Physicochemical Characteristics, Microstructure and Health Promoting Properties of Green Banana Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Banana Starch
2.3. Proximate Composition of Green Banana Flour
2.4. Mineral Composition of Green Banana Flour
2.5. Characterization of Functional Properties of Green Banana Flour
2.5.1. Water Absorption Capacity (WAC)
2.5.2. Water Solubility Index and Swelling Power
2.6. Microstructure Analysis of Green Banana Flour
2.6.1. Scanning Electron Microscopy (SEM)
2.6.2. X-Ray Diffraction (XRD)
2.7. Molecular Structure Analysis of Green Banana Cultivars
2.7.1. Fourier Transform Infrared (ATR-FTIR) Spectroscopy
2.7.2. Determination of Rapidly Digestible, Slow Digestible, Resistant, and Total Starch Contents of Green Banana Flour
2.7.3. Amylose and Amylopectin
2.8. Total Phenols, Flavonoids Content and Antioxidant Properties
2.8.1. Total Phenolic Content (TPC)
2.8.2. Total Flavonoid Content (TFC)
2.8.3. Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Green Banana Flour
3.2. Mineral Composition of Green Banana Flour
3.3. Characterization of Functional Properties Banana Flours
3.3.1. Water Absorption Capacity (WAC) of Green Banana Flour Cultivars
3.3.2. The Water Solubility and Swelling Power of Green Banana Flour Cultivars
3.4. Microstructure Analysis of Green Banana Flour
3.4.1. Scanning Electron Microscopy (SEM) of Starch Isolated from Green Banana Flour
3.4.2. X-Ray Diffraction of Green Banana Flour
3.4.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.4.4. In vitro Starch Digestion and Amylose Content of Green Banana Flour
3.5. Phenolic Content and Antioxidant Activity of Green Banana Flour
3.5.1. Total Phenolic Content and Total Flavonoid Content
3.5.2. Antioxidant Activity (AOA) of Green Banana Flour
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebello, L.P.G.; Ramos, A.M.; Pertuzatti, P.B.; Barcia, M.T.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Res. Int. 2014, 55, 397–403. [Google Scholar] [CrossRef]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global Prevalence of Diabetes: Estimates for the Year 2000 and Projections for 2030. 2004. Available online: http://care.diabetesjournals (accessed on 9 October 2021).
- Macaulay, S.; Ngobeni, M.; Dunger, D.B.; Norris, S.A. The prevalence of gestational diabetes mellitus amongst black South African women is a public health concern. Diabetes Res. Clin. Pract. 2018, 139, 278–287. [Google Scholar] [CrossRef]
- Okaiyeto, K.; Oguntibeju, O.O. Trends in diabetes research outputs in South Africa over 30 years from 2010 to 2019: A biblio-metric analysis. Saudi J. Biol. Sci. 2021, 28, 2914–2924. [Google Scholar] [CrossRef]
- Diabetes in South Africa: Assessing the Data with Fear and Trembling. Available online: http://www.statssa.gov.za/publications/P0302/P03022015.pdf (accessed on 9 October 2021).
- Ho, L.H.; Abdul Aziz, N.A.; Azahari, B. Physico-chemical characteristics and sensory evaluation of wheat bread partially sub-stituted with banana (Musa acuminata X balbisiana cv. Awak) pseudo-stem flour. Food Chem. 2013, 139, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Naknaen, P.; Charoenthaikij, P.; Kerdsup, P. Physicochemical Properties and Nutritional Compositions of Foamed Banana Powders (Pisang Awak, Musa sapientum L.) Dehydrated by Various Drying Methods. Walailak J. Sci. Tech. 2016, 13, 177–191. Available online: http://wjst.wu.ac.th (accessed on 9 October 2021).
- Martínez, P.; Peña, F.; Bello-Pérez, L.A.; Núñez-Santiago, C.; Yee-Madeira, H.; Velezmoro, C. Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chem. 2019, 2, 100030. [Google Scholar] [CrossRef]
- Kumar, P.S.; Saravanan, A.; Sheeba, N.; Uma, S. Structural, functional characterization and physicochemical properties of green banana flour from dessert and plantain bananas (Musa spp.). LWT 2019, 116, 108524. [Google Scholar] [CrossRef]
- Borges, C.V.; Maraschin, M.; Coelho, D.S.; Leonel, M.; Gomez, H.A.G.; Belin, M.A.F.; Diamante, M.S.; Amorim, E.P.; Gianeti, T.; Castro, G.R.; et al. Nutritional value and antioxidant com-pounds during the ripening and after domestic cooking of bananas and plantains. Food Res. Int. 2020, 132, 109061. [Google Scholar] [CrossRef]
- Artavia, G.; Cortés-Herrera, C.; Granados-Chinchilla, F. Total and resistant starch from foodstuff for animal and human con-sumption in Costa Rica. Curr. Res. Food Sci. 2020, 3, 275–283. [Google Scholar] [CrossRef]
- Lal, M.K.; Singh, B.; Sharma, S.; Singh, M.P.; Kumar, A. Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends Food Sci. Technol. 2021, 111, 741–755. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, R.; Huang, Z.; Zhang, N.; Li, X.; Wang, P. Inhibition of Synovial Macrophage Pyroptosis Alleviates Synovitis and Fibrosis in Knee Osteoarthritis. Mediat. Inflamm. 2019, 2019, 108524. [Google Scholar] [CrossRef]
- Kumar, S.R.; Sadiq, M.B.; Anal, A.K. Comparative study of physicochemical and functional properties of pan and microwave cooked underutilized millets (proso and little). LWT 2020, 128, 109465. [Google Scholar] [CrossRef]
- Rai, S.K.; Chaturvedi, K.; Yadav, S.K. Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocoll. 2019, 91, 127–135. [Google Scholar]
- Jiang, H.; Zhang, Y.; Hong, Y.; Bi, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Digestibility and changes to structural characteristics of green banana starch during invitro digestion. Food Hydrocoll. 2015, 49, 192–199. [Google Scholar] [CrossRef]
- Rodriguez-Jimenez, J.R.; Amaya-Guerra, C.A.; Baez-Gonzalez, J.G.; Aguilera-Gonzalez, C.; Urias-Orona, V.; Nino-Medina, G. Physi-cochemical, functional, and nutraceutical properties of eggplant flours obtained by different drying methods. Molecules 2018, 23, 3210. [Google Scholar] [CrossRef] [Green Version]
- Jakavula, S.; Biata, N.R.; Dimpe, K.M.; Pakade, V.E.; Nomngongo, P.N. Multi-ion imprinted polymers (MIIPs) for simultaneous ex-traction and preconcentration of Sb(III), Te(IV), Pb(II) and Cd(II) ions from drinking water sources. J. Hazard. Mater. 2021, 416, 126175. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0304389421011390 (accessed on 9 October 2021). [CrossRef] [PubMed]
- Maziya, K.; Dlamini, B.C.; Malinga, S.P. Hyperbranched polymer nanofibrous membrane grafted with silver nanoparticles for dual antifouling and antibacterial properties against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. React. Funct. Polym. 2020, 148, 104494. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Vongsvivut, J.; Tobin, M.J.; Adhikari, R.; Barrow, C.; Adhikari, B. Investigation of oil distribution in spray-dried chia seed oil microcapsules using synchrotron-FTIR microspectroscopy. Food Chem. 2018, 275, 457–466. [Google Scholar] [CrossRef]
- Rapid Integrated Total Dietary Fiber Assay Procedure [Internet]. 2020. Available online: www.megazyme.com (accessed on 9 October 2021).
- Blainski, A.; Lopes, G.C.; De Mello, J.C.P. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabri-Karoui, I.; Marzouk, B. Bioactive Compounds, Antioxidant Activities and Heat Stability of Corn Oil Enriched with Tunisian Citrus aurantium L. Peel Extract. J. Am. Oil Chem. Soc. 2014, 91, 1367–1375. [Google Scholar] [CrossRef]
- Hofmann, T.; Visi-Rajczi, E.; Albert, L. Antioxidant properties assessment of the cones of conifers through the combined evalua-tion of multiple antioxidant assays. Ind. Crop. Prod. 2020, 145, 111935. [Google Scholar] [CrossRef]
- Someya, S.; Yoshiki, Y.; Okubo, K. Antioxidant Compounds from Bananas (Musa Cavendish). Available online: www.elsevier.com/locate/foodchem (accessed on 9 October 2021).
- Utrilla-Coello, R.; Rodríguez-Huezo, M.; Carrillo-Navas, H.; Hernández-Jaimes, C.; Vernon-Carter, E.; Alvarez-Ramirez, J. In vitro digestibility, physicochemical, thermal and rheological properties of banana starches. Carbohydr. Polym. 2014, 101, 154–162. [Google Scholar] [CrossRef]
- Campuzano, A.; Rosell, C.M.; Cornejo, F. Physicochemical and nutritional characteristics of banana flour during ripening. Food Chem. 2018, 256, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Agudelo, M.A.; Miró, M.; Arruda, M.A. In vitro oral bioaccessibility and total content of Cu, Fe, Mn and Zn from transgenic (through cp4 EPSPS gene) and nontransgenic precursor/successor soybean seeds. Food Chem. 2017, 225, 125–131. [Google Scholar] [CrossRef]
- Khoozani, A.A.; Kebede, B.; Birch, J.; Bekhit, A.E.-D.A. The Effect of Bread Fortification with Whole Green Banana Flour on Its Physicochemical, Nutritional and In Vitro Digestibility. Foods 2020, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Do Prado Ferreira, M.; Tarley, C.R.T. Bioaccessibility estimation of metallic macro and micronutrients Ca, Mg, Zn, Fe, Cu and Mn in flours of oat and passion fruit peel. LWT 2021, 150, 111880. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0023643821010331 (accessed on 9 October 2021). [CrossRef]
- Ferreira, D.C.; Molina, G.; Pelissari, F. Biodegradable trays based on cassava starch blended with agroindustrial residues. Compos. Part B Eng. 2020, 183. [Google Scholar] [CrossRef]
- Bezerra, C.V.; Amante, E.R.; de Oliveira, D.C.; Rodrigues, A.M.C.; da Silva, L.H.M. Green banana (Musa cavendishii) flour obtained in spouted bed—Effect of drying on physico-chemical, functional and morphological characteristics of the starch. Ind. Crop. Prod. 2013, 41, 241–249. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Luo, S.; McClements, D.J.; Liang, L.; Liu, C. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Res. Int. 2018, 106, 404–409. [Google Scholar] [CrossRef]
- Amini Khoozani, A.; Birch, J.; Bekhit, A.E.D.A. Production, application and health effects of banana pulp and peel flour in the food industry. J. Food Sci. Technol. 2019, 56, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Tasnim, T.; Das, P.C.; Begum, A.A.; Nupur, A.H.; Mazumder, M.d.A.R. Nutritional, textural and sensory quality of plain cake en-riched with rice rinsed water treated banana blossom flour. J. Agric. Food Res. 2020, 2, 100071. [Google Scholar] [CrossRef]
- Do Prado Ferreira, M.; Tarley, C.R.T. Assessment of in vitro bioacessibility of macrominerals and trace elements in green banana flour. J. Food Compos. Anal. 2020, 92, 103586. [Google Scholar] [CrossRef]
- Brito, A.L.B.; Oliveira, A.F.; Nogueira, A.R.A.; Pessoa, A.G.; Pontes, L.F. Determination of inorganic constituents and physicochemical characterization of functional flour samples. Microchem. J. 2017, 132, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Freeland-Graves, J.H.; Sachdev, P.K.; Binderberger, A.Z.; Sosanya, M.E. Global diversity of dietary intakes and standards for zinc, iron, and copper. J. Trace Elem. Med. Biol. 2020, 61, 126515. [Google Scholar] [CrossRef]
- Savlak, N.; Türker, B.; Yeşilkanat, N. Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chem. 2016, 213, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.; Malairaj, S.; Brohi, S.A.; Boateng, E.F.; Zhang, W. Impact of unripe banana flour on water states, rheological behaviour and structural properties of myofibrillar protein composite gel. LWT 2020, 125, 109276. [Google Scholar] [CrossRef]
- Ahmed, J.; Thomas, L.; Khashawi, R. Influence of hot-air drying and freeze-drying on functional, rheological, structural and dielectric properties of green banana flour and dispersions. Food Hydrocoll. 2019, 99, 105331. [Google Scholar] [CrossRef]
- Salazar, D.; Arancibia, M.; Lalaleo, D.; Rodríguez-Maecker, R.; López-Caballero, M.E.; Montero, M.P. PHYSICO-CHEMICAL prop-erties and filmogenic aptitude for Edible packaging of Ecuadorian Discard green banana flours (Musa acuminanta AAA). Food Hydrocoll. 2021, 122, 107048. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0268005X21004641 (accessed on 9 October 2021). [CrossRef]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Zi, H.; Liu, H.; Zhang, S.; Yuan, B. A study of starch-urea-water mixtures with a combination of molecular dynamics sim-ulation and traditional characterization methods. Int. J. Biol. Macromol. 2020, 148, 121–128. [Google Scholar] [CrossRef]
- Reyes-Atrizco, J.N.; Agama-Acevedo, E.; Bello-Perez, L.A.; Alvarez-Ramirez, J. Morphological, molecular evolution an in vitro digestibility of filamentous granules of banana starch during fruit development. Int. J. Biol. Macromol. 2019, 132, 119–125. [Google Scholar] [CrossRef]
- Pandey, S.; Kumar, A.; Rao, P.S. Optimization, modeling, and characterization study for the physicochemical properties of raw banana and defatted soy composite extrudates. Food Chem. 2020, 339, 127865. [Google Scholar] [CrossRef] [PubMed]
- Rayo, L.M.; e Carvalho, L.C.; Sardá, F.A.; Dacanal, G.; Menezes, E.W.; Tadini, C.C. Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration. LWT 2015, 63, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Mahloko, L.M.; Silungwe, H.; Mashau, M.E.; Kgatla, T.E. Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon 2019, 5, e02479. [Google Scholar] [CrossRef] [Green Version]
- Anyasi, T.; Jideani, A.I.O.; Mchau, G.R. Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chem. 2014, 172, 515–522. [Google Scholar] [CrossRef]
- Chakravarty, A.; Tandon, M.; Attri, S.; Sharma, D.; Raigond, P.; Goel, G. Structural characteristics and prebiotic activities of re-sistant starch from Solanum tuberosum: Kufri Bahar, a popular Indian tuber variety. LWT 2021, 145, 111445. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0023643821005983 (accessed on 9 October 2021). [CrossRef]
- Zheng, Y.; Tian, J.; Kong, X.; Yang, W.; Yin, X.; Xu, E.; Chen, S.; Liu, D.; Ye, X. Physicochemical and digestibility characterisation of maize starch–caffeic acid complexes. LWT 2019, 121, 108857. [Google Scholar] [CrossRef]
- Lawal, O.S.; Lapasin, R.; Bellich, B.; Olayiwola, T.O.; Cesàro, A.; Yoshimura, M.; Nishinari, K. Rheology and functional properties of starches isolated from five improved rice varieties from West Africa. Food Hydrocoll. 2011, 25, 1785–1792. [Google Scholar] [CrossRef]
- Alimi, B.A.; Workneh, T.S. Structural and physicochemical properties of heat moisture treated and citric acid modified acha and iburu starches. Food Hydrocoll. 2018, 81, 449–455. [Google Scholar] [CrossRef]
- Navghare, V.V.; Dhawale, S.C. In vitro antioxidant, hypoglycemic and oral glucose tolerance test of banana peels. Alex. J. Med. 2017, 53, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Passo Tsamo, C.V.; Herent, M.F.; Tomekpe, K.; Happi Emaga, T.; Quetin-Leclercq, J.; Rogez, H.; Larondelle, Y.; Andre, C. Phenolic profiling in the pulp and peel of nine plantain cultivars (Musa sp.). Food Chem. 2015, 167, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Anyasi, T.A.; Jideani, A.I.; Mchau, G.R. Phenolics and essential mineral profile of organic acid pretreated unripe banana flour. Food Res. Int. 2017, 104, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Aydogdu, A.; Yildiz, E.; Aydogdu, Y.; Sumnu, G.; Sahin, S.; Ayhan, Z. Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material. Food Hydrocoll. 2019, 95, 245–255. [Google Scholar] [CrossRef]
- Ayseli, M.T.; Yilmaz, M.T.; Cebi, N.; Sagdic, O.; Ozmen, D.; Capanoglu, E. Physicochemical, rheological, molecular, thermal and sensory evaluation of newly developed complementary infant (6–24 months old) foods prepared with quinoa (Chenopodium quinoa Willd.) flour. Food Chem. 2020, 315, 126208. [Google Scholar] [CrossRef] [PubMed]
- Barbi, R.C.T.; Hornung, P.S.; Ávila, S.; Alves, F.E.D.S.B.; Beta, T.; Ribani, R.H. Ripe and unripe inajá (Maximilia maripa) fruit: A new high source of added value bioactive compounds. Food Chem. 2020, 331, 127333. [Google Scholar] [CrossRef]
- Naseer, B.; Naik, H.; Hussain, S.Z.; Bhat, T.; Nazir, N. Development of instant phirni mix (a traditional dairy dessert) from high amylose rice, skim milk powder and carboxymethyl cellulose-resistant starch, predicted glycemic index and stability during storage. Food Biosci. 2021, 42, 101213. [Google Scholar] [CrossRef]
- Tuaño, A.P.P.; Barcellano, E.C.G.; Rodriguez, M.S. Resistant starch levels and in vitro starch digestibility of selected cooked Philippine brown and milled rices varying in apparent amylose content and glycemic index. Food Chemistry: Molecular Sciences. 2021, 2, 100010. [Google Scholar]
Parameters (g/100 g d.w.) | |||||
---|---|---|---|---|---|
Samples | Moisture | Ash | Fat | Protein | Carbohydrate |
Grande Naine | 10.50 ± 0.71 b | 3.50 ± 0.11 b | 0.52 ± 0.00 b | 3.60 ± 0.69 a | 81.88 ± 1.4 a |
Pisang Awak | 9.50 ± 0.33 a | 2.50 ± 0.05 a | 0.85 ± 0.02 e | 4.12 ± 0.48 c | 83.03 ± 0.81 b |
Finger Rose | 10.50 ± 0.84 b | 3.43 ± 0.31 b | 0.70 ± 0.71 d | 4.33 ± 0.30 d | 81.04 ± 0.76 a |
FHIA-01 | 9.40 ± 1.34 a | 3.50 ± 0.22 b | 0.68 ± 0.61 c | 3.63 ± 0.77 a | 84.82 ± 0.90 d |
Du Roi | 9.50 ± 0.51 a | 2.46 ± 0.32 a | 0.42 ± 0.51 a | 3.81 ± 0.43 b | 83.81 ± 0.56 c |
Minerals | Grande Naine | FHIA-01 | Finger Rose | Pisang Awak | Du Roi |
---|---|---|---|---|---|
Essential macro minerals | |||||
Ca | 18.38 ± 0.23 c | 10.50 ± 0.33 b | 8.70± 0.19 a | 28.25 ± 0.34 e | 19.68 ± 0.41 d |
Mg | 100.10 ± 0.17 d | 118.15 ± 0.14 e | 82.10 ± 0.15 c | 35.85 ± 0.38 b | 32.4 ± 0.20 a |
K | 934.7 ± 0.11 d | 1033.25 ± 0.15 e | 878.95 ± 0.31 c | 501.58 ± 0.22 b | 290.95 ± 0.35 a |
P | 99.25 ± 0.40 e | 85.43 ± 0.12 d | 72.50 ± 0.41 c | 38.38 ± 0.21 b | 31.72 ± 0.38 a |
S | 77.23 ± 0.11 d | 136.61 ± 0.21 e | 66.69 ± 0.51 c | 55.55 ± 0.21 a | 58.35 ± 0.12 b |
Essential trace minerals | |||||
Zn | 0.93 ± 0.21 e | 0.53 ± 0.48 b | 0.57 ± 0.30 c | 0.28 ± 0.33 d | 0.18 ± 0.43 a |
Cu | 0.5 ± 1.40 d | 0.43 ± 0.31 c | 0.33 ± 0.22 b | 0.33 ± 0.30 b | 0.25 ± 0.26 a |
Fe | 2.88 ± 0.21 e | 1.50 ± 0.27 c | 1.33 ± 0.31 a | 2.30 ± 0.44 d | 1.48 ± 0.42 b |
Mn | 3.20 ± 0.41 e | 1.23 ± 0.29 d | 0.98 ± 0.25 c | 0.60 ± 0.21 b | 0.48 ± 0.11 a |
Banana Flour Samples | Water Absorption Capacity (%) |
---|---|
FHIA-01 | 58.01 ± 0.31 d |
Grande Naine | 43.18 ± 0.10 b |
Pisang Awak | 67.11 ± 0.00 e |
Finger Rose | 40.00 ± 0.58 a |
Du Roi | 50.12 ± 0.69 c |
Banana Flour Samples | Solubility (%) | Swelling Power (g/g) | ||||
---|---|---|---|---|---|---|
50 °C | 70 °C | 90 °C | 50 °C | 70 °C | 90 °C | |
FHIA-01 | 6.49 ± 0.73 b | 9.50 ± 0.71 d | 15.01 ± 0.71 d | 0.29 ± 0.71 a | 0.42 ± 0.71 a | 0.52 ± 0.95 a |
Grande Naine | 7.40 ± 0.00 c | 9.61 ± 0.34 d | 10.21 ± 0.59 b | 0.50 ± 0.19 d | 0.67 ± 0.71 b | 0.75 ± 0.00 b |
Pisang Awak | 6.50 ± 0.32 b | 8.47 ± 0.58 b | 11.4 ± 0.58 c | 0.33 ± 0.21 b | 0.38± 0.44 a | 0.53 ± 0.01 a |
Finger Rose | 7.0 ± 0.08 c | 9.01 ± 0.34 c | 10.21 ± 0.59 b | 0.41± 0.79 c | 0.67 ± 0.71 b | 0.79 ± 0.04 b |
Du Roi | 5.50 ± 0.71 a | 7.59 ± 0.06 a | 8.03 ± 0.53 a | 0.38 ± 0.24 c | 0.63 ± 0.27 b | 0.83 ± 0.54 c |
Samples | RDS (%) | SDS (%) | RS (%) | Amylose (%) |
---|---|---|---|---|
Grande Naine | 6.02 ± 0.11 c | 13.30 ± 0.00 d | 80.38 ± 1.41 a | 18.95 ± 0.98 b |
Pisang Awak | 5.50 ± 0.05 b | 11.73 ± 0.02 c | 84.35 ± 1.51 c | 23.00 ± 0.91 d |
Finger Rose | 5.43 ± 0.31 b | 14.87 ± 0.01 e | 81.70 ± 1.21 b | 15.55 ± 0.90 a |
FHIA-01 | 4.50 ± 0.22 a | 10.17 ± 0.61 a | 86.50 ± 0.21 e | 24.82 ± 0.00 e |
Du Roi | 4.46 ± 0.82 a | 10.42 ± 0.51 b | 85.50 ± 0.40 d | 21.32 ± 0.16 c |
Samples | TPC (mg GAE/100 g d.w.) | TFC (mg QE/100 g d.w.) | DPPH (mg TE/100 g d.w.) | FRAP (mg TE/100 g d.w.) |
---|---|---|---|---|
FHIA-01 | 307.03 ± 0.7 b | 293.87 ± 0.91 b | 359.11 ± 0.7 b | 411.72 ± 0.7 b |
Grande Naine | 524.87 ± 1.6 d | 407.08 ± 1.7 d | 437. 22 ± 1.0 c | 474.23 ± 0.2 c |
Pisang Awak | 312.00 ± 2.1 b | 291.80 ± 0.9 b | 363. 28 ± 0.4 b | 397. 11 ± 1.1 b |
Finger rose | 321.87 ± 0.1 c | 305.01 ± 1.0 c | 421.00 ± 0.1 c | 448.87 ± 1.3 c |
Du Roi | 298.73 ± 1.1 a | 287.40 ± 2.1 a | 301.34 ± 1.1 a | 324.27 ± 0.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoza, M.; Kayitesi, E.; Dlamini, B.C. Physicochemical Characteristics, Microstructure and Health Promoting Properties of Green Banana Flour. Foods 2021, 10, 2894. https://doi.org/10.3390/foods10122894
Khoza M, Kayitesi E, Dlamini BC. Physicochemical Characteristics, Microstructure and Health Promoting Properties of Green Banana Flour. Foods. 2021; 10(12):2894. https://doi.org/10.3390/foods10122894
Chicago/Turabian StyleKhoza, Minenhle, Eugenie Kayitesi, and Bhekisisa C. Dlamini. 2021. "Physicochemical Characteristics, Microstructure and Health Promoting Properties of Green Banana Flour" Foods 10, no. 12: 2894. https://doi.org/10.3390/foods10122894
APA StyleKhoza, M., Kayitesi, E., & Dlamini, B. C. (2021). Physicochemical Characteristics, Microstructure and Health Promoting Properties of Green Banana Flour. Foods, 10(12), 2894. https://doi.org/10.3390/foods10122894