiricum Polysaccharide with Antioxidant Function: Ultrasound-Assisted Extraction-Deep Eutectic Solvents Method. Foods. 2023; 12(18):3438. https://doi.org/10.3390/foods12183438
Chicago/Turabian StyleSun, Chaoqun, Guodong Wang, Jing Sun, Jiyong Yin, Jian Huang, Zizi Li, Di Mu, Menglu He, Tingting Liu, Jiali Cheng, and et al. 2023. "A New Method of Extracting Polygonatum sibiricum Polysaccharide with Antioxidant Function: Ultrasound-Assisted Extraction-Deep Eutectic Solvents Method" Foods 12, no. 18: 3438. https://doi.org/10.3390/foods12183438
APA StyleSun, C., Wang, G., Sun, J., Yin, J., Huang, J., Li, Z., Mu, D., He, M., Liu, T., Cheng, J., Du, H., Chen, Y., & Qu, W. (2023). A New Method of Extracting Polygonatum sibiricum Polysaccharide with Antioxidant Function: Ultrasound-Assisted Extraction-Deep Eutectic Solvents Method. Foods, 12(18), 3438. https://doi.org/10.3390/foods12183438